Customized Spectro-Temporal CNN Feature Extraction and ELM-Based Classifier for Accurate Respiratory Obstruction Detection
The accurate prediction based on lung auscultation of respiratory obstruction conditions (ROC), such as chronic obstructive pulmonary disease (COPD) and asthma, is a challenging task due to the availability of small datasets, ambient noise, variability between patients, high computational power, ove...
Uloženo v:
| Vydáno v: | IEEE access Ročník 13; s. 114145 - 114158 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The accurate prediction based on lung auscultation of respiratory obstruction conditions (ROC), such as chronic obstructive pulmonary disease (COPD) and asthma, is a challenging task due to the availability of small datasets, ambient noise, variability between patients, high computational power, overlapping auscultation characteristics and lack of universal clinical standards. Secondly, discrimination of obstructive respiratory diseases (COPD, asthma) and restrictive respiratory diseases (other) is critical, as they have different treatment and management strategies. Third, a clear distinction between COPD and asthma is of great concern, as treatment at the appropriate stage results in an open air passage in COPD and an improvement in shortness of breath in asthma. Although several techniques have been explored for diagnosing respiratory disease based on lung auscultation, there is still a need for an effective, low-cost, and faster solution suitable for real-time ROC detection. The time-frequency representations of audio signals are suitable to capture low-frequency information, as well as tonal and harmonic relationships. In contrast, deep learning architectures can learn complex, hierarchical, and high-level patterns from the spatio-temporal structures. In addition, extreme learning machines (ELM) can provide generalized performance with fewer training parameters. Hence, combining time-frequency representations, deep learning architecture, and ELM would result in the most reliable low-cost tool to predict ROC from lung auscultation. The fusion of deep features from different spatiotemporal structures outperforms individual features when fed into the ELM model, resulting in clear discrimination of obstructive and restrictive respiratory diseases. The proposed CNN-enhanced time-frequency features powered the ELM-based framework, yielding a test accuracy of 97.5% for the unseen test data considered. Thus, this study would be a useful aid for pulmonologists and would play a pivotal role in the accessibility to healthcare, early intervention, and long-term management of ROC disease. |
|---|---|
| AbstractList | The accurate prediction based on lung auscultation of respiratory obstruction conditions (ROC), such as chronic obstructive pulmonary disease (COPD) and asthma, is a challenging task due to the availability of small datasets, ambient noise, variability between patients, high computational power, overlapping auscultation characteristics and lack of universal clinical standards. Secondly, discrimination of obstructive respiratory diseases (COPD, asthma) and restrictive respiratory diseases (other) is critical, as they have different treatment and management strategies. Third, a clear distinction between COPD and asthma is of great concern, as treatment at the appropriate stage results in an open air passage in COPD and an improvement in shortness of breath in asthma. Although several techniques have been explored for diagnosing respiratory disease based on lung auscultation, there is still a need for an effective, low-cost, and faster solution suitable for real-time ROC detection. The time-frequency representations of audio signals are suitable to capture low-frequency information, as well as tonal and harmonic relationships. In contrast, deep learning architectures can learn complex, hierarchical, and high-level patterns from the spatio-temporal structures. In addition, extreme learning machines (ELM) can provide generalized performance with fewer training parameters. Hence, combining time-frequency representations, deep learning architecture, and ELM would result in the most reliable low-cost tool to predict ROC from lung auscultation. The fusion of deep features from different spatiotemporal structures outperforms individual features when fed into the ELM model, resulting in clear discrimination of obstructive and restrictive respiratory diseases. The proposed CNN-enhanced time-frequency features powered the ELM-based framework, yielding a test accuracy of 97.5% for the unseen test data considered. Thus, this study would be a useful aid for pulmonologists and would play a pivotal role in the accessibility to healthcare, early intervention, and long-term management of ROC disease. |
| Author | Venkatesan, K. Nayana Sree, K. L. Muthulakshmi, M. Bahiyah Rahayu, Syarifah |
| Author_xml | – sequence: 1 givenname: M. surname: Muthulakshmi fullname: Muthulakshmi, M. organization: Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Nagercoil, India – sequence: 2 givenname: K. surname: Venkatesan fullname: Venkatesan, K. organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Chennai, India – sequence: 3 givenname: Syarifah orcidid: 0000-0002-1996-5166 surname: Bahiyah Rahayu fullname: Bahiyah Rahayu, Syarifah email: syarifahbahiyah@upnm.edu.my organization: Faculty of Defense Science and Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia – sequence: 4 givenname: K. L. surname: Nayana Sree fullname: Nayana Sree, K. L. organization: Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, India |
| BookMark | eNpNkU9v1DAQxS1UJErpJ4CDJc5Z_Cf2JsclbKHS0kpsOVuTyQR5tRsH25HafnrSpgLmMk-j-b2x9d6ysyEMxNh7KVZSivrTpmm2-_1KCWVW2lRSreUrdq6krQtttD37T79hlykdxFzVPDLrc_bYTCmHk3-kju9HwhxDcUenMUQ48ubmhl8R5CkS397nCJh9GDgMHd_uvhefIc1Uc4SUfO8p8j5EvkGcImTiPyiNflYhPvDbNuU4LfQXyvSs3rHXPRwTXb70C_bzanvXfCt2t1-vm82uQG1lLjpb9kIoNEa01EkNhFjVQIDC6ArXpawQwPR91aIlq7Sg-astYg22LgXoC3a9-HYBDm6M_gTxwQXw7nkQ4i8HMXs8kgMgLbXGum2hrKht1zWWnal7tLqWFmevj4vXGMPviVJ2hzDFYX6-00pVxlht9bylly2MIaVI_d-rUrinzNySmXvKzL1kNlMfFsoT0T9CirLUSug_D7KWog |
| CODEN | IAECCG |
| Cites_doi | 10.3390/diagnostics13101748 10.3389/fmed.2023.1269784 10.47363/JAICC/2023(2)115 10.1016/j.bspc.2023.105570 10.1109/TIM.2023.3256468 10.1016/j.bspc.2022.104555 10.62110/sciencein.jist.2024.v12.780 10.1016/j.engappai.2023.106887 10.1007/s12559-023-10228-2 10.1109/ACCESS.2024.3361943 10.1007/s11760-023-02589-w 10.1007/s00521-018-3735-3 10.32604/iasc.2023.041392 10.1016/j.bspc.2024.106257 10.3390/s22031232 10.1016/j.heliyon.2024.e26218 10.1016/j.compbiomed.2024.108698 10.1109/ICRAI57502.2023.10089608 10.1080/03772063.2023.2258495 10.1016/j.bspc.2023.105347 10.12785/ijcds/130126 10.1007/s00500-024-09866-x 10.1007/s11042-024-18703-0 10.1016/j.bspc.2023.104695 10.46604/ijeti.2023.12294 10.1109/TIM.2023.3292953 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3581271 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 114158 |
| ExternalDocumentID | oai_doaj_org_article_aae3133c9bba48ebb79c4d59fc63916c 10_1109_ACCESS_2025_3581271 11044320 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Defence University Malaysia (UPNM) grantid: UPNM/2023/GPPP/ICT/1CT/1 – fundername: Cyber Security and Digital Industrial Revolution Centre |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-d64f002c550bed13aecc89aeac0538c7418caa5ff8bc6e6230e353bcc9a6940a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001525527900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:45:53 EDT 2025 Sat Nov 01 15:52:26 EDT 2025 Sat Nov 29 07:45:49 EST 2025 Wed Aug 27 02:14:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-d64f002c550bed13aecc89aeac0538c7418caa5ff8bc6e6230e353bcc9a6940a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1996-5166 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/11044320 |
| PQID | 3228556363 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3581271 ieee_primary_11044320 doaj_primary_oai_doaj_org_article_aae3133c9bba48ebb79c4d59fc63916c proquest_journals_3228556363 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | Organization (ref1) 2024 ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref3 doi: 10.3390/diagnostics13101748 – ident: ref17 doi: 10.3389/fmed.2023.1269784 – ident: ref9 doi: 10.47363/JAICC/2023(2)115 – ident: ref23 doi: 10.1016/j.bspc.2023.105570 – ident: ref5 doi: 10.1109/TIM.2023.3256468 – ident: ref16 doi: 10.1016/j.bspc.2022.104555 – ident: ref12 doi: 10.62110/sciencein.jist.2024.v12.780 – ident: ref21 doi: 10.1016/j.engappai.2023.106887 – volume-title: Chronic Respiratory Diseases year: 2024 ident: ref1 – ident: ref25 doi: 10.1007/s12559-023-10228-2 – ident: ref6 doi: 10.1109/ACCESS.2024.3361943 – ident: ref19 doi: 10.1007/s11760-023-02589-w – ident: ref27 doi: 10.1007/s00521-018-3735-3 – ident: ref15 doi: 10.32604/iasc.2023.041392 – ident: ref13 doi: 10.1016/j.bspc.2024.106257 – ident: ref11 doi: 10.3390/s22031232 – ident: ref2 doi: 10.1016/j.heliyon.2024.e26218 – ident: ref14 doi: 10.1016/j.compbiomed.2024.108698 – ident: ref20 doi: 10.1109/ICRAI57502.2023.10089608 – ident: ref22 doi: 10.1080/03772063.2023.2258495 – ident: ref4 doi: 10.1016/j.bspc.2023.105347 – ident: ref18 doi: 10.12785/ijcds/130126 – ident: ref24 doi: 10.1007/s00500-024-09866-x – ident: ref26 doi: 10.1007/s11042-024-18703-0 – ident: ref8 doi: 10.1016/j.bspc.2023.104695 – ident: ref10 doi: 10.46604/ijeti.2023.12294 – ident: ref7 doi: 10.1109/TIM.2023.3292953 |
| SSID | ssj0000816957 |
| Score | 2.3345993 |
| Snippet | The accurate prediction based on lung auscultation of respiratory obstruction conditions (ROC), such as chronic obstructive pulmonary disease (COPD) and... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 114145 |
| SubjectTerms | Accuracy Artificial neural networks Asthma Audio data Audio signals Auscultation Chronic obstructive pulmonary disease CNN enhanced time-frequency features Deep learning ELM Feature extraction feature fusion Health services Low cost Lungs Machine learning Mel frequency cepstral coefficient Noise Pneumonia Real time Representations Respiratory diseases respiratory obstruction condition Spectrogram Time-frequency analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqxKE9IGipWKCVDz3WJYkdfxx300U9tNsKgcTNsie2tBIEtGSril_fcZyFrXropdcoiuN545l5if2GkA9VjMr4OrDYesMEJixmKsmZhgr5Rq1UEXOzCbVY6Otr82Or1VfaE5blgbPhzpwLHHkUGO-d0MF7ZUC0tYkg05lRSNG3UGaLTA0xWJfS1GqUGSoLczZtGpwREsKq_pQ0vypV_pGKBsX-scXKX3F5SDbn-2RvrBLpNL_dAXkRutfk1ZZ24Bvy2KyxbrtdPoaWpiby_eqOXWadqRvaLBY0FXfrVaDzX_0qn16grmvp_Os3NsPU1dKhH-YyYl6kWLnSKcA66UbQi-e_7_S7fxKYpZ9DP-zb6g7J1fn8svnCxkYKDLgse9ZKETHyAbIRH9qSO8RNG4cxF5eghiRgA87VMWoPMmBBVARecw9gnDSicPwt2enuunBEaESbYwkHXEgvhNGuNBqfwz2vFUQuJ-Tjxqb2Putl2IFnFMZmCGyCwI4QTMgs2f3p1iR2PVxAF7CjC9h_ucCEHCbUnsdDiil4VUzI6QZGO67MB4sBTCdRNMmP_8fYJ-Rlmk_-KHNKdhCT8I7sws9--bB6Pzjlb80H5pc priority: 102 providerName: Directory of Open Access Journals |
| Title | Customized Spectro-Temporal CNN Feature Extraction and ELM-Based Classifier for Accurate Respiratory Obstruction Detection |
| URI | https://ieeexplore.ieee.org/document/11044320 https://www.proquest.com/docview/3228556363 https://doaj.org/article/aae3133c9bba48ebb79c4d59fc63916c |
| Volume | 13 |
| WOSCitedRecordID | wos001525527900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELag4gAHnkUslMoHjrhNYseP4zZsxYEuCBWpN8ue2NJKNIu2WYR64LczdtwtCHHgEkVRHk6-eOYb2_MNIW-aGJXxbWCx94YJdFjMNJIzDQ3GG61SVZyKTajlUl9cmE8lWT3nwoQQ8uKzcJR281x-v4ZtGio7RlclBG8wQr-rlJyStXYDKqmChGlVURaqK3M87zp8CYwBm_YoyXw1qv7D-2SR_lJV5S9TnP3L6aP_bNlj8rAQSTqfkH9C7oThKXnwm7zgM3LdbZHaXa6uQ09Tnflxs2bnkxTVV9otlzTxv-0m0MWPcTMlOFA39HTx4YydoHfraS6ZuYroOimSWzoH2CZpCfr5doKefvQ7DVr6Lox5adewT76cLs6796zUWmDAZT2yXoqIxhEwYPGhr7lDaLVxaJaxl2pIGjfgXBuj9iADcqYq8JZ7AOOkEZXjz8nesB7CC0IjMk5kecCF9EIY7Wqj8T7c81ZB5HJG3t5gYL9Nkho2hyKVsRNkNkFmC2QzcpJw2p2a9LDzAQTAlu5lnQsco20w3juhg_fKgOhbE0GmzGKYkf0E2u3zCl4zcnADuy2d98qijdNJN03yl_-47BW5n5o4DcUckD38zOE1uQffx9XV5jDH9bg9-7k4zP_oLxEL5PM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQQQIOLY8ithTwgSNuk_gR-7hNtypiGxBapN4s27GllUoWbbMI9dczdtwtCHHgFkV52PnimW9szzcIvatCqJXlnoTOKsLAYRFVCUqkqyDe4HVdhLHYRN228vJSfc7J6ikXxnufNp_5o3iY1vK7ldvEqbJjcFWM0Qoi9PucsaoY07W2UyqxhoTiddYWKgt1PG0a6AZEgRU_ikJfVV3-4X-STH-uq_KXMU4e5mzvP9v2BO1mKomnI_ZP0T3fP0OPfxMYfI5umg2Qu2_LG9_hWGl-WK_IYhSjusJN2-LIADdrj2c_h_WY4oBN3-HZ_IKcgH_rcCqauQzgPDHQWzx1bhPFJfCXuyV6_MluVWjxqR_S5q5-H309my2ac5KrLRBHRTmQTrAA5tFByGJ9V1ID4EplwDDDOJUuqtw4Y3gI0jrhgTUVnnJqnVNGKFYY-gLt9Kvev0Q4AOcEnucoE5YxJU2pJDyHWsprF6iYoPe3GOjvo6iGTsFIofQImY6Q6QzZBJ1EnLaXRkXsdAIA0HmAaWM8hXjbKWsNk97aWjnWcRWciLnFboL2I2h378t4TdDhLew6D99rDVZORuU0QQ_-cdtb9PB8cTHX8w_tx1foUWzuODFziHbgk_vX6IH7MSyv12_SP_oLUAvmFA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Customized+Spectro-Temporal+CNN+Feature+Extraction+and+ELM-Based+Classifier+for+Accurate+Respiratory+Obstruction+Detection&rft.jtitle=IEEE+access&rft.au=Muthulakshmi%2C+M.&rft.au=Venkatesan%2C+K.&rft.au=Bahiyah+Rahayu%2C+Syarifah&rft.au=Nayana+Sree%2C+K.+L.&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=114145&rft.epage=114158&rft_id=info:doi/10.1109%2FACCESS.2025.3581271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3581271 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |