Joint user association and resource allocation for cost-efficient NOMA-enabled F-RANs

Integrating Non-Orthogonal Multiple Access (NOMA) into Fog Radio Access Networks (F-RANs) has shown to be effective in boosting the spectral efficiency, energy efficiency, connectivity, and reducing the latency, thus attracting significant research attention. However, the performance improvement of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Digital communications and networks Ročník 10; číslo 6; s. 1686 - 1697
Hlavní autoři: Ai, Yuan, Liu, Chenxi, Peng, Mugen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2024
KeAi Communications Co., Ltd
Témata:
ISSN:2352-8648, 2352-8648
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Integrating Non-Orthogonal Multiple Access (NOMA) into Fog Radio Access Networks (F-RANs) has shown to be effective in boosting the spectral efficiency, energy efficiency, connectivity, and reducing the latency, thus attracting significant research attention. However, the performance improvement of the NOMA-enabled F-RANs is at the cost of computational overheads, which are commonly neglected in their design and deployment. To address this issue, in this paper, we propose a hybrid dynamic downlink framework for NOMA-enabled F-RANs. In this framework, we first develop a novel network utility function, which takes both the network throughput and computational overheads into consideration, thus enabling us to comprehensively evaluate the performance of different access schemes for F-RANs. Based on the developed network utility function, we further formulate a network utility maximization problem, subject to practical constraints on the decoding order, power allocation, and quality-of-service. To solve this NP-hard problem, we decompose it into two subproblems, namely, a user equipment association and subchannel assignment subproblem and a power allocation subproblem. Three-dimensional matching and sequential convex programming-based algorithms are designed to solve these two subproblems, respectively. Through numerical results, we show how our proposed algorithms can achieve a good balance between the network throughput and computational overheads by judiciously adjusting the maximum transmit power of fog access points. We also show that the proposed NOMA-enabled F-RAN framework can increase, by up to 89%, the network utility, compared to OMA-based F-RANs.
ISSN:2352-8648
2352-8648
DOI:10.1016/j.dcan.2023.08.001