Intelligent Load Forecasting for Central Air Conditioning Using an Optimized Hybrid Deep Learning Framework

Accurate load forecasting of central air conditioning (CAC) systems is crucial for enhancing energy efficiency and minimizing operational costs. However, the complex nonlinear correlations among meteorological factors, water system dynamics, and cooling demand make this task challenging. To address...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 18; H. 21; S. 5736
Hauptverfasser: He, Wei, Hua, Rui, Xiao, Yulong, Liu, Yuce, Zhou, Chaohui, Li, Chaoshun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2025
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate load forecasting of central air conditioning (CAC) systems is crucial for enhancing energy efficiency and minimizing operational costs. However, the complex nonlinear correlations among meteorological factors, water system dynamics, and cooling demand make this task challenging. To address these issues, this study proposes a novel hybrid forecasting model termed IWOA-BiTCN-BiGRU-SA, which integrates the Improved Whale Optimization Algorithm (IWOA), Bidirectional Temporal Convolutional Networks (BiTCN), Bidirectional Gated Recurrent Units (BiGRU), and a Self-attention mechanism (SA). BiTCN is adopted to extract temporal dependencies and multi-scale features, BiGRU captures long-term bidirectional correlations, and the self-attention mechanism enhances feature weighting adaptively. Furthermore, IWOA is employed to optimize the hyperparameters of BiTCN and BiGRU, improving training stability and generalization. Experimental results based on real CAC operational data demonstrate that the proposed model outperforms traditional methods such as LSTM, GRU, and TCN, as well as hybrid deep learning benchmark models. Compared to all comparison models, the root mean square error (RMSE) decreased by 13.72% to 56.66%. This research highlights the application potential of the IWSO-BiTCN-BiGRU-Attention framework in practical load forecasting and intelligent energy management for large-scale CAC systems.
AbstractList Accurate load forecasting of central air conditioning (CAC) systems is crucial for enhancing energy efficiency and minimizing operational costs. However, the complex nonlinear correlations among meteorological factors, water system dynamics, and cooling demand make this task challenging. To address these issues, this study proposes a novel hybrid forecasting model termed IWOA-BiTCN-BiGRU-SA, which integrates the Improved Whale Optimization Algorithm (IWOA), Bidirectional Temporal Convolutional Networks (BiTCN), Bidirectional Gated Recurrent Units (BiGRU), and a Self-attention mechanism (SA). BiTCN is adopted to extract temporal dependencies and multi-scale features, BiGRU captures long-term bidirectional correlations, and the self-attention mechanism enhances feature weighting adaptively. Furthermore, IWOA is employed to optimize the hyperparameters of BiTCN and BiGRU, improving training stability and generalization. Experimental results based on real CAC operational data demonstrate that the proposed model outperforms traditional methods such as LSTM, GRU, and TCN, as well as hybrid deep learning benchmark models. Compared to all comparison models, the root mean square error (RMSE) decreased by 13.72% to 56.66%. This research highlights the application potential of the IWSO-BiTCN-BiGRU-Attention framework in practical load forecasting and intelligent energy management for large-scale CAC systems.
Audience Academic
Author Hua, Rui
Zhou, Chaohui
Li, Chaoshun
He, Wei
Liu, Yuce
Xiao, Yulong
Author_xml – sequence: 1
  givenname: Wei
  surname: He
  fullname: He, Wei
– sequence: 2
  givenname: Rui
  surname: Hua
  fullname: Hua, Rui
– sequence: 3
  givenname: Yulong
  orcidid: 0009-0004-2859-3458
  surname: Xiao
  fullname: Xiao, Yulong
– sequence: 4
  givenname: Yuce
  orcidid: 0000-0002-3215-1327
  surname: Liu
  fullname: Liu, Yuce
– sequence: 5
  givenname: Chaohui
  surname: Zhou
  fullname: Zhou, Chaohui
– sequence: 6
  givenname: Chaoshun
  surname: Li
  fullname: Li, Chaoshun
BookMark eNpNUcFqGzEQFSWFpmku_QJBbwUnkmZ3NToat24Mhlyas5iVtEbOWnK1G0r69ZHj0mYEo-HNm8cw7yO7SDkFxj5LcQNgxG1IEpVsNXTv2KU0pltIoeHiTf2BXU_TXtQAkABwyR43aQ7jGHchzXybyfN1LsHRNMe040MufFU7hUa-jLXOycc55nRqPkynTInfH-d4iH-C53fPfYmefwvhyLeByitvXegQfufy-Im9H2icwvXf_4o9rL__XN0ttvc_NqvlduGgk_PCG-2dVLpVmhz2slW96LEzjpqWGgetVIbUAKKnxgQpAjWEsiOFzqGWGq7Y5qzrM-3tscQDlWebKdpXIJedpTJHNwaLjcPGYD2a6RuNxkg3VEihdkK06KvWl7PWseRfT2Ga7T4_lVTXt6C0FEoDmsq6ObN2VEVjGnI9mavPh0N01aUhVnyJHQCqFrEOfD0PuJKnqYTh35pS2JOZ9r-Z8ALd0ZE4
Cites_doi 10.1016/j.enbuild.2015.12.050
10.1016/j.jobe.2023.107958
10.1016/j.enbuild.2024.114339
10.1016/j.advengsoft.2016.01.008
10.1016/j.ijrefrig.2025.05.011
10.1016/j.ijrefrig.2024.08.023
10.1016/j.apenergy.2018.12.042
10.1016/j.enbuild.2021.111574
10.1016/j.jobe.2021.103406
10.1016/j.jobe.2020.101967
10.1016/j.egyr.2022.08.237
10.1016/j.measurement.2025.118389
10.1016/j.buildenv.2023.110718
10.1016/j.apenergy.2008.11.035
10.1016/j.enbuild.2024.114735
10.1016/j.egyai.2021.100121
10.1109/STPES54845.2022.10006467
10.1016/j.apenergy.2020.114683
10.1016/j.apenergy.2021.116814
10.1016/j.dsp.2024.104838
10.1016/j.energy.2022.123111
10.1016/j.proeng.2017.10.261
10.1016/j.ijrefrig.2022.07.020
10.1016/j.enbuild.2019.05.043
10.1016/j.enbuild.2012.08.007
10.1016/j.egyr.2021.03.017
10.1016/j.energy.2022.126503
10.1016/j.apenergy.2017.02.066
10.1016/j.enbuild.2015.08.041
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en18215736
DatabaseName CrossRef
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_84c84981579b478991cf4c8287c0058d
A863382588
10_3390_en18215736
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-d97dc127527ac8b152b0b869ca45a4c35129a2f30ba49e10ea4a816a28cc87173
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001612535700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Mon Nov 17 19:36:37 EST 2025
Fri Nov 14 07:11:57 EST 2025
Tue Nov 18 03:51:05 EST 2025
Wed Nov 05 20:56:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-d97dc127527ac8b152b0b869ca45a4c35129a2f30ba49e10ea4a816a28cc87173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3215-1327
0009-0004-2859-3458
OpenAccessLink https://www.proquest.com/docview/3271027389?pq-origsite=%requestingapplication%
PQID 3271027389
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_84c84981579b478991cf4c8287c0058d
proquest_journals_3271027389
gale_infotracacademiconefile_A863382588
crossref_primary_10_3390_en18215736
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cai (ref_2) 2019; 236
Fan (ref_14) 2019; 197
Zou (ref_24) 2024; 322
Yu (ref_8) 2017; 205
Deb (ref_17) 2016; 121
Ma (ref_5) 2023; 243
Yun (ref_15) 2012; 54
ref_10
Chen (ref_30) 2025; 156
ref_32
Wang (ref_21) 2020; 263
Wang (ref_22) 2022; 8
Li (ref_16) 2008; 86
Eid (ref_7) 2024; 168
Qiao (ref_6) 2021; 35
Qiang (ref_11) 2015; 107
Zhang (ref_19) 2021; 7
Zhao (ref_23) 2022; 144
Zhou (ref_25) 2024; 317
Dahl (ref_13) 2017; 193
Lei (ref_26) 2023; 80
Alaka (ref_9) 2022; 45
Chen (ref_12) 2022; 254
Yanxiao (ref_18) 2021; 291
Xiao (ref_28) 2023; 267
ref_1
Mirjalili (ref_31) 2016; 95
Zhao (ref_20) 2022; 55
ref_27
Guo (ref_33) 2025; 176
Pallonetto (ref_3) 2022; 7
Yang (ref_29) 2025; 256
Li (ref_4) 2022; 243
References_xml – volume: 121
  start-page: 284
  year: 2016
  ident: ref_17
  article-title: Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.12.050
– volume: 80
  start-page: 107958
  year: 2023
  ident: ref_26
  article-title: Prediction model of the large commercial building cooling loads based on rough set and deep extreme learning machine
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2023.107958
– volume: 317
  start-page: 114339
  year: 2024
  ident: ref_25
  article-title: Research on the combined forecasting model of cooling load based on IVMD-WOA-LSSVM
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2024.114339
– ident: ref_32
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_31
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 176
  start-page: 373
  year: 2025
  ident: ref_33
  article-title: Hybrid forecasting model for central air conditioning load based on CEEMDAN and WTCN-GRU
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2025.05.011
– volume: 168
  start-page: 1
  year: 2024
  ident: ref_7
  article-title: Modelling energy consumption in a Paris supermarket to reduce energy use and greenhouse gas emissions using EnergyPlus
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2024.08.023
– volume: 236
  start-page: 1078
  year: 2019
  ident: ref_2
  article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.042
– volume: 254
  start-page: 111574
  year: 2022
  ident: ref_12
  article-title: An online physical-based multiple linear regression model for building’s hourly cooling load prediction
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.111574
– volume: 45
  start-page: 103406
  year: 2022
  ident: ref_9
  article-title: Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.103406
– volume: 35
  start-page: 101967
  year: 2021
  ident: ref_6
  article-title: Towards developing a systematic knowledge trend for building energy consumption prediction
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101967
– volume: 8
  start-page: 10950
  year: 2022
  ident: ref_22
  article-title: Research on a hybrid model for cooling load prediction based on wavelet threshold denoising and deep learning: A study in China
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.08.237
– volume: 256
  start-page: 118389
  year: 2025
  ident: ref_29
  article-title: Thermal error prediction in dry hobbing machine tools: A CNN-BiGRU network with spatiotemporal feature fusion
  publication-title: Measurement
  doi: 10.1016/j.measurement.2025.118389
– ident: ref_1
– volume: 243
  start-page: 110718
  year: 2023
  ident: ref_5
  article-title: Digital twin model for chiller fault diagnosis based on SSAE and transfer learning
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2023.110718
– volume: 86
  start-page: 2249
  year: 2008
  ident: ref_16
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2008.11.035
– volume: 322
  start-page: 114735
  year: 2024
  ident: ref_24
  article-title: Deep spatio-temporal feature fusion learning for multistep building cooling load forecasting
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2024.114735
– volume: 7
  start-page: 100121
  year: 2022
  ident: ref_3
  article-title: Forecast electricity demand in commercial building with machine learning models to enable demand response programs
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2021.100121
– ident: ref_10
  doi: 10.1109/STPES54845.2022.10006467
– ident: ref_27
– volume: 263
  start-page: 114683
  year: 2020
  ident: ref_21
  article-title: Building thermal load prediction through shallow machine learning and deep learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114683
– volume: 291
  start-page: 116814
  year: 2021
  ident: ref_18
  article-title: Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116814
– volume: 156
  start-page: 104838
  year: 2025
  ident: ref_30
  article-title: The short-term wind power prediction based on a multi-layer stacked model of BOsingle bondCNN-BiGRU-SA
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2024.104838
– volume: 243
  start-page: 123111
  year: 2022
  ident: ref_4
  article-title: A method for energy consumption optimization of air conditioning n load prediction and energy flexibility
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123111
– volume: 205
  start-page: 1564
  year: 2017
  ident: ref_8
  article-title: Research on the optimization control of the central air-conditioning system in university classroom buildings based on TRNSYS software
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.10.261
– volume: 144
  start-page: 211
  year: 2022
  ident: ref_23
  article-title: Prediction of functional zones cooling load for shopping mall using dual attention based LSTM: A case study
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2022.07.020
– volume: 197
  start-page: 7
  year: 2019
  ident: ref_14
  article-title: Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.05.043
– volume: 54
  start-page: 225
  year: 2012
  ident: ref_15
  article-title: Building hourly thermal load prediction using an indexed ARX model
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.08.007
– volume: 7
  start-page: 1588
  year: 2021
  ident: ref_19
  article-title: Predictive model of cooling load for ice storage airconditioning system by using GBDT
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.03.017
– volume: 267
  start-page: 126503
  year: 2023
  ident: ref_28
  article-title: Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126503
– volume: 193
  start-page: 455
  year: 2017
  ident: ref_13
  article-title: Using ensemble weather predictions in district heating operation and load forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.02.066
– volume: 55
  start-page: 114
  year: 2022
  ident: ref_20
  article-title: Building Cooling load prediction based on LightGBM
  publication-title: IFAC Pap.
– volume: 107
  start-page: 445
  year: 2015
  ident: ref_11
  article-title: An improved office building cooling load prediction model based on multivariable linear regression
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.08.041
SSID ssj0000331333
Score 2.403616
Snippet Accurate load forecasting of central air conditioning (CAC) systems is crucial for enhancing energy efficiency and minimizing operational costs. However, the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 5736
SubjectTerms Accuracy
Air conditioning
Algorithms
Analysis
BiGRU
BiTCN
Calibration
Carbon
central air conditioning
Climate change
Cooling
Deep learning
Energy conservation
Energy consumption
Energy efficiency
Forecasting
load forecasting
Machine learning
Mathematical optimization
Neural networks
Office buildings
Optimization algorithms
Regression analysis
self-attention mechanism
Statistical methods
Support vector machines
Temperature
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yeNCD-MTVVQIKnso2Tdomx_WxrCCrB4W9hTRNZRG7y24V9Nc7k3YfF_HirYRShplm5ptk5htCLk2hmM0jGzBV8EA4E8Oec2kguI2dSAqunPHDJtLhUI5G6mlt1BfWhNX0wLXiulJYKZRkcaoykUJ2wGwBSwD0LY7Ey9H7hqlaS6a8D-Ycki9e85FyyOu7rgQkDV_xXMyrCOSJ-n9zxz7G9HfJTgMOaa8Wao9suHKfbK9RBh6Qt_slh2ZFHyYmpzhc05o5li9TQKC0Oa-lvTE8T_BGuj5ypb46gJqSPoKbeB9_u5wOvrBhi946N6UN0-or7S_qtQ7JS__u-WYQNAMTAssTVgW5SnOLjO1RaqzMIDRnYSYTZY2IjbAcg7uJCh5mRijHQmeEkSwxkbRW4nX8EWmVk9IdEwqRO8uZS-LIFILlmVSF4iGuJQIxRZtcLJSopzUvhoZ8AlWtV6puk2vU7_IN5LL2C2Bh3VhY_2XhNrlC62jccaA_a5rGARAUuat0TyaQZ0exlG3SWRhQN1txrnmEICoFYHbyH9Kckq0IRwD7dsQOaVWzD3dGNu1nNZ7Pzv1f-APext9F
  priority: 102
  providerName: Directory of Open Access Journals
Title Intelligent Load Forecasting for Central Air Conditioning Using an Optimized Hybrid Deep Learning Framework
URI https://www.proquest.com/docview/3271027389
https://doaj.org/article/84c84981579b478991cf4c8287c0058d
Volume 18
WOSCitedRecordID wos001612535700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHvtE6xmQJJE7R4thJ7BPqoNUmsVIhkMbJcp6dqUJLSluQxoG_nfdct-UCFy5R9JJIVp7f9_PvMfbKtUaALyATppWZCq5EmQt1piSUQVWtNMHFYRP1ZKIvL800JdyWqa1yoxOjovY9UI78RBZkC2u0r2_m3zKaGkXV1TRC4zbbJ6Qy3Of7p6PJ9OM2y5JLiUGYXOOSSozvT0KHHrUo64jJvLNEEbD_b2o52prxg_9d5UN2P3mZfLjeFo_YrdA9Zvf-wB58wr6eb8E4V_x97zynKZ3gltQHzdGV5Snxy4czvO-ptL3O3fLYZsBdxz-gvrme_Qyen93QyS_-LoQ5T5CtV3y8afx6yj6PR5_enmVp8kIGshKrzJvaA0G_F7UD3aCNb_JGVwacKp0CSV6CK1qZN06ZIPLglNOicoUG0FTXf8b2ur4LB4yjC9B4EaqycK0SvtGmNTInWqXIORmwlxsu2PkaYMNiYEK8sjteDdgpMWj7BoFiR0K_uLJJxqxWoJXR-IFpVI2BpIAWSRgTAk1P9AP2mthrSXTx_4FLJxBwoQSCZYe6woC9KLUesKMNe22S6aXd8fbw34-fs7sFTQmOJxaP2N5q8T28YHfgx2q2XBynLXoco3-8XvwaIW16fjH98huas_P6
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48EYNFFgJECer9u7a3j0gFChRoqYhhyKV03a9XlcRqh2SACo_it_IjB8JF7j1wM1aP2Tvfp7XznwD8NIWOnI5d0GkCxFIb2P853waSOFiL5NCaG_rZhPpdKpOT_VsB351tTCUVtnJxFpQ55WjGPmB4KQLU9SvbxdfA-oaRburXQuNBhZH_vIHumyrN-NDXN9XnA8_nLwfBW1XgcCJJFoHuU5zR7TmPLVOZai_sjBTiXZWxlY6QRrQ8kKEmZXaR6G30qoosVw5p2jPGp97DXYlgb0Hu7Px8ezzJqoTCoFOn2h4UIXQ4YEv0YKP4rTmgN5qvrpBwN_UQK3bhnf-t1m5C7dbK5oNGtjfgx1f3odbf3ArPoAv4w3Z6JpNKpsz6kLq7IryvBma6qwNbLPBHI8r2rpvYtOsTqNgtmQfUZ5ezH_6nI0uqbKNHXq_YC0l7TkbdoltD-HTlXztI-iVVen3gKGJk-WRT2JuCxnlmdKFFiGNJZKMrz686FbdLBoCEYOOF2HDbLHRh3cEiM0VRPpdD1TLc9PKEKOkU1IrvEFnMkVHOXIFDqHP66g7ZN6H1wQnQ6IJ58_ZtsICX5RIvsxAJUIoHivVh_0OTqaVWSuzxdLjf59-DjdGJ8cTMxlPj57ATU4dkevqzH3orZff_FO47r6v56vls_b3YHB21dj7DXbrTC4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EaEFlgJECcr9u7a3j1UKBCiRi0hB5DKabter6sIYYckgNqf1l_HjB8JF7j1wM1aP2Svv53XznwD8NIWOnI5d0GkCxFIb2Nccz4NpHCxl0khtLd1s4l0OlUnJ3q2A5ddLQylVXYysRbUeeUoRj4QnHRhivp1ULRpEbPR-M3ie0AdpGintWun0UDkyJ__QvdtdTAZ4b9-xfn4_ad3h0HbYSBwIonWQa7T3BHFOU-tUxnqsizMVKKdlbGVTpA2tLwQYWal9lHorbQqSixXzinav8bnXoNdNMkl78HubPJh9mUT4QmFQAdQNJyoQuhw4Eu05qM4rfmgt1qwbhbwN5VQ67nxnf95hu7C7da6ZsNmOdyDHV_eh1t_cC4-gK-TDQnpmh1XNmfUndTZFeV_MzThWRvwZsM5Hle0pd_ErFmdXsFsyT6inP02v_A5Ozynijc28n7BWqraMzbuEt4ewucr-dpH0Cur0j8GhqZPlkc-ibktZJRnShdahDSWSDLK-vCiQ4BZNMQiBh0ywonZ4qQPbwkcmyuIDLweqJZnppUtRkmnpFZ4g85kig505AocQl_YUdfIvA-vCVqGRBbOn7Nt5QW-KJF_maFKhFA8VqoP-x20TCvLVmaLqyf_Pv0cbiDgzPFkerQHNzk1Sq6LNveht17-8E_huvu5nq-Wz9qVwuD0qqH3G_p8VO4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Load+Forecasting+for+Central+Air+Conditioning+Using+an+Optimized+Hybrid+Deep+Learning+Framework&rft.jtitle=Energies+%28Basel%29&rft.au=He%2C+Wei&rft.au=Hua%2C+Rui&rft.au=Xiao%2C+Yulong&rft.au=Liu%2C+Yuce&rft.date=2025-11-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=18&rft.issue=21&rft.spage=5736&rft_id=info:doi/10.3390%2Fen18215736&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en18215736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon