A simplification of the backpropagation-through-time algorithm for optimal neurocontrol
Backpropagation-through-time (BPTT) is the temporal extension of backpropagation which allows a multilayer neural network to approximate an optimal state-feedback control law provided some prior knowledge (Jacobian matrices) of the process is available. In this paper, a simplified version of the BPT...
Uloženo v:
| Vydáno v: | IEEE transactions on neural networks Ročník 8; číslo 2; s. 437 - 441 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.03.1997
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 1045-9227, 1941-0093 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Backpropagation-through-time (BPTT) is the temporal extension of backpropagation which allows a multilayer neural network to approximate an optimal state-feedback control law provided some prior knowledge (Jacobian matrices) of the process is available. In this paper, a simplified version of the BPTT algorithm is proposed which more closely respects the principle of optimality of dynamic programming. Besides being simpler, the new algorithm is less time-consuming and allows in some cases the discovery of better control laws. A formal justification of this simplification is attempted by mixing the Lagrangian calculus underlying BPTT with Bellman-Hamilton-Jacobi equations. The improvements due to this simplification are illustrated by two optimal control problems: the rendezvous and the bioreactor. |
|---|---|
| AbstractList | Backpropagation-through-time (BPTT) is the temporal extension of backpropagation which allows a multilayer neural network to approximate an optimal state-feedback control law provided some prior knowledge (Jacobian matrices) of the process is available. In this paper, a simplified version of the BPTT algorithm is proposed which more closely respects the principle of optimality of dynamic programming. Besides being simpler, the new algorithm is less time-consuming and allows in some cases the discovery of better control laws. A formal justification of this simplification is attempted by mixing the Lagrangian calculus underlying BPTT with Bellman-Hamilton-Jacobi equations. The improvements due to this simplification are illustrated by two optimal control problems: the rendezvous and the bioreactor.Backpropagation-through-time (BPTT) is the temporal extension of backpropagation which allows a multilayer neural network to approximate an optimal state-feedback control law provided some prior knowledge (Jacobian matrices) of the process is available. In this paper, a simplified version of the BPTT algorithm is proposed which more closely respects the principle of optimality of dynamic programming. Besides being simpler, the new algorithm is less time-consuming and allows in some cases the discovery of better control laws. A formal justification of this simplification is attempted by mixing the Lagrangian calculus underlying BPTT with Bellman-Hamilton-Jacobi equations. The improvements due to this simplification are illustrated by two optimal control problems: the rendezvous and the bioreactor. Backpropagation-through-time (BPTT) is the temporal extension of backpropagation which allows a multilayer neural network to approximate an optimal state-feedback control law provided some prior knowledge (Jacobian matrices) of the process is available. In this paper, a simplified version of the BPTT algorithm is proposed which more closely respects the principle of optimality of dynamic programming. Besides being simpler, the new algorithm is less time-consuming and allows in some cases the discovery of better control laws. A formal justification of this simplification is attempted by mixing the Lagrangian calculus underlying BPTT with Bellman-Hamilton-Jacobi equations. The improvements due to this simplification are illustrated by two optimal control problems: the rendezvous and the bioreactor Backpropagation-through-time (BPTT) is the temporal extension of backpropagation which allows a multilayer neural network to approximate an optimal state-feedback control law provided some prior knowledge (Jacobian matrices) of the process is available. In this paper, a simplified version of the BPTT algorithm is proposed which more closely respects the principle of optimality of dynamic programming. Besides being simpler, the new algorithm is less time-consuming and allows in some cases the discovery of better control laws. A formal justification of this simplification is attempted by mixing the Lagrangian calculus underlying BPTT with Bellman-Hamilton-Jacobi equations. The improvements due to this simplification are illustrated by two optimal control problems: the rendezvous and the bioreactor. |
| Author | Gorrini, V. Bersini, H. |
| Author_xml | – sequence: 1 givenname: H. surname: Bersini fullname: Bersini, H. organization: IRIDIA-CP, Univ. Libre de Bruxelles, Belgium – sequence: 2 givenname: V. surname: Gorrini fullname: Gorrini, V. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2631476$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18255645$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90c1vFSEQAHBiauyHHrx6MHswNR625WuW5dg01po08dLGI2FZeA9llxXYQ_97se_5Dsb0BBl-A8zMKTqa42wRekvwBSFYXgp6ASA62b9AJ0Ry0mIs2VHdYw6tpFQco9Ocf2BMOODuFTomPQXoOJyg71dN9tMSvPNGFx_nJrqmbG0zaPNzSXHRm6dwW7YprpttW_xkGx02MfmynRoXUxOXGtShme2aoolzSTG8Ri-dDtm-2a9n6OHm8_31bXv37cvX66u71rCOlNYSzQaAwQxMOFZLIHIUVLpRCj4IVoNCchjAkV5b6EawIGzfaykYd93I2Bn6uLu3_vXXanNRk8_GhqBnG9esqqNAeA9Vnj8raQ8S98ArfL-H6zDZUS2pVpce1d-mVfBhD3Q2OrikZ-PzwdGOES66yi53zKSYc7JOGV-emlmS9kERrP5MTwmqdtOrGZ_-yTi8_R_7bme9tfbg9oe_AYK2oV8 |
| CODEN | ITNNEP |
| CitedBy_id | crossref_primary_10_1016_S0925_2312_98_00093_9 crossref_primary_10_1002__SICI_1099_1239_199909_9_11_799__AID_RNC441_3_0_CO_2_U crossref_primary_10_1016_j_asoc_2006_02_010 crossref_primary_10_1109_72_977323 crossref_primary_10_1023_A_1007686309208 crossref_primary_10_1109_87_944469 crossref_primary_10_3390_a11080121 crossref_primary_10_1007_s11265_019_01485_2 |
| Cites_doi | 10.1016/0893-6080(94)90103-1 10.1109/IJCNN.1991.170615 10.1049/ip-f-2.1991.0009 10.1109/ICNN.1993.298851 10.1016/0893-6080(94)90067-1 10.1109/5.58337 10.1109/37.55119 |
| ContentType | Journal Article |
| Copyright | 1997 INIST-CNRS |
| Copyright_xml | – notice: 1997 INIST-CNRS |
| DBID | AAYXX CITATION IQODW NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/72.557698 |
| DatabaseName | CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Computer and Information Systems Abstracts PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Computer Science Applied Sciences |
| EISSN | 1941-0093 |
| EndPage | 441 |
| ExternalDocumentID | 18255645 2631476 10_1109_72_557698 557698 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYXX CITATION IQODW RIG NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c361t-e1a3b55bcb37f376919d729fd974b7337f7945b5f18ae56d5e57e88a9734f6d33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1109_72_557698&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9227 |
| IngestDate | Thu Sep 04 22:01:09 EDT 2025 Thu Sep 04 15:46:17 EDT 2025 Mon Jul 21 05:53:09 EDT 2025 Mon Jul 21 09:14:18 EDT 2025 Tue Nov 18 22:34:42 EST 2025 Sat Nov 29 03:59:16 EST 2025 Wed Aug 27 02:29:46 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 2 |
| Keywords | State feedback Backpropagation algorithm Experimental result Optimal control Dynamic programming Neural network Optimization Multilayer network |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-e1a3b55bcb37f376919d729fd974b7337f7945b5f18ae56d5e57e88a9734f6d33 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 18255645 |
| PQID | 28590854 |
| PQPubID | 23500 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_557698 pubmed_primary_18255645 crossref_citationtrail_10_1109_72_557698 crossref_primary_10_1109_72_557698 proquest_miscellaneous_734251485 proquest_miscellaneous_28590854 pascalfrancis_primary_2631476 |
| PublicationCentury | 1900 |
| PublicationDate | 1997-03-01 |
| PublicationDateYYYYMMDD | 1997-03-01 |
| PublicationDate_xml | – month: 03 year: 1997 text: 1997-03-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on neural networks |
| PublicationTitleAbbrev | TNN |
| PublicationTitleAlternate | IEEE Trans Neural Netw |
| PublicationYear | 1997 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref7 feldkamp (ref3) 1993 saerens (ref8) 1991; 138 ref9 ungar (ref10) 1989 ref6 ref11 kirk (ref4) 1970 ref5 anderson iii (ref1) 1989 ref2 |
| References_xml | – ident: ref9 doi: 10.1016/0893-6080(94)90103-1 – ident: ref6 doi: 10.1109/IJCNN.1991.170615 – volume: 138 start-page: 55 year: 1991 ident: ref8 article-title: neural controller based on back-propagation algorithm publication-title: Radar and Signal Processing IEE Proceedings F doi: 10.1049/ip-f-2.1991.0009 – start-page: 451 year: 1993 ident: ref3 article-title: neural network approaches to process control-the bioreactor benchmark problem publication-title: Proc World Congr Neural Networks – ident: ref7 doi: 10.1109/ICNN.1993.298851 – ident: ref2 doi: 10.1016/0893-6080(94)90067-1 – ident: ref11 doi: 10.1109/5.58337 – start-page: 475 year: 1989 ident: ref1 article-title: challenging control problems publication-title: Neural Networks for Controls – start-page: 154 year: 1970 ident: ref4 publication-title: Optimal Control Theory— An Introduction – start-page: 387 year: 1989 ident: ref10 article-title: a bioreactor benchmark for adaptive network-based process control publication-title: Neural Networks for Controls – ident: ref5 doi: 10.1109/37.55119 |
| SSID | ssj0014506 |
| Score | 1.2953365 |
| Snippet | Backpropagation-through-time (BPTT) is the temporal extension of backpropagation which allows a multilayer neural network to approximate an optimal... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 437 |
| SubjectTerms | Applied sciences Artificial intelligence Backpropagation algorithms Bioreactors Calculus Computer science; control theory; systems Connectionism. Neural networks Dynamic programming Equations Exact sciences and technology Jacobian matrices Lagrangian functions Multi-layer neural network Neural networks Optimal control |
| Title | A simplification of the backpropagation-through-time algorithm for optimal neurocontrol |
| URI | https://ieeexplore.ieee.org/document/557698 https://www.ncbi.nlm.nih.gov/pubmed/18255645 https://www.proquest.com/docview/28590854 https://www.proquest.com/docview/734251485 |
| Volume | 8 |
| WOSCitedRecordID | wos10_1109_72_557698&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library customDbUrl: eissn: 1941-0093 dateEnd: 20111231 omitProxy: false ssIdentifier: ssj0014506 issn: 1045-9227 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61VQ9woLDlEaDFQghxSbt-xfZxhVpxQBUHEHuLYseGVbsJ2kel_nvGjncpUnvoLXIm0sQztr-xx98AfBgH7dqxY2XQVpTxZK-0hsrScW_Q_IxZly4Kf1UXF3o6Nd8yz3a6C-O9T8ln_iQ-prP8tnfruFV2KhEcG70Lu0pVw1Wt7YGBkKmMJgYXsjSMqUwiRMfmVLGT4cNIEKoj5Va8u3RrFUplVWJSZLPEfglDQYv7EWdaec4PHqTzU3iSASaZDB7xDHZ8N4LDSYfB9fyGfCQp5TPtpY_gYFPTgeQhPoLHtwgKD-HnhCxnMec85K090geCkJHYxl2i4jgbpeYyl_spY6l60lz96hez1e85QURMepyU5qhRYs7MmfHP4cf52ffPX8pcigGNVtFV6WnDrZTWWa4CzkmGmhZheWgxHLGKYyMaVloZqG68rFrppfJaN0ZxEaqW8xew1_WdfwXEsjZUNEjsmCCU0I0WFFEC954H7VVbwKeNaWqXecpjuYyrOsUrY1MrVg-9WsD7reifgZzjLqFRtMpWYNN69J-5t69ZxalQVQHvNuavccDFU5Sm8_16WUfGP8SpogByjwT-M6JGoWUBLwfH-add9r_Xdyr1Bh4N7Lgxxe0t7K0Wa38E--56NVsujtHtp_o4uf1fhpv_RQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQaIcKGwpBCi1EEJc3CZ-xPZxhaiKWFYciugtihMbVnQTtA8k_j1jx7sUqT1wi5yJNPH48Y1n_A3A69zrps0bRr22gobIHrWmkLThzqD5GbNNvCg8UdOpvrgwnxPPdrwL45yLyWfuODzGWH7bN-twVHYiERwbfRvuSCFYPlzW2oYMhIyFNNG9kNQwphKNUJGbE8WOh08DRagOpFvh9tKVfSgWVglpkfUSe8YPJS1uxpxx7znd-y-tH8KDBDHJeBgTj-CW60awP-7QvZ7_Jm9ITPqMp-kj2NtUdSBpko_g_hWKwn34OibLWcg69-lwj_SeIGgktm5-oOK4HsVmmgr-0FCsntSX3_rFbPV9ThATkx6XpTlqFLkzU278Y_hy-v783RlNxRjQbGWxoq6ouZXSNpYrj6uSKUyLwNy36JBYxbERTSut9IWunSxb6aRyWtdGceHLlvMD2On6zj0FYlnry8JL7BgvlNC1FgXiBO4c99qpNoO3G9NUTWIqDwUzLqvoseSmUqwaejWDV1vRnwM9x3VCo2CVrcCm9fAfc29fs5IXQpUZHG3MX-GUC3GUunP9elkFzj9EqiIDcoME_jPiRqFlBk-GgfNXuzT-nl2r1BHcOzv_NKkmH6Yfn8PuwJUbEt5ewM5qsXaHcLf5tZotFy_j4P8D5joBsw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simplification+of+the+backpropagation-through-time+algorithm+for+optimal+neurocontrol&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Bersini%2C+H&rft.au=Gorrini%2C+V&rft.date=1997-03-01&rft.issn=1045-9227&rft.volume=8&rft.issue=2&rft.spage=437&rft.epage=441&rft_id=info:doi/10.1109%2F72.557698&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |