Optimizing Long Short-Term Memory Network for Air Pollution Prediction Using a Novel Binary Chimp Optimization Algorithm
Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM2.5 concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it...
Uložené v:
| Vydané v: | Electronics (Basel) Ročník 12; číslo 18; s. 3985 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.09.2023
|
| Predmet: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM2.5 concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it furnishes indispensable information for epidemiological studies concentrating on PM2.5 exposure. In recent years, predictive models based on deep learning (DL) have offered promise in improving the accuracy and efficiency of air quality forecasts when compared to other approaches. Long short-term memory (LSTM) networks have proven to be effective in time series forecasting tasks, including air pollution prediction. However, optimizing LSTM models for enhanced accuracy and efficiency remains an ongoing research area. In this paper, we propose a novel approach that integrates the novel binary chimp optimization algorithm (BChOA) with LSTM networks to optimize air pollution prediction models. The proposed BChOA, inspired by the social behavior of chimpanzees, provides a powerful optimization technique to fine-tune the LSTM architecture and optimize its parameters. The evaluation of the results is performed using cross-validation methods such as the coefficient of determination (R2), accuracy, the root mean square error (RMSE), and receiver operating characteristic (ROC) curve. Additionally, the performance of the BChOA-LSTM model is compared against eight DL architectures. Experimental evaluations using real-world air pollution data demonstrate the superior performance of the proposed BChOA-based LSTM model compared to traditional LSTM models and other optimization algorithms. The BChOA-LSTM model achieved the highest accuracy of 96.41% on the validation datasets, making it the most successful approach. The results show that the BChOA-LSTM architecture performs better than the other architectures in terms of the R2 convergence curve, RMSE, and accuracy. |
|---|---|
| AbstractList | Elevated levels of fine particulate matter (PM[sub.2.5] ) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM[sub.2.5] concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it furnishes indispensable information for epidemiological studies concentrating on PM[sub.2.5] exposure. In recent years, predictive models based on deep learning (DL) have offered promise in improving the accuracy and efficiency of air quality forecasts when compared to other approaches. Long short-term memory (LSTM) networks have proven to be effective in time series forecasting tasks, including air pollution prediction. However, optimizing LSTM models for enhanced accuracy and efficiency remains an ongoing research area. In this paper, we propose a novel approach that integrates the novel binary chimp optimization algorithm (BChOA) with LSTM networks to optimize air pollution prediction models. The proposed BChOA, inspired by the social behavior of chimpanzees, provides a powerful optimization technique to fine-tune the LSTM architecture and optimize its parameters. The evaluation of the results is performed using cross-validation methods such as the coefficient of determination (R[sup.2] ), accuracy, the root mean square error (RMSE), and receiver operating characteristic (ROC) curve. Additionally, the performance of the BChOA-LSTM model is compared against eight DL architectures. Experimental evaluations using real-world air pollution data demonstrate the superior performance of the proposed BChOA-based LSTM model compared to traditional LSTM models and other optimization algorithms. The BChOA-LSTM model achieved the highest accuracy of 96.41% on the validation datasets, making it the most successful approach. The results show that the BChOA-LSTM architecture performs better than the other architectures in terms of the R[sup.2] convergence curve, RMSE, and accuracy. Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM2.5 concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it furnishes indispensable information for epidemiological studies concentrating on PM2.5 exposure. In recent years, predictive models based on deep learning (DL) have offered promise in improving the accuracy and efficiency of air quality forecasts when compared to other approaches. Long short-term memory (LSTM) networks have proven to be effective in time series forecasting tasks, including air pollution prediction. However, optimizing LSTM models for enhanced accuracy and efficiency remains an ongoing research area. In this paper, we propose a novel approach that integrates the novel binary chimp optimization algorithm (BChOA) with LSTM networks to optimize air pollution prediction models. The proposed BChOA, inspired by the social behavior of chimpanzees, provides a powerful optimization technique to fine-tune the LSTM architecture and optimize its parameters. The evaluation of the results is performed using cross-validation methods such as the coefficient of determination (R2), accuracy, the root mean square error (RMSE), and receiver operating characteristic (ROC) curve. Additionally, the performance of the BChOA-LSTM model is compared against eight DL architectures. Experimental evaluations using real-world air pollution data demonstrate the superior performance of the proposed BChOA-based LSTM model compared to traditional LSTM models and other optimization algorithms. The BChOA-LSTM model achieved the highest accuracy of 96.41% on the validation datasets, making it the most successful approach. The results show that the BChOA-LSTM architecture performs better than the other architectures in terms of the R2 convergence curve, RMSE, and accuracy. Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM2.5 concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it furnishes indispensable information for epidemiological studies concentrating on PM2.5 exposure. In recent years, predictive models based on deep learning (DL) have offered promise in improving the accuracy and efficiency of air quality forecasts when compared to other approaches. Long short-term memory (LSTM) networks have proven to be effective in time series forecasting tasks, including air pollution prediction. However, optimizing LSTM models for enhanced accuracy and efficiency remains an ongoing research area. In this paper, we propose a novel approach that integrates the novel binary chimp optimization algorithm (BChOA) with LSTM networks to optimize air pollution prediction models. The proposed BChOA, inspired by the social behavior of chimpanzees, provides a powerful optimization technique to fine-tune the LSTM architecture and optimize its parameters. The evaluation of the results is performed using cross-validation methods such as the coefficient of determination (R2), accuracy, the root mean square error (RMSE), and receiver operating characteristic (ROC) curve. Additionally, the performance of the BChOA-LSTM model is compared against eight DL architectures. Experimental evaluations using real-world air pollution data demonstrate the superior performance of the proposed BChOA-based LSTM model compared to traditional LSTM models and other optimization algorithms. The BChOA-LSTM model achieved the highest accuracy of 96.41% on the validation datasets, making it the most successful approach. The results show that the BChOA-LSTM architecture performs better than the other architectures in terms of the R2 convergence curve, RMSE, and accuracy. |
| Audience | Academic |
| Author | Baniasadi, Sahba Ghafourian, Ehsan Soltani, Sepehr Pourmand, Parmida Salehi, Reza Martín, Diego |
| Author_xml | – sequence: 1 givenname: Sahba surname: Baniasadi fullname: Baniasadi, Sahba – sequence: 2 givenname: Reza surname: Salehi fullname: Salehi, Reza – sequence: 3 givenname: Sepehr orcidid: 0000-0003-3000-2245 surname: Soltani fullname: Soltani, Sepehr – sequence: 4 givenname: Diego orcidid: 0000-0001-8810-0695 surname: Martín fullname: Martín, Diego – sequence: 5 givenname: Parmida orcidid: 0009-0006-2908-5775 surname: Pourmand fullname: Pourmand, Parmida – sequence: 6 givenname: Ehsan surname: Ghafourian fullname: Ghafourian, Ehsan |
| BookMark | eNp9kVlPAjEQxxuDiYh8Al-a-LzYA7rbRyReCQKJ8Lzp9oDi7ha7xevTW44HY4zTZGbS_n8z6cw5aNWu1gBcYtSjlKNrXWoZvKutbDDBGeXZ4AS0CUp5wgknrR_5Geg2zRpF45hmFLXBx3QTbGW_bL2EYxfd88r5kMy1r-CTrpz_hBMd3p1_gcZ5OLQezlxZboN1NZx5razcp4tmV0HAiXvTJbyxtYjkaGWrDTx2EHvdsFw6b8OqugCnRpSN7h5jByzubuejh2Q8vX8cDceJpAyHRAnOlDJG4EwUTBnaV0hkUqH4THWfkYymuqADifCg4JgYJmiBUqSpLFJFEO2Aq0PdjXevW92EfO22vo4tc5IxTglnbKfqHVRLUerc1sYFL2Q8SldWxnkbG--HaYozRNkgjQA_ANK7pvHa5NKG_RcjaMsco3y3nPyP5USW_mI33lZxYP9S33e-mt0 |
| CitedBy_id | crossref_primary_10_1007_s40808_023_01934_9 crossref_primary_10_3390_fi16120460 crossref_primary_10_3390_pr13051443 crossref_primary_10_3390_axioms14040235 |
| Cites_doi | 10.1007/s11356-022-24956-9 10.1016/j.procs.2020.04.221 10.1007/s12518-020-00297-5 10.3390/buildings13040973 10.3390/su15097367 10.1016/j.micpro.2022.104667 10.1007/s12559-021-09933-7 10.1016/j.asoc.2020.106341 10.1016/j.apr.2023.101875 10.1109/EEEIC/ICPSEurope49358.2020.9160596 10.1007/s11063-022-11055-6 10.3390/buildings13071684 10.1109/JSEN.2022.3222412 10.1016/j.measurement.2023.112797 10.7763/IJMLC.2012.V2.114 10.1016/j.neucom.2015.06.083 10.1007/s10462-022-10280-8 10.1109/ACCESS.2021.3056291 10.1016/j.eswa.2020.113338 10.1109/ACCESS.2023.3289153 10.1016/j.jocs.2021.101451 10.3390/su12062570 10.1109/ACCESS.2021.3080835 10.3390/s21062009 10.1007/s11227-023-05047-z 10.1016/j.engappai.2023.106092 10.1007/978-3-031-24041-6_18 10.1016/j.uclim.2020.100740 10.1016/j.jhydrol.2022.127553 10.1016/j.matcom.2022.12.027 10.1007/s10462-022-10173-w 10.1049/ise2.12108 10.3390/electronics12102263 10.3390/s22124459 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.3390/electronics12183985 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | A771803657 10_3390_electronics12183985 |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC COVID DWQXO L7M PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c361t-da96ddffa18ab6df34d0a8cd0c363e462837eb35c015b912f6a3b070e3cb7d203 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001076564100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sun Jul 13 04:04:57 EDT 2025 Tue Nov 04 18:29:17 EST 2025 Sat Nov 29 07:19:13 EST 2025 Tue Nov 18 21:25:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-da96ddffa18ab6df34d0a8cd0c363e462837eb35c015b912f6a3b070e3cb7d203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3000-2245 0000-0001-8810-0695 0009-0006-2908-5775 |
| OpenAccessLink | https://www.proquest.com/docview/2869329660?pq-origsite=%requestingapplication% |
| PQID | 2869329660 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2869329660 gale_infotracacademiconefile_A771803657 crossref_citationtrail_10_3390_electronics12183985 crossref_primary_10_3390_electronics12183985 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Harishkumar (ref_1) 2020; 171 Kaveh (ref_25) 2020; 7 Miri (ref_17) 2023; 17 Fard (ref_8) 2022; 94 ref_13 ref_35 ref_12 ref_11 Kaveh (ref_23) 2023; 208 Kaveh (ref_19) 2023; 79 Khishe (ref_26) 2020; 149 Son (ref_6) 2023; 14 Tian (ref_2) 2021; 35 Aghapour (ref_16) 2021; 9 Xin (ref_33) 2023; 214 Kaveh (ref_21) 2020; 12 Benaissa (ref_29) 2021; 55 Xu (ref_37) 2022; 608 Ranawat (ref_34) 2023; 122 Emary (ref_31) 2016; 172 Guha (ref_32) 2020; 93 Wang (ref_20) 2021; 13 Kaveh (ref_7) 2022; 55 Azizi (ref_24) 2023; 56 Sadeghi (ref_14) 2023; 75 Kaveh (ref_18) 2019; 28 Gharehchopogh (ref_22) 2023; 56 ref_3 Mirjalili (ref_30) 2012; 2 ref_28 ref_27 ref_9 Lotfy (ref_15) 2021; 9 Chang (ref_10) 2023; 30 Naz (ref_4) 2023; 11 ref_5 Challa (ref_36) 2022; 22 |
| References_xml | – volume: 30 start-page: 37440 year: 2023 ident: ref_10 article-title: LSTM model for predicting the daily number of asthma patients in Seoul, South Korea, using meteorological and air pollution data publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-24956-9 – volume: 171 start-page: 2057 year: 2020 ident: ref_1 article-title: Forecasting air pollution particulate matter (PM2.5) using machine learning regression models publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.04.221 – volume: 12 start-page: 291 year: 2020 ident: ref_21 article-title: Multiple criteria decision-making for hospital location-allocation based on improved genetic algorithm publication-title: Appl. Geomat. doi: 10.1007/s12518-020-00297-5 – volume: 7 start-page: 21 year: 2020 ident: ref_25 article-title: Solving the local positioning problem using a four-layer artificial neural network publication-title: Eng. J. Geospat. Inf. Technol. – ident: ref_27 doi: 10.3390/buildings13040973 – ident: ref_5 doi: 10.3390/su15097367 – volume: 94 start-page: 104667 year: 2022 ident: ref_8 article-title: An efficient modeling attack for breaking the security of XOR-Arbiter PUFs by using the fully connected and long-short term memory publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2022.104667 – volume: 13 start-page: 1297 year: 2021 ident: ref_20 article-title: Binary chimp optimization algorithm (BChOA): A new binary meta-heuristic for solving optimization problems publication-title: Cogn. Comput. doi: 10.1007/s12559-021-09933-7 – volume: 93 start-page: 106341 year: 2020 ident: ref_32 article-title: Introducing clustering based population in binary gravitational search algorithm for feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106341 – volume: 14 start-page: 101875 year: 2023 ident: ref_6 article-title: Estimation of surface PM2.5 concentrations from atmospheric gas species retrieved from tropomi using deep learning: Impacts of fire on air pollution over Thailand publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2023.101875 – ident: ref_35 doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160596 – volume: 55 start-page: 4519 year: 2022 ident: ref_7 article-title: Application of meta-heuristic algorithms for training neural networks and deep learning architectures: A comprehensive review publication-title: Neural Process. Lett. doi: 10.1007/s11063-022-11055-6 – ident: ref_9 doi: 10.3390/buildings13071684 – volume: 22 start-page: 24352 year: 2022 ident: ref_36 article-title: An optimized-LSTM and RGB-D sensor-based human gait trajectory generator for bipedal robot walking publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3222412 – volume: 214 start-page: 112797 year: 2023 ident: ref_33 article-title: A signal recovery method for bridge monitoring system using TVFEMD and encoder-decoder aided LSTM publication-title: Measurement doi: 10.1016/j.measurement.2023.112797 – volume: 2 start-page: 204 year: 2012 ident: ref_30 article-title: BMOA: Binary magnetic optimization algorithm publication-title: Int. J. Mach. Learn. Comput. doi: 10.7763/IJMLC.2012.V2.114 – volume: 172 start-page: 371 year: 2016 ident: ref_31 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 56 start-page: 5479 year: 2023 ident: ref_22 article-title: Quantum-inspired metaheuristic algorithms: Comprehensive survey and classification publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10280-8 – volume: 9 start-page: 23025 year: 2021 ident: ref_15 article-title: An efficient design of Anderson PUF by utilization of the Xilinx primitives in the SLICEM publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056291 – volume: 149 start-page: 113338 year: 2020 ident: ref_26 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113338 – volume: 11 start-page: 64016 year: 2023 ident: ref_4 article-title: Comparative Analysis of Deep Learning and Statistical Models for Air Pollutants Prediction in Urban Areas publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3289153 – volume: 55 start-page: 101451 year: 2021 ident: ref_29 article-title: YUKI Algorithm and POD-RBF for Elastostatic and dynamic crack identification publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2021.101451 – volume: 28 start-page: 7 year: 2019 ident: ref_18 article-title: Hospital site selection using hybrid PSO algorithm-Case study: District 2 of Tehran publication-title: Sci.-Res. Q. Geogr. Data – volume: 75 start-page: 751 year: 2023 ident: ref_14 article-title: A Deep Learning Approach for Detecting COVID-19 Using the Chest X-Ray Images publication-title: Comput. Mater. Contin. – ident: ref_3 doi: 10.3390/su12062570 – volume: 9 start-page: 74562 year: 2021 ident: ref_16 article-title: An ultra-lightweight mutual authentication scheme for smart grid two-way communications publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3080835 – ident: ref_11 doi: 10.3390/s21062009 – volume: 79 start-page: 9715 year: 2023 ident: ref_19 article-title: TDMBBO: A novel three-dimensional migration model of biogeography-based optimization (case study: Facility planning and benchmark problems) publication-title: J. Supercomput. doi: 10.1007/s11227-023-05047-z – volume: 122 start-page: 106092 year: 2023 ident: ref_34 article-title: Performance evaluation of LSTM and Bi-LSTM using non-convolutional features for blockage detection in centrifugal pump publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106092 – ident: ref_28 doi: 10.1007/978-3-031-24041-6_18 – volume: 35 start-page: 100740 year: 2021 ident: ref_2 article-title: Estimating PM2.5 from multisource data: A comparison of different machine learning models in the Pearl River Delta of China publication-title: Urban Clim. doi: 10.1016/j.uclim.2020.100740 – volume: 608 start-page: 127553 year: 2022 ident: ref_37 article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127553 – volume: 208 start-page: 19 year: 2023 ident: ref_23 article-title: Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2022.12.027 – volume: 56 start-page: 287 year: 2023 ident: ref_24 article-title: Fire Hawk Optimizer: A novel metaheuristic algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10173-w – volume: 17 start-page: 544 year: 2023 ident: ref_17 article-title: On the security of ‘an ultra-lightweight and secure scheme for communications of smart meters and neighborhood gateways by utilization of an ARM Cortex-M microcontroller’ publication-title: IET Inf. Secur. doi: 10.1049/ise2.12108 – ident: ref_12 doi: 10.3390/electronics12102263 – ident: ref_13 doi: 10.3390/s22124459 |
| SSID | ssj0000913830 |
| Score | 2.292603 |
| Snippet | Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM2.5... Elevated levels of fine particulate matter (PM[sub.2.5] ) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 3985 |
| SubjectTerms | Accuracy Air pollution Air quality Algorithms Atmospheric models Collaboration Computer architecture Distribution Environmental aspects Environmental protection Forecasting Machine learning Mathematical models Mathematical optimization Monkeys & apes Optimization Optimization algorithms Outdoor air quality Particles Performance evaluation Pollutants Prediction models Root-mean-square errors |
| Title | Optimizing Long Short-Term Memory Network for Air Pollution Prediction Using a Novel Binary Chimp Optimization Algorithm |
| URI | https://www.proquest.com/docview/2869329660 |
| Volume | 12 |
| WOSCitedRecordID | wos001076564100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V6KEcCvQhttCVD0i9EOHEeZ7Q7mpRkbppVKhEe4n8SLor7au7W0R74Lcz43iBA-LSS5TEeVj67PGMPf4-gCOueaSTwHi8jjBA0bXyZBQaT0ilYh3I0PjKik0keZ5eXWWFm3BburTKtU20htrMNM2RnwRpjK4GcUmezn97pBpFq6tOQmMDtoglgaQbiujn_RwLcV6mgjdkQwKj-5MHbZmlb50D0lB-NCA9bZbtWHO287-13IXXzstknaZZ7MGLavoGth9xD76Fm69oLCajf3jBvszwcDFET9y7REvNBpR--5flTYo4Q7-WdUYLVpAsMgHJigWt79hTm3PAJMtn19WYde32XtYbjiZz5v5gsWed8S-s6Go4eQffz_qXvc-ek2HwtIj9lWdkFhtT19JPpYpNLULDZaoNx2JR0d5WkWBIHmn0LFTmB3UshUJLUgmtEhNw8R42p7NptQ8sUURfV6FLIEUYKowV4zjL0OZiIJXwjLcgWGNRasdRTlIZ4xJjFQKwfALAFhzfvzRvKDqef_wTgVxSB8Zva-n2IWANiQqr7CQ4XOO4HiUtOFyDXLqevSwfEP7wfPEBvCJp-iYf7RA2V4s_1Ud4qa9Xo-WiDVvdfl58a8PG4Lbfts0W7xXng-LHHegs-pk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwoJSHWGjBhyIuRHXsPA8IbV_qqrshEotUTsGPhF1pX-wuhfKj-I2dyaPtoeqtBy5RIidOYn-e-cYezwDscMN9Ewrr8MJHA8UU2lG-Zx2ptA6MUJ51dZlsIkyS6PQ0TtfgX7MXhtwqG5lYCmo7MzRHviuiAKkGxZL8NP_pUNYoWl1tUmhUsDjJz3-jybb82D3A_n0nxNHhYP_YqbMKOEYG7sqxKg6sLQrlRkoHtpCe5SoylmOxzGmrpgzRwvQNKkodu6IIlNQ4MHJpdGgFl1jvPVj3COwtWE-7_fTb5awORdmMJK_CG0kZ892rbDZLt6QjlLX5mgq8WRGU2u1o439rlyfwuObRrFMBfxPW8ulTeHQtuuIz-PMZxeFk9BcvWG-Ghy9DtDWcAeoi1icH43OWVE7wDJk764wWLKXEzwRVli5oBas8Lb0qmGLJ7Cwfs71yAzPbH44mc1a_oUQ364x_YMOshpPn8PVOfv0FtKazaf4SWKgpQF-OpEdJz9NoDQdBHKNWQVMx5DFvg2j6PjN1FHZKBjLO0BojwGQ3AKYNHy4fmldBSG6__T2BKiMRhXUbVe-0wC-kYF9ZJ0RCgszFD9uw1YAqq2XXMrtC1Kvbi9_Cg-NBv5f1usnJa3gokP5V3ndb0FotfuXbcN-crUbLxZt6mDD4ftcIvAB7BlYh |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceCMWCvgA4kK0jp3EyQGhpWVF1RIiUaSKS_AjYVfaF7tLofw0fh0zTtL2UPXWA5cokfN0Ps_MZ88D4AW3PLZKuIDXMRIUW5tAx5ELpDYmsUJHLjS-2ITK8_TwMCs24G8XC0NulZ1M9ILazS3NkfdFmqCpQbkk-3XrFlHsDN8ufgRUQYpWWrtyGg1E9qrjX0jfVm92d_BfvxRi-P5g-0PQVhgIrEzCdeB0ljhX1zpMtUlcLSPHdWodx2ZZUdimVMg2Y4tK02ShqBMtDQ6SSlqjnOAS73sFrirkmOROWMRfT-Z3KN9mKnmT6EjKjPdP69qsQm-YUP3mM8rwfJXg9dzw9v_cQ3fgVmtds0EzHO7CRjW7BzfP5Fy8D78_oZCcjv_gAduf4-bzCBlIcIAain0kt-Njljeu8QzteTYYL1lB5aAJwKxY0rqW3_W-FkyzfH5UTdg7H9bMtkfj6YK1T_CYZ4PJd-yY9Wj6AL5cyqc_hM3ZfFY9AqYMpe2r0BTSMooMcuQkyTLUNUggFc94D0SHg9K2udmpRMikRI5G4CnPAU8PXp9ctGhSk1x8-isCWEmCC-9tdRt_gW9IKcDKgUIzBe2ZWPVgqwNY2Uq0VXmKrscXNz-H6wi7cn8333sCNwTahI1L3hZsrpc_q6dwzR6tx6vlMz9eGHy7bPj9A5kBXYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Long+Short-Term+Memory+Network+for+Air+Pollution+Prediction+Using+a+Novel+Binary+Chimp+Optimization+Algorithm&rft.jtitle=Electronics+%28Basel%29&rft.au=Baniasadi%2C+Sahba&rft.au=Salehi%2C+Reza&rft.au=Soltani%2C+Sepehr&rft.au=Mart%C3%ADn%2C+Diego&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=12&rft.issue=18&rft.spage=3985&rft_id=info:doi/10.3390%2Felectronics12183985&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |