Optimizing Long Short-Term Memory Network for Air Pollution Prediction Using a Novel Binary Chimp Optimization Algorithm

Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM2.5 concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronics (Basel) Ročník 12; číslo 18; s. 3985
Hlavní autori: Baniasadi, Sahba, Salehi, Reza, Soltani, Sepehr, Martín, Diego, Pourmand, Parmida, Ghafourian, Ehsan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.09.2023
Predmet:
ISSN:2079-9292, 2079-9292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM2.5 concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it furnishes indispensable information for epidemiological studies concentrating on PM2.5 exposure. In recent years, predictive models based on deep learning (DL) have offered promise in improving the accuracy and efficiency of air quality forecasts when compared to other approaches. Long short-term memory (LSTM) networks have proven to be effective in time series forecasting tasks, including air pollution prediction. However, optimizing LSTM models for enhanced accuracy and efficiency remains an ongoing research area. In this paper, we propose a novel approach that integrates the novel binary chimp optimization algorithm (BChOA) with LSTM networks to optimize air pollution prediction models. The proposed BChOA, inspired by the social behavior of chimpanzees, provides a powerful optimization technique to fine-tune the LSTM architecture and optimize its parameters. The evaluation of the results is performed using cross-validation methods such as the coefficient of determination (R2), accuracy, the root mean square error (RMSE), and receiver operating characteristic (ROC) curve. Additionally, the performance of the BChOA-LSTM model is compared against eight DL architectures. Experimental evaluations using real-world air pollution data demonstrate the superior performance of the proposed BChOA-based LSTM model compared to traditional LSTM models and other optimization algorithms. The BChOA-LSTM model achieved the highest accuracy of 96.41% on the validation datasets, making it the most successful approach. The results show that the BChOA-LSTM architecture performs better than the other architectures in terms of the  R2 convergence curve, RMSE, and accuracy.
AbstractList Elevated levels of fine particulate matter (PM[sub.2.5] ) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM[sub.2.5] concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it furnishes indispensable information for epidemiological studies concentrating on PM[sub.2.5] exposure. In recent years, predictive models based on deep learning (DL) have offered promise in improving the accuracy and efficiency of air quality forecasts when compared to other approaches. Long short-term memory (LSTM) networks have proven to be effective in time series forecasting tasks, including air pollution prediction. However, optimizing LSTM models for enhanced accuracy and efficiency remains an ongoing research area. In this paper, we propose a novel approach that integrates the novel binary chimp optimization algorithm (BChOA) with LSTM networks to optimize air pollution prediction models. The proposed BChOA, inspired by the social behavior of chimpanzees, provides a powerful optimization technique to fine-tune the LSTM architecture and optimize its parameters. The evaluation of the results is performed using cross-validation methods such as the coefficient of determination (R[sup.2] ), accuracy, the root mean square error (RMSE), and receiver operating characteristic (ROC) curve. Additionally, the performance of the BChOA-LSTM model is compared against eight DL architectures. Experimental evaluations using real-world air pollution data demonstrate the superior performance of the proposed BChOA-based LSTM model compared to traditional LSTM models and other optimization algorithms. The BChOA-LSTM model achieved the highest accuracy of 96.41% on the validation datasets, making it the most successful approach. The results show that the BChOA-LSTM architecture performs better than the other architectures in terms of the R[sup.2] convergence curve, RMSE, and accuracy.
Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM2.5 concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it furnishes indispensable information for epidemiological studies concentrating on PM2.5 exposure. In recent years, predictive models based on deep learning (DL) have offered promise in improving the accuracy and efficiency of air quality forecasts when compared to other approaches. Long short-term memory (LSTM) networks have proven to be effective in time series forecasting tasks, including air pollution prediction. However, optimizing LSTM models for enhanced accuracy and efficiency remains an ongoing research area. In this paper, we propose a novel approach that integrates the novel binary chimp optimization algorithm (BChOA) with LSTM networks to optimize air pollution prediction models. The proposed BChOA, inspired by the social behavior of chimpanzees, provides a powerful optimization technique to fine-tune the LSTM architecture and optimize its parameters. The evaluation of the results is performed using cross-validation methods such as the coefficient of determination (R2), accuracy, the root mean square error (RMSE), and receiver operating characteristic (ROC) curve. Additionally, the performance of the BChOA-LSTM model is compared against eight DL architectures. Experimental evaluations using real-world air pollution data demonstrate the superior performance of the proposed BChOA-based LSTM model compared to traditional LSTM models and other optimization algorithms. The BChOA-LSTM model achieved the highest accuracy of 96.41% on the validation datasets, making it the most successful approach. The results show that the BChOA-LSTM architecture performs better than the other architectures in terms of the R2 convergence curve, RMSE, and accuracy.
Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM2.5 concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it furnishes indispensable information for epidemiological studies concentrating on PM2.5 exposure. In recent years, predictive models based on deep learning (DL) have offered promise in improving the accuracy and efficiency of air quality forecasts when compared to other approaches. Long short-term memory (LSTM) networks have proven to be effective in time series forecasting tasks, including air pollution prediction. However, optimizing LSTM models for enhanced accuracy and efficiency remains an ongoing research area. In this paper, we propose a novel approach that integrates the novel binary chimp optimization algorithm (BChOA) with LSTM networks to optimize air pollution prediction models. The proposed BChOA, inspired by the social behavior of chimpanzees, provides a powerful optimization technique to fine-tune the LSTM architecture and optimize its parameters. The evaluation of the results is performed using cross-validation methods such as the coefficient of determination (R2), accuracy, the root mean square error (RMSE), and receiver operating characteristic (ROC) curve. Additionally, the performance of the BChOA-LSTM model is compared against eight DL architectures. Experimental evaluations using real-world air pollution data demonstrate the superior performance of the proposed BChOA-based LSTM model compared to traditional LSTM models and other optimization algorithms. The BChOA-LSTM model achieved the highest accuracy of 96.41% on the validation datasets, making it the most successful approach. The results show that the BChOA-LSTM architecture performs better than the other architectures in terms of the  R2 convergence curve, RMSE, and accuracy.
Audience Academic
Author Baniasadi, Sahba
Ghafourian, Ehsan
Soltani, Sepehr
Pourmand, Parmida
Salehi, Reza
Martín, Diego
Author_xml – sequence: 1
  givenname: Sahba
  surname: Baniasadi
  fullname: Baniasadi, Sahba
– sequence: 2
  givenname: Reza
  surname: Salehi
  fullname: Salehi, Reza
– sequence: 3
  givenname: Sepehr
  orcidid: 0000-0003-3000-2245
  surname: Soltani
  fullname: Soltani, Sepehr
– sequence: 4
  givenname: Diego
  orcidid: 0000-0001-8810-0695
  surname: Martín
  fullname: Martín, Diego
– sequence: 5
  givenname: Parmida
  orcidid: 0009-0006-2908-5775
  surname: Pourmand
  fullname: Pourmand, Parmida
– sequence: 6
  givenname: Ehsan
  surname: Ghafourian
  fullname: Ghafourian, Ehsan
BookMark eNp9kVlPAjEQxxuDiYh8Al-a-LzYA7rbRyReCQKJ8Lzp9oDi7ha7xevTW44HY4zTZGbS_n8z6cw5aNWu1gBcYtSjlKNrXWoZvKutbDDBGeXZ4AS0CUp5wgknrR_5Geg2zRpF45hmFLXBx3QTbGW_bL2EYxfd88r5kMy1r-CTrpz_hBMd3p1_gcZ5OLQezlxZboN1NZx5razcp4tmV0HAiXvTJbyxtYjkaGWrDTx2EHvdsFw6b8OqugCnRpSN7h5jByzubuejh2Q8vX8cDceJpAyHRAnOlDJG4EwUTBnaV0hkUqH4THWfkYymuqADifCg4JgYJmiBUqSpLFJFEO2Aq0PdjXevW92EfO22vo4tc5IxTglnbKfqHVRLUerc1sYFL2Q8SldWxnkbG--HaYozRNkgjQA_ANK7pvHa5NKG_RcjaMsco3y3nPyP5USW_mI33lZxYP9S33e-mt0
CitedBy_id crossref_primary_10_1007_s40808_023_01934_9
crossref_primary_10_3390_fi16120460
crossref_primary_10_3390_pr13051443
crossref_primary_10_3390_axioms14040235
Cites_doi 10.1007/s11356-022-24956-9
10.1016/j.procs.2020.04.221
10.1007/s12518-020-00297-5
10.3390/buildings13040973
10.3390/su15097367
10.1016/j.micpro.2022.104667
10.1007/s12559-021-09933-7
10.1016/j.asoc.2020.106341
10.1016/j.apr.2023.101875
10.1109/EEEIC/ICPSEurope49358.2020.9160596
10.1007/s11063-022-11055-6
10.3390/buildings13071684
10.1109/JSEN.2022.3222412
10.1016/j.measurement.2023.112797
10.7763/IJMLC.2012.V2.114
10.1016/j.neucom.2015.06.083
10.1007/s10462-022-10280-8
10.1109/ACCESS.2021.3056291
10.1016/j.eswa.2020.113338
10.1109/ACCESS.2023.3289153
10.1016/j.jocs.2021.101451
10.3390/su12062570
10.1109/ACCESS.2021.3080835
10.3390/s21062009
10.1007/s11227-023-05047-z
10.1016/j.engappai.2023.106092
10.1007/978-3-031-24041-6_18
10.1016/j.uclim.2020.100740
10.1016/j.jhydrol.2022.127553
10.1016/j.matcom.2022.12.027
10.1007/s10462-022-10173-w
10.1049/ise2.12108
10.3390/electronics12102263
10.3390/s22124459
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/electronics12183985
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A771803657
10_3390_electronics12183985
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
COVID
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-da96ddffa18ab6df34d0a8cd0c363e462837eb35c015b912f6a3b070e3cb7d203
IEDL.DBID P5Z
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001076564100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sun Jul 13 04:04:57 EDT 2025
Tue Nov 04 18:29:17 EST 2025
Sat Nov 29 07:19:13 EST 2025
Tue Nov 18 21:25:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-da96ddffa18ab6df34d0a8cd0c363e462837eb35c015b912f6a3b070e3cb7d203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3000-2245
0000-0001-8810-0695
0009-0006-2908-5775
OpenAccessLink https://www.proquest.com/docview/2869329660?pq-origsite=%requestingapplication%
PQID 2869329660
PQPubID 2032404
ParticipantIDs proquest_journals_2869329660
gale_infotracacademiconefile_A771803657
crossref_citationtrail_10_3390_electronics12183985
crossref_primary_10_3390_electronics12183985
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Harishkumar (ref_1) 2020; 171
Kaveh (ref_25) 2020; 7
Miri (ref_17) 2023; 17
Fard (ref_8) 2022; 94
ref_13
ref_35
ref_12
ref_11
Kaveh (ref_23) 2023; 208
Kaveh (ref_19) 2023; 79
Khishe (ref_26) 2020; 149
Son (ref_6) 2023; 14
Tian (ref_2) 2021; 35
Aghapour (ref_16) 2021; 9
Xin (ref_33) 2023; 214
Kaveh (ref_21) 2020; 12
Benaissa (ref_29) 2021; 55
Xu (ref_37) 2022; 608
Ranawat (ref_34) 2023; 122
Emary (ref_31) 2016; 172
Guha (ref_32) 2020; 93
Wang (ref_20) 2021; 13
Kaveh (ref_7) 2022; 55
Azizi (ref_24) 2023; 56
Sadeghi (ref_14) 2023; 75
Kaveh (ref_18) 2019; 28
Gharehchopogh (ref_22) 2023; 56
ref_3
Mirjalili (ref_30) 2012; 2
ref_28
ref_27
ref_9
Lotfy (ref_15) 2021; 9
Chang (ref_10) 2023; 30
Naz (ref_4) 2023; 11
ref_5
Challa (ref_36) 2022; 22
References_xml – volume: 30
  start-page: 37440
  year: 2023
  ident: ref_10
  article-title: LSTM model for predicting the daily number of asthma patients in Seoul, South Korea, using meteorological and air pollution data
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-24956-9
– volume: 171
  start-page: 2057
  year: 2020
  ident: ref_1
  article-title: Forecasting air pollution particulate matter (PM2.5) using machine learning regression models
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.04.221
– volume: 12
  start-page: 291
  year: 2020
  ident: ref_21
  article-title: Multiple criteria decision-making for hospital location-allocation based on improved genetic algorithm
  publication-title: Appl. Geomat.
  doi: 10.1007/s12518-020-00297-5
– volume: 7
  start-page: 21
  year: 2020
  ident: ref_25
  article-title: Solving the local positioning problem using a four-layer artificial neural network
  publication-title: Eng. J. Geospat. Inf. Technol.
– ident: ref_27
  doi: 10.3390/buildings13040973
– ident: ref_5
  doi: 10.3390/su15097367
– volume: 94
  start-page: 104667
  year: 2022
  ident: ref_8
  article-title: An efficient modeling attack for breaking the security of XOR-Arbiter PUFs by using the fully connected and long-short term memory
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2022.104667
– volume: 13
  start-page: 1297
  year: 2021
  ident: ref_20
  article-title: Binary chimp optimization algorithm (BChOA): A new binary meta-heuristic for solving optimization problems
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-021-09933-7
– volume: 93
  start-page: 106341
  year: 2020
  ident: ref_32
  article-title: Introducing clustering based population in binary gravitational search algorithm for feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106341
– volume: 14
  start-page: 101875
  year: 2023
  ident: ref_6
  article-title: Estimation of surface PM2.5 concentrations from atmospheric gas species retrieved from tropomi using deep learning: Impacts of fire on air pollution over Thailand
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2023.101875
– ident: ref_35
  doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160596
– volume: 55
  start-page: 4519
  year: 2022
  ident: ref_7
  article-title: Application of meta-heuristic algorithms for training neural networks and deep learning architectures: A comprehensive review
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-022-11055-6
– ident: ref_9
  doi: 10.3390/buildings13071684
– volume: 22
  start-page: 24352
  year: 2022
  ident: ref_36
  article-title: An optimized-LSTM and RGB-D sensor-based human gait trajectory generator for bipedal robot walking
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3222412
– volume: 214
  start-page: 112797
  year: 2023
  ident: ref_33
  article-title: A signal recovery method for bridge monitoring system using TVFEMD and encoder-decoder aided LSTM
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112797
– volume: 2
  start-page: 204
  year: 2012
  ident: ref_30
  article-title: BMOA: Binary magnetic optimization algorithm
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.7763/IJMLC.2012.V2.114
– volume: 172
  start-page: 371
  year: 2016
  ident: ref_31
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 56
  start-page: 5479
  year: 2023
  ident: ref_22
  article-title: Quantum-inspired metaheuristic algorithms: Comprehensive survey and classification
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10280-8
– volume: 9
  start-page: 23025
  year: 2021
  ident: ref_15
  article-title: An efficient design of Anderson PUF by utilization of the Xilinx primitives in the SLICEM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056291
– volume: 149
  start-page: 113338
  year: 2020
  ident: ref_26
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
– volume: 11
  start-page: 64016
  year: 2023
  ident: ref_4
  article-title: Comparative Analysis of Deep Learning and Statistical Models for Air Pollutants Prediction in Urban Areas
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3289153
– volume: 55
  start-page: 101451
  year: 2021
  ident: ref_29
  article-title: YUKI Algorithm and POD-RBF for Elastostatic and dynamic crack identification
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2021.101451
– volume: 28
  start-page: 7
  year: 2019
  ident: ref_18
  article-title: Hospital site selection using hybrid PSO algorithm-Case study: District 2 of Tehran
  publication-title: Sci.-Res. Q. Geogr. Data
– volume: 75
  start-page: 751
  year: 2023
  ident: ref_14
  article-title: A Deep Learning Approach for Detecting COVID-19 Using the Chest X-Ray Images
  publication-title: Comput. Mater. Contin.
– ident: ref_3
  doi: 10.3390/su12062570
– volume: 9
  start-page: 74562
  year: 2021
  ident: ref_16
  article-title: An ultra-lightweight mutual authentication scheme for smart grid two-way communications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3080835
– ident: ref_11
  doi: 10.3390/s21062009
– volume: 79
  start-page: 9715
  year: 2023
  ident: ref_19
  article-title: TDMBBO: A novel three-dimensional migration model of biogeography-based optimization (case study: Facility planning and benchmark problems)
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-023-05047-z
– volume: 122
  start-page: 106092
  year: 2023
  ident: ref_34
  article-title: Performance evaluation of LSTM and Bi-LSTM using non-convolutional features for blockage detection in centrifugal pump
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106092
– ident: ref_28
  doi: 10.1007/978-3-031-24041-6_18
– volume: 35
  start-page: 100740
  year: 2021
  ident: ref_2
  article-title: Estimating PM2.5 from multisource data: A comparison of different machine learning models in the Pearl River Delta of China
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2020.100740
– volume: 608
  start-page: 127553
  year: 2022
  ident: ref_37
  article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127553
– volume: 208
  start-page: 19
  year: 2023
  ident: ref_23
  article-title: Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2022.12.027
– volume: 56
  start-page: 287
  year: 2023
  ident: ref_24
  article-title: Fire Hawk Optimizer: A novel metaheuristic algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10173-w
– volume: 17
  start-page: 544
  year: 2023
  ident: ref_17
  article-title: On the security of ‘an ultra-lightweight and secure scheme for communications of smart meters and neighborhood gateways by utilization of an ARM Cortex-M microcontroller’
  publication-title: IET Inf. Secur.
  doi: 10.1049/ise2.12108
– ident: ref_12
  doi: 10.3390/electronics12102263
– ident: ref_13
  doi: 10.3390/s22124459
SSID ssj0000913830
Score 2.292603
Snippet Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM2.5...
Elevated levels of fine particulate matter (PM[sub.2.5] ) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3985
SubjectTerms Accuracy
Air pollution
Air quality
Algorithms
Atmospheric models
Collaboration
Computer architecture
Distribution
Environmental aspects
Environmental protection
Forecasting
Machine learning
Mathematical models
Mathematical optimization
Monkeys & apes
Optimization
Optimization algorithms
Outdoor air quality
Particles
Performance evaluation
Pollutants
Prediction models
Root-mean-square errors
Title Optimizing Long Short-Term Memory Network for Air Pollution Prediction Using a Novel Binary Chimp Optimization Algorithm
URI https://www.proquest.com/docview/2869329660
Volume 12
WOSCitedRecordID wos001076564100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V6KEcCvQhttCVD0i9EOHEeZ7Q7mpRkbppVKhEe4n8SLor7au7W0R74Lcz43iBA-LSS5TEeVj67PGMPf4-gCOueaSTwHi8jjBA0bXyZBQaT0ilYh3I0PjKik0keZ5eXWWFm3BburTKtU20htrMNM2RnwRpjK4GcUmezn97pBpFq6tOQmMDtoglgaQbiujn_RwLcV6mgjdkQwKj-5MHbZmlb50D0lB-NCA9bZbtWHO287-13IXXzstknaZZ7MGLavoGth9xD76Fm69oLCajf3jBvszwcDFET9y7REvNBpR--5flTYo4Q7-WdUYLVpAsMgHJigWt79hTm3PAJMtn19WYde32XtYbjiZz5v5gsWed8S-s6Go4eQffz_qXvc-ek2HwtIj9lWdkFhtT19JPpYpNLULDZaoNx2JR0d5WkWBIHmn0LFTmB3UshUJLUgmtEhNw8R42p7NptQ8sUURfV6FLIEUYKowV4zjL0OZiIJXwjLcgWGNRasdRTlIZ4xJjFQKwfALAFhzfvzRvKDqef_wTgVxSB8Zva-n2IWANiQqr7CQ4XOO4HiUtOFyDXLqevSwfEP7wfPEBvCJp-iYf7RA2V4s_1Ud4qa9Xo-WiDVvdfl58a8PG4Lbfts0W7xXng-LHHegs-pk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwoJSHWGjBhyIuRHXsPA8IbV_qqrshEotUTsGPhF1pX-wuhfKj-I2dyaPtoeqtBy5RIidOYn-e-cYezwDscMN9Ewrr8MJHA8UU2lG-Zx2ptA6MUJ51dZlsIkyS6PQ0TtfgX7MXhtwqG5lYCmo7MzRHviuiAKkGxZL8NP_pUNYoWl1tUmhUsDjJz3-jybb82D3A_n0nxNHhYP_YqbMKOEYG7sqxKg6sLQrlRkoHtpCe5SoylmOxzGmrpgzRwvQNKkodu6IIlNQ4MHJpdGgFl1jvPVj3COwtWE-7_fTb5awORdmMJK_CG0kZ892rbDZLt6QjlLX5mgq8WRGU2u1o439rlyfwuObRrFMBfxPW8ulTeHQtuuIz-PMZxeFk9BcvWG-Ghy9DtDWcAeoi1icH43OWVE7wDJk764wWLKXEzwRVli5oBas8Lb0qmGLJ7Cwfs71yAzPbH44mc1a_oUQ364x_YMOshpPn8PVOfv0FtKazaf4SWKgpQF-OpEdJz9NoDQdBHKNWQVMx5DFvg2j6PjN1FHZKBjLO0BojwGQ3AKYNHy4fmldBSG6__T2BKiMRhXUbVe-0wC-kYF9ZJ0RCgszFD9uw1YAqq2XXMrtC1Kvbi9_Cg-NBv5f1usnJa3gokP5V3ndb0FotfuXbcN-crUbLxZt6mDD4ftcIvAB7BlYh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceCMWCvgA4kK0jp3EyQGhpWVF1RIiUaSKS_AjYVfaF7tLofw0fh0zTtL2UPXWA5cokfN0Ps_MZ88D4AW3PLZKuIDXMRIUW5tAx5ELpDYmsUJHLjS-2ITK8_TwMCs24G8XC0NulZ1M9ILazS3NkfdFmqCpQbkk-3XrFlHsDN8ufgRUQYpWWrtyGg1E9qrjX0jfVm92d_BfvxRi-P5g-0PQVhgIrEzCdeB0ljhX1zpMtUlcLSPHdWodx2ZZUdimVMg2Y4tK02ShqBMtDQ6SSlqjnOAS73sFrirkmOROWMRfT-Z3KN9mKnmT6EjKjPdP69qsQm-YUP3mM8rwfJXg9dzw9v_cQ3fgVmtds0EzHO7CRjW7BzfP5Fy8D78_oZCcjv_gAduf4-bzCBlIcIAain0kt-Njljeu8QzteTYYL1lB5aAJwKxY0rqW3_W-FkyzfH5UTdg7H9bMtkfj6YK1T_CYZ4PJd-yY9Wj6AL5cyqc_hM3ZfFY9AqYMpe2r0BTSMooMcuQkyTLUNUggFc94D0SHg9K2udmpRMikRI5G4CnPAU8PXp9ctGhSk1x8-isCWEmCC-9tdRt_gW9IKcDKgUIzBe2ZWPVgqwNY2Uq0VXmKrscXNz-H6wi7cn8333sCNwTahI1L3hZsrpc_q6dwzR6tx6vlMz9eGHy7bPj9A5kBXYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Long+Short-Term+Memory+Network+for+Air+Pollution+Prediction+Using+a+Novel+Binary+Chimp+Optimization+Algorithm&rft.jtitle=Electronics+%28Basel%29&rft.au=Baniasadi%2C+Sahba&rft.au=Salehi%2C+Reza&rft.au=Soltani%2C+Sepehr&rft.au=Mart%C3%ADn%2C+Diego&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=12&rft.issue=18&rft.spage=3985&rft_id=info:doi/10.3390%2Felectronics12183985&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon