Intelligent Load Forecasting for Central Air Conditioning Using an Optimized Hybrid Deep Learning Framework
Accurate load forecasting of central air conditioning (CAC) systems is crucial for enhancing energy efficiency and minimizing operational costs. However, the complex nonlinear correlations among meteorological factors, water system dynamics, and cooling demand make this task challenging. To address...
Gespeichert in:
| Veröffentlicht in: | Energies (Basel) Jg. 18; H. 21; S. 5736 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.11.2025
|
| Schlagworte: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate load forecasting of central air conditioning (CAC) systems is crucial for enhancing energy efficiency and minimizing operational costs. However, the complex nonlinear correlations among meteorological factors, water system dynamics, and cooling demand make this task challenging. To address these issues, this study proposes a novel hybrid forecasting model termed IWOA-BiTCN-BiGRU-SA, which integrates the Improved Whale Optimization Algorithm (IWOA), Bidirectional Temporal Convolutional Networks (BiTCN), Bidirectional Gated Recurrent Units (BiGRU), and a Self-attention mechanism (SA). BiTCN is adopted to extract temporal dependencies and multi-scale features, BiGRU captures long-term bidirectional correlations, and the self-attention mechanism enhances feature weighting adaptively. Furthermore, IWOA is employed to optimize the hyperparameters of BiTCN and BiGRU, improving training stability and generalization. Experimental results based on real CAC operational data demonstrate that the proposed model outperforms traditional methods such as LSTM, GRU, and TCN, as well as hybrid deep learning benchmark models. Compared to all comparison models, the root mean square error (RMSE) decreased by 13.72% to 56.66%. This research highlights the application potential of the IWSO-BiTCN-BiGRU-Attention framework in practical load forecasting and intelligent energy management for large-scale CAC systems. |
|---|---|
| AbstractList | Accurate load forecasting of central air conditioning (CAC) systems is crucial for enhancing energy efficiency and minimizing operational costs. However, the complex nonlinear correlations among meteorological factors, water system dynamics, and cooling demand make this task challenging. To address these issues, this study proposes a novel hybrid forecasting model termed IWOA-BiTCN-BiGRU-SA, which integrates the Improved Whale Optimization Algorithm (IWOA), Bidirectional Temporal Convolutional Networks (BiTCN), Bidirectional Gated Recurrent Units (BiGRU), and a Self-attention mechanism (SA). BiTCN is adopted to extract temporal dependencies and multi-scale features, BiGRU captures long-term bidirectional correlations, and the self-attention mechanism enhances feature weighting adaptively. Furthermore, IWOA is employed to optimize the hyperparameters of BiTCN and BiGRU, improving training stability and generalization. Experimental results based on real CAC operational data demonstrate that the proposed model outperforms traditional methods such as LSTM, GRU, and TCN, as well as hybrid deep learning benchmark models. Compared to all comparison models, the root mean square error (RMSE) decreased by 13.72% to 56.66%. This research highlights the application potential of the IWSO-BiTCN-BiGRU-Attention framework in practical load forecasting and intelligent energy management for large-scale CAC systems. |
| Audience | Academic |
| Author | Hua, Rui Zhou, Chaohui Li, Chaoshun He, Wei Liu, Yuce Xiao, Yulong |
| Author_xml | – sequence: 1 givenname: Wei surname: He fullname: He, Wei – sequence: 2 givenname: Rui surname: Hua fullname: Hua, Rui – sequence: 3 givenname: Yulong orcidid: 0009-0004-2859-3458 surname: Xiao fullname: Xiao, Yulong – sequence: 4 givenname: Yuce orcidid: 0000-0002-3215-1327 surname: Liu fullname: Liu, Yuce – sequence: 5 givenname: Chaohui surname: Zhou fullname: Zhou, Chaohui – sequence: 6 givenname: Chaoshun surname: Li fullname: Li, Chaoshun |
| BookMark | eNpNUcFqGzEQFSWFpmku_QJBbwUnkmZ3NToat24Mhlyas5iVtEbOWnK1G0r69ZHj0mYEo-HNm8cw7yO7SDkFxj5LcQNgxG1IEpVsNXTv2KU0pltIoeHiTf2BXU_TXtQAkABwyR43aQ7jGHchzXybyfN1LsHRNMe040MufFU7hUa-jLXOycc55nRqPkynTInfH-d4iH-C53fPfYmefwvhyLeByitvXegQfufy-Im9H2icwvXf_4o9rL__XN0ttvc_NqvlduGgk_PCG-2dVLpVmhz2slW96LEzjpqWGgetVIbUAKKnxgQpAjWEsiOFzqGWGq7Y5qzrM-3tscQDlWebKdpXIJedpTJHNwaLjcPGYD2a6RuNxkg3VEihdkK06KvWl7PWseRfT2Ga7T4_lVTXt6C0FEoDmsq6ObN2VEVjGnI9mavPh0N01aUhVnyJHQCqFrEOfD0PuJKnqYTh35pS2JOZ9r-Z8ALd0ZE4 |
| Cites_doi | 10.1016/j.enbuild.2015.12.050 10.1016/j.jobe.2023.107958 10.1016/j.enbuild.2024.114339 10.1016/j.advengsoft.2016.01.008 10.1016/j.ijrefrig.2025.05.011 10.1016/j.ijrefrig.2024.08.023 10.1016/j.apenergy.2018.12.042 10.1016/j.enbuild.2021.111574 10.1016/j.jobe.2021.103406 10.1016/j.jobe.2020.101967 10.1016/j.egyr.2022.08.237 10.1016/j.measurement.2025.118389 10.1016/j.buildenv.2023.110718 10.1016/j.apenergy.2008.11.035 10.1016/j.enbuild.2024.114735 10.1016/j.egyai.2021.100121 10.1109/STPES54845.2022.10006467 10.1016/j.apenergy.2020.114683 10.1016/j.apenergy.2021.116814 10.1016/j.dsp.2024.104838 10.1016/j.energy.2022.123111 10.1016/j.proeng.2017.10.261 10.1016/j.ijrefrig.2022.07.020 10.1016/j.enbuild.2019.05.043 10.1016/j.enbuild.2012.08.007 10.1016/j.egyr.2021.03.017 10.1016/j.energy.2022.126503 10.1016/j.apenergy.2017.02.066 10.1016/j.enbuild.2015.08.041 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en18215736 |
| DatabaseName | CrossRef ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_84c84981579b478991cf4c8287c0058d A863382588 10_3390_en18215736 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-d97dc127527ac8b152b0b869ca45a4c35129a2f30ba49e10ea4a816a28cc87173 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001612535700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Mon Nov 17 19:36:37 EST 2025 Fri Nov 14 07:11:57 EST 2025 Tue Nov 18 03:51:05 EST 2025 Wed Nov 05 20:56:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-d97dc127527ac8b152b0b869ca45a4c35129a2f30ba49e10ea4a816a28cc87173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3215-1327 0009-0004-2859-3458 |
| OpenAccessLink | https://www.proquest.com/docview/3271027389?pq-origsite=%requestingapplication% |
| PQID | 3271027389 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_84c84981579b478991cf4c8287c0058d proquest_journals_3271027389 gale_infotracacademiconefile_A863382588 crossref_primary_10_3390_en18215736 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Cai (ref_2) 2019; 236 Fan (ref_14) 2019; 197 Zou (ref_24) 2024; 322 Yu (ref_8) 2017; 205 Deb (ref_17) 2016; 121 Ma (ref_5) 2023; 243 Yun (ref_15) 2012; 54 ref_10 Chen (ref_30) 2025; 156 ref_32 Wang (ref_21) 2020; 263 Wang (ref_22) 2022; 8 Li (ref_16) 2008; 86 Eid (ref_7) 2024; 168 Qiao (ref_6) 2021; 35 Qiang (ref_11) 2015; 107 Zhang (ref_19) 2021; 7 Zhao (ref_23) 2022; 144 Zhou (ref_25) 2024; 317 Dahl (ref_13) 2017; 193 Lei (ref_26) 2023; 80 Alaka (ref_9) 2022; 45 Chen (ref_12) 2022; 254 Yanxiao (ref_18) 2021; 291 Xiao (ref_28) 2023; 267 ref_1 Mirjalili (ref_31) 2016; 95 Zhao (ref_20) 2022; 55 ref_27 Guo (ref_33) 2025; 176 Pallonetto (ref_3) 2022; 7 Yang (ref_29) 2025; 256 Li (ref_4) 2022; 243 |
| References_xml | – volume: 121 start-page: 284 year: 2016 ident: ref_17 article-title: Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.12.050 – volume: 80 start-page: 107958 year: 2023 ident: ref_26 article-title: Prediction model of the large commercial building cooling loads based on rough set and deep extreme learning machine publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2023.107958 – volume: 317 start-page: 114339 year: 2024 ident: ref_25 article-title: Research on the combined forecasting model of cooling load based on IVMD-WOA-LSSVM publication-title: Energy Build. doi: 10.1016/j.enbuild.2024.114339 – ident: ref_32 – volume: 95 start-page: 51 year: 2016 ident: ref_31 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 176 start-page: 373 year: 2025 ident: ref_33 article-title: Hybrid forecasting model for central air conditioning load based on CEEMDAN and WTCN-GRU publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2025.05.011 – volume: 168 start-page: 1 year: 2024 ident: ref_7 article-title: Modelling energy consumption in a Paris supermarket to reduce energy use and greenhouse gas emissions using EnergyPlus publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2024.08.023 – volume: 236 start-page: 1078 year: 2019 ident: ref_2 article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.042 – volume: 254 start-page: 111574 year: 2022 ident: ref_12 article-title: An online physical-based multiple linear regression model for building’s hourly cooling load prediction publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.111574 – volume: 45 start-page: 103406 year: 2022 ident: ref_9 article-title: Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.103406 – volume: 35 start-page: 101967 year: 2021 ident: ref_6 article-title: Towards developing a systematic knowledge trend for building energy consumption prediction publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101967 – volume: 8 start-page: 10950 year: 2022 ident: ref_22 article-title: Research on a hybrid model for cooling load prediction based on wavelet threshold denoising and deep learning: A study in China publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.08.237 – volume: 256 start-page: 118389 year: 2025 ident: ref_29 article-title: Thermal error prediction in dry hobbing machine tools: A CNN-BiGRU network with spatiotemporal feature fusion publication-title: Measurement doi: 10.1016/j.measurement.2025.118389 – ident: ref_1 – volume: 243 start-page: 110718 year: 2023 ident: ref_5 article-title: Digital twin model for chiller fault diagnosis based on SSAE and transfer learning publication-title: Build. Environ. doi: 10.1016/j.buildenv.2023.110718 – volume: 86 start-page: 2249 year: 2008 ident: ref_16 article-title: Applying support vector machine to predict hourly cooling load in the building publication-title: Appl. Energy doi: 10.1016/j.apenergy.2008.11.035 – volume: 322 start-page: 114735 year: 2024 ident: ref_24 article-title: Deep spatio-temporal feature fusion learning for multistep building cooling load forecasting publication-title: Energy Build. doi: 10.1016/j.enbuild.2024.114735 – volume: 7 start-page: 100121 year: 2022 ident: ref_3 article-title: Forecast electricity demand in commercial building with machine learning models to enable demand response programs publication-title: Energy AI doi: 10.1016/j.egyai.2021.100121 – ident: ref_10 doi: 10.1109/STPES54845.2022.10006467 – ident: ref_27 – volume: 263 start-page: 114683 year: 2020 ident: ref_21 article-title: Building thermal load prediction through shallow machine learning and deep learning publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114683 – volume: 291 start-page: 116814 year: 2021 ident: ref_18 article-title: Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116814 – volume: 156 start-page: 104838 year: 2025 ident: ref_30 article-title: The short-term wind power prediction based on a multi-layer stacked model of BOsingle bondCNN-BiGRU-SA publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2024.104838 – volume: 243 start-page: 123111 year: 2022 ident: ref_4 article-title: A method for energy consumption optimization of air conditioning n load prediction and energy flexibility publication-title: Energy doi: 10.1016/j.energy.2022.123111 – volume: 205 start-page: 1564 year: 2017 ident: ref_8 article-title: Research on the optimization control of the central air-conditioning system in university classroom buildings based on TRNSYS software publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.10.261 – volume: 144 start-page: 211 year: 2022 ident: ref_23 article-title: Prediction of functional zones cooling load for shopping mall using dual attention based LSTM: A case study publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2022.07.020 – volume: 197 start-page: 7 year: 2019 ident: ref_14 article-title: Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.05.043 – volume: 54 start-page: 225 year: 2012 ident: ref_15 article-title: Building hourly thermal load prediction using an indexed ARX model publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.08.007 – volume: 7 start-page: 1588 year: 2021 ident: ref_19 article-title: Predictive model of cooling load for ice storage airconditioning system by using GBDT publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.03.017 – volume: 267 start-page: 126503 year: 2023 ident: ref_28 article-title: Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis publication-title: Energy doi: 10.1016/j.energy.2022.126503 – volume: 193 start-page: 455 year: 2017 ident: ref_13 article-title: Using ensemble weather predictions in district heating operation and load forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.02.066 – volume: 55 start-page: 114 year: 2022 ident: ref_20 article-title: Building Cooling load prediction based on LightGBM publication-title: IFAC Pap. – volume: 107 start-page: 445 year: 2015 ident: ref_11 article-title: An improved office building cooling load prediction model based on multivariable linear regression publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.08.041 |
| SSID | ssj0000331333 |
| Score | 2.403616 |
| Snippet | Accurate load forecasting of central air conditioning (CAC) systems is crucial for enhancing energy efficiency and minimizing operational costs. However, the... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 5736 |
| SubjectTerms | Accuracy Air conditioning Algorithms Analysis BiGRU BiTCN Calibration Carbon central air conditioning Climate change Cooling Deep learning Energy conservation Energy consumption Energy efficiency Forecasting load forecasting Machine learning Mathematical optimization Neural networks Office buildings Optimization algorithms Regression analysis self-attention mechanism Statistical methods Support vector machines Temperature |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yeNCD-MTVVQIKnso2Tdomx_WxrCCrB4W9hTRNZRG7y24V9Nc7k3YfF_HirYRShplm5ptk5htCLk2hmM0jGzBV8EA4E8Oec2kguI2dSAqunPHDJtLhUI5G6mlt1BfWhNX0wLXiulJYKZRkcaoykUJ2wGwBSwD0LY7Ey9H7hqlaS6a8D-Ycki9e85FyyOu7rgQkDV_xXMyrCOSJ-n9zxz7G9HfJTgMOaa8Wao9suHKfbK9RBh6Qt_slh2ZFHyYmpzhc05o5li9TQKC0Oa-lvTE8T_BGuj5ypb46gJqSPoKbeB9_u5wOvrBhi946N6UN0-or7S_qtQ7JS__u-WYQNAMTAssTVgW5SnOLjO1RaqzMIDRnYSYTZY2IjbAcg7uJCh5mRijHQmeEkSwxkbRW4nX8EWmVk9IdEwqRO8uZS-LIFILlmVSF4iGuJQIxRZtcLJSopzUvhoZ8AlWtV6puk2vU7_IN5LL2C2Bh3VhY_2XhNrlC62jccaA_a5rGARAUuat0TyaQZ0exlG3SWRhQN1txrnmEICoFYHbyH9Kckq0IRwD7dsQOaVWzD3dGNu1nNZ7Pzv1f-APext9F priority: 102 providerName: Directory of Open Access Journals |
| Title | Intelligent Load Forecasting for Central Air Conditioning Using an Optimized Hybrid Deep Learning Framework |
| URI | https://www.proquest.com/docview/3271027389 https://doaj.org/article/84c84981579b478991cf4c8287c0058d |
| Volume | 18 |
| WOSCitedRecordID | wos001612535700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHvtE6xmQJJE7R4thJ7BPqoNUmsVIhkMbJcp6dqUJLSluQxoG_nfdct-UCFy5R9JJIVp7f9_PvMfbKtUaALyATppWZCq5EmQt1piSUQVWtNMHFYRP1ZKIvL800JdyWqa1yoxOjovY9UI78RBZkC2u0r2_m3zKaGkXV1TRC4zbbJ6Qy3Of7p6PJ9OM2y5JLiUGYXOOSSozvT0KHHrUo64jJvLNEEbD_b2o52prxg_9d5UN2P3mZfLjeFo_YrdA9Zvf-wB58wr6eb8E4V_x97zynKZ3gltQHzdGV5Snxy4czvO-ptL3O3fLYZsBdxz-gvrme_Qyen93QyS_-LoQ5T5CtV3y8afx6yj6PR5_enmVp8kIGshKrzJvaA0G_F7UD3aCNb_JGVwacKp0CSV6CK1qZN06ZIPLglNOicoUG0FTXf8b2ur4LB4yjC9B4EaqycK0SvtGmNTInWqXIORmwlxsu2PkaYMNiYEK8sjteDdgpMWj7BoFiR0K_uLJJxqxWoJXR-IFpVI2BpIAWSRgTAk1P9AP2mthrSXTx_4FLJxBwoQSCZYe6woC9KLUesKMNe22S6aXd8fbw34-fs7sFTQmOJxaP2N5q8T28YHfgx2q2XBynLXoco3-8XvwaIW16fjH98huas_P6 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48EYNFFgJECer9u7a3j0gFChRoqYhhyKV03a9XlcRqh2SACo_it_IjB8JF7j1wM1aP2Tvfp7XznwD8NIWOnI5d0GkCxFIb2P853waSOFiL5NCaG_rZhPpdKpOT_VsB351tTCUVtnJxFpQ55WjGPmB4KQLU9SvbxdfA-oaRburXQuNBhZH_vIHumyrN-NDXN9XnA8_nLwfBW1XgcCJJFoHuU5zR7TmPLVOZai_sjBTiXZWxlY6QRrQ8kKEmZXaR6G30qoosVw5p2jPGp97DXYlgb0Hu7Px8ezzJqoTCoFOn2h4UIXQ4YEv0YKP4rTmgN5qvrpBwN_UQK3bhnf-t1m5C7dbK5oNGtjfgx1f3odbf3ArPoAv4w3Z6JpNKpsz6kLq7IryvBma6qwNbLPBHI8r2rpvYtOsTqNgtmQfUZ5ezH_6nI0uqbKNHXq_YC0l7TkbdoltD-HTlXztI-iVVen3gKGJk-WRT2JuCxnlmdKFFiGNJZKMrz686FbdLBoCEYOOF2HDbLHRh3cEiM0VRPpdD1TLc9PKEKOkU1IrvEFnMkVHOXIFDqHP66g7ZN6H1wQnQ6IJ58_ZtsICX5RIvsxAJUIoHivVh_0OTqaVWSuzxdLjf59-DjdGJ8cTMxlPj57ATU4dkevqzH3orZff_FO47r6v56vls_b3YHB21dj7DXbrTC4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EaEFlgJECcr9u7a3j1UKBCiRi0hB5DKabter6sIYYckgNqf1l_HjB8JF7j1wM1aP2Svv53XznwD8NIWOnI5d0GkCxFIb2Nccz4NpHCxl0khtLd1s4l0OlUnJ3q2A5ddLQylVXYysRbUeeUoRj4QnHRhivp1ULRpEbPR-M3ie0AdpGintWun0UDkyJ__QvdtdTAZ4b9-xfn4_ad3h0HbYSBwIonWQa7T3BHFOU-tUxnqsizMVKKdlbGVTpA2tLwQYWal9lHorbQqSixXzinav8bnXoNdNMkl78HubPJh9mUT4QmFQAdQNJyoQuhw4Eu05qM4rfmgt1qwbhbwN5VQ67nxnf95hu7C7da6ZsNmOdyDHV_eh1t_cC4-gK-TDQnpmh1XNmfUndTZFeV_MzThWRvwZsM5Hle0pd_ErFmdXsFsyT6inP02v_A5Ozynijc28n7BWqraMzbuEt4ewucr-dpH0Cur0j8GhqZPlkc-ibktZJRnShdahDSWSDLK-vCiQ4BZNMQiBh0ywonZ4qQPbwkcmyuIDLweqJZnppUtRkmnpFZ4g85kig505AocQl_YUdfIvA-vCVqGRBbOn7Nt5QW-KJF_maFKhFA8VqoP-x20TCvLVmaLqyf_Pv0cbiDgzPFkerQHNzk1Sq6LNveht17-8E_huvu5nq-Wz9qVwuD0qqH3G_p8VO4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Load+Forecasting+for+Central+Air+Conditioning+Using+an+Optimized+Hybrid+Deep+Learning+Framework&rft.jtitle=Energies+%28Basel%29&rft.au=He%2C+Wei&rft.au=Hua%2C+Rui&rft.au=Xiao%2C+Yulong&rft.au=Liu%2C+Yuce&rft.date=2025-11-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=18&rft.issue=21&rft.spage=5736&rft_id=info:doi/10.3390%2Fen18215736&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en18215736 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |