Fault Diagnosis of Rolling Bearing Based on Multiscale Intrinsic Mode Function Permutation Entropy and a Stacked Sparse Denoising Autoencoder

Effective intelligent fault diagnosis of bearings is important for improving safety and reliability of machine. Benefiting from the training advantages, deep learning method can automatically and adaptively learn more abstract and high-level features without much priori knowledge. To realize represe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 9; číslo 13; s. 2743
Hlavní autoři: Dai, Juying, Tang, Jian, Shao, Faming, Huang, Shuzhan, Wang, Yangyang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.07.2019
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Effective intelligent fault diagnosis of bearings is important for improving safety and reliability of machine. Benefiting from the training advantages, deep learning method can automatically and adaptively learn more abstract and high-level features without much priori knowledge. To realize representative features mining and automatic recognition of bearing health condition, a diagnostic model of stacked sparse denoising autoencoder (SSDAE) which combines sparse autoencoder (SAE) and denoising autoencoder (DAE) is proposed in this paper. The sparse criterion in SAE, corrupting operation in DAE and reasonable designing of the stack order of autoencoders help to mine essential information of the input and improve fault pattern classification robustness. In order to provide better input features for the constructed network, the raw non-stationary and nonlinear vibration signals are processed with ensemble empirical mode decomposition (EEMD) and multiscale permutation entropy (MPE). MPE features which are extracted based on both the selected characteristic frequency-related intrinsic mode function components (IMFs) and the raw signal, are used as low-level feature for the input of the proposed diagnostic model for health condition recognition and classification. Two experiments based on the Case Western Reserve University (CWRU) dataset and the measurement dataset from laboratory were conducted, and results demonstrate the effectiveness of the proposed method and highlight its excellent performance relative to existing methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app9132743