Online Mongolian Handwriting Recognition Based on Encoder–Decoder Structure with Language Model

Mongolian online handwriting recognition is a complex task due to the script’s intricate characters and extensive vocabulary. This study proposes a novel approach by integrating a pre-trained language model into the sequence-to-sequence(Seq2Seq) + attention mechanisms(AM) model to enhance recognitio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronics (Basel) Ročník 12; číslo 20; s. 4194
Hlavní autori: Fan, Daoerji, Sun, Yuxin, Wang, Zhixin, Peng, Yanjun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.10.2023
Predmet:
ISSN:2079-9292, 2079-9292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Mongolian online handwriting recognition is a complex task due to the script’s intricate characters and extensive vocabulary. This study proposes a novel approach by integrating a pre-trained language model into the sequence-to-sequence(Seq2Seq) + attention mechanisms(AM) model to enhance recognition accuracy. Three fusion models, including former, latter, and complete fusion, are introduced, showing substantial improvements over the baseline model. The complete fusion model, combined with synchronized language model parameters, achieved the best results, significantly reducing character and word error rates. This research presents a promising solution for accurate Mongolian online handwriting recognition, offering practical applications in preserving and utilizing the Mongolian script.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12204194