Customized Spectro-Temporal CNN Feature Extraction and ELM-Based Classifier for Accurate Respiratory Obstruction Detection

The accurate prediction based on lung auscultation of respiratory obstruction conditions (ROC), such as chronic obstructive pulmonary disease (COPD) and asthma, is a challenging task due to the availability of small datasets, ambient noise, variability between patients, high computational power, ove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 13; S. 114145 - 114158
Hauptverfasser: Muthulakshmi, M., Venkatesan, K., Bahiyah Rahayu, Syarifah, Nayana Sree, K. L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The accurate prediction based on lung auscultation of respiratory obstruction conditions (ROC), such as chronic obstructive pulmonary disease (COPD) and asthma, is a challenging task due to the availability of small datasets, ambient noise, variability between patients, high computational power, overlapping auscultation characteristics and lack of universal clinical standards. Secondly, discrimination of obstructive respiratory diseases (COPD, asthma) and restrictive respiratory diseases (other) is critical, as they have different treatment and management strategies. Third, a clear distinction between COPD and asthma is of great concern, as treatment at the appropriate stage results in an open air passage in COPD and an improvement in shortness of breath in asthma. Although several techniques have been explored for diagnosing respiratory disease based on lung auscultation, there is still a need for an effective, low-cost, and faster solution suitable for real-time ROC detection. The time-frequency representations of audio signals are suitable to capture low-frequency information, as well as tonal and harmonic relationships. In contrast, deep learning architectures can learn complex, hierarchical, and high-level patterns from the spatio-temporal structures. In addition, extreme learning machines (ELM) can provide generalized performance with fewer training parameters. Hence, combining time-frequency representations, deep learning architecture, and ELM would result in the most reliable low-cost tool to predict ROC from lung auscultation. The fusion of deep features from different spatiotemporal structures outperforms individual features when fed into the ELM model, resulting in clear discrimination of obstructive and restrictive respiratory diseases. The proposed CNN-enhanced time-frequency features powered the ELM-based framework, yielding a test accuracy of 97.5% for the unseen test data considered. Thus, this study would be a useful aid for pulmonologists and would play a pivotal role in the accessibility to healthcare, early intervention, and long-term management of ROC disease.
AbstractList The accurate prediction based on lung auscultation of respiratory obstruction conditions (ROC), such as chronic obstructive pulmonary disease (COPD) and asthma, is a challenging task due to the availability of small datasets, ambient noise, variability between patients, high computational power, overlapping auscultation characteristics and lack of universal clinical standards. Secondly, discrimination of obstructive respiratory diseases (COPD, asthma) and restrictive respiratory diseases (other) is critical, as they have different treatment and management strategies. Third, a clear distinction between COPD and asthma is of great concern, as treatment at the appropriate stage results in an open air passage in COPD and an improvement in shortness of breath in asthma. Although several techniques have been explored for diagnosing respiratory disease based on lung auscultation, there is still a need for an effective, low-cost, and faster solution suitable for real-time ROC detection. The time-frequency representations of audio signals are suitable to capture low-frequency information, as well as tonal and harmonic relationships. In contrast, deep learning architectures can learn complex, hierarchical, and high-level patterns from the spatio-temporal structures. In addition, extreme learning machines (ELM) can provide generalized performance with fewer training parameters. Hence, combining time-frequency representations, deep learning architecture, and ELM would result in the most reliable low-cost tool to predict ROC from lung auscultation. The fusion of deep features from different spatiotemporal structures outperforms individual features when fed into the ELM model, resulting in clear discrimination of obstructive and restrictive respiratory diseases. The proposed CNN-enhanced time-frequency features powered the ELM-based framework, yielding a test accuracy of 97.5% for the unseen test data considered. Thus, this study would be a useful aid for pulmonologists and would play a pivotal role in the accessibility to healthcare, early intervention, and long-term management of ROC disease.
Author Venkatesan, K.
Nayana Sree, K. L.
Muthulakshmi, M.
Bahiyah Rahayu, Syarifah
Author_xml – sequence: 1
  givenname: M.
  surname: Muthulakshmi
  fullname: Muthulakshmi, M.
  organization: Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Nagercoil, India
– sequence: 2
  givenname: K.
  surname: Venkatesan
  fullname: Venkatesan, K.
  organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Chennai, India
– sequence: 3
  givenname: Syarifah
  orcidid: 0000-0002-1996-5166
  surname: Bahiyah Rahayu
  fullname: Bahiyah Rahayu, Syarifah
  email: syarifahbahiyah@upnm.edu.my
  organization: Faculty of Defense Science and Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia
– sequence: 4
  givenname: K. L.
  surname: Nayana Sree
  fullname: Nayana Sree, K. L.
  organization: Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, India
BookMark eNpNkU9v1DAQxS1UJErpJ4CDJc5Z_Cf2JsclbKHS0kpsOVuTyQR5tRsH25HafnrSpgLmMk-j-b2x9d6ysyEMxNh7KVZSivrTpmm2-_1KCWVW2lRSreUrdq6krQtttD37T79hlykdxFzVPDLrc_bYTCmHk3-kju9HwhxDcUenMUQ48ubmhl8R5CkS397nCJh9GDgMHd_uvhefIc1Uc4SUfO8p8j5EvkGcImTiPyiNflYhPvDbNuU4LfQXyvSs3rHXPRwTXb70C_bzanvXfCt2t1-vm82uQG1lLjpb9kIoNEa01EkNhFjVQIDC6ArXpawQwPR91aIlq7Sg-astYg22LgXoC3a9-HYBDm6M_gTxwQXw7nkQ4i8HMXs8kgMgLbXGum2hrKht1zWWnal7tLqWFmevj4vXGMPviVJ2hzDFYX6-00pVxlht9bylly2MIaVI_d-rUrinzNySmXvKzL1kNlMfFsoT0T9CirLUSug_D7KWog
CODEN IAECCG
Cites_doi 10.3390/diagnostics13101748
10.3389/fmed.2023.1269784
10.47363/JAICC/2023(2)115
10.1016/j.bspc.2023.105570
10.1109/TIM.2023.3256468
10.1016/j.bspc.2022.104555
10.62110/sciencein.jist.2024.v12.780
10.1016/j.engappai.2023.106887
10.1007/s12559-023-10228-2
10.1109/ACCESS.2024.3361943
10.1007/s11760-023-02589-w
10.1007/s00521-018-3735-3
10.32604/iasc.2023.041392
10.1016/j.bspc.2024.106257
10.3390/s22031232
10.1016/j.heliyon.2024.e26218
10.1016/j.compbiomed.2024.108698
10.1109/ICRAI57502.2023.10089608
10.1080/03772063.2023.2258495
10.1016/j.bspc.2023.105347
10.12785/ijcds/130126
10.1007/s00500-024-09866-x
10.1007/s11042-024-18703-0
10.1016/j.bspc.2023.104695
10.46604/ijeti.2023.12294
10.1109/TIM.2023.3292953
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3581271
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 114158
ExternalDocumentID oai_doaj_org_article_aae3133c9bba48ebb79c4d59fc63916c
10_1109_ACCESS_2025_3581271
11044320
Genre orig-research
GrantInformation_xml – fundername: National Defence University Malaysia (UPNM)
  grantid: UPNM/2023/GPPP/ICT/1CT/1
– fundername: Cyber Security and Digital Industrial Revolution Centre
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-d64f002c550bed13aecc89aeac0538c7418caa5ff8bc6e6230e353bcc9a6940a3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001525527900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:45:53 EDT 2025
Sat Nov 01 15:52:26 EDT 2025
Sat Nov 29 07:45:49 EST 2025
Wed Aug 27 02:14:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-d64f002c550bed13aecc89aeac0538c7418caa5ff8bc6e6230e353bcc9a6940a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1996-5166
OpenAccessLink https://doaj.org/article/aae3133c9bba48ebb79c4d59fc63916c
PQID 3228556363
PQPubID 4845423
PageCount 14
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3581271
ieee_primary_11044320
doaj_primary_oai_doaj_org_article_aae3133c9bba48ebb79c4d59fc63916c
proquest_journals_3228556363
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Organization (ref1) 2024
ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.3390/diagnostics13101748
– ident: ref17
  doi: 10.3389/fmed.2023.1269784
– ident: ref9
  doi: 10.47363/JAICC/2023(2)115
– ident: ref23
  doi: 10.1016/j.bspc.2023.105570
– ident: ref5
  doi: 10.1109/TIM.2023.3256468
– ident: ref16
  doi: 10.1016/j.bspc.2022.104555
– ident: ref12
  doi: 10.62110/sciencein.jist.2024.v12.780
– ident: ref21
  doi: 10.1016/j.engappai.2023.106887
– volume-title: Chronic Respiratory Diseases
  year: 2024
  ident: ref1
– ident: ref25
  doi: 10.1007/s12559-023-10228-2
– ident: ref6
  doi: 10.1109/ACCESS.2024.3361943
– ident: ref19
  doi: 10.1007/s11760-023-02589-w
– ident: ref27
  doi: 10.1007/s00521-018-3735-3
– ident: ref15
  doi: 10.32604/iasc.2023.041392
– ident: ref13
  doi: 10.1016/j.bspc.2024.106257
– ident: ref11
  doi: 10.3390/s22031232
– ident: ref2
  doi: 10.1016/j.heliyon.2024.e26218
– ident: ref14
  doi: 10.1016/j.compbiomed.2024.108698
– ident: ref20
  doi: 10.1109/ICRAI57502.2023.10089608
– ident: ref22
  doi: 10.1080/03772063.2023.2258495
– ident: ref4
  doi: 10.1016/j.bspc.2023.105347
– ident: ref18
  doi: 10.12785/ijcds/130126
– ident: ref24
  doi: 10.1007/s00500-024-09866-x
– ident: ref26
  doi: 10.1007/s11042-024-18703-0
– ident: ref8
  doi: 10.1016/j.bspc.2023.104695
– ident: ref10
  doi: 10.46604/ijeti.2023.12294
– ident: ref7
  doi: 10.1109/TIM.2023.3292953
SSID ssj0000816957
Score 2.3345993
Snippet The accurate prediction based on lung auscultation of respiratory obstruction conditions (ROC), such as chronic obstructive pulmonary disease (COPD) and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 114145
SubjectTerms Accuracy
Artificial neural networks
Asthma
Audio data
Audio signals
Auscultation
Chronic obstructive pulmonary disease
CNN enhanced time-frequency features
Deep learning
ELM
Feature extraction
feature fusion
Health services
Low cost
Lungs
Machine learning
Mel frequency cepstral coefficient
Noise
Pneumonia
Real time
Representations
Respiratory diseases
respiratory obstruction condition
Spectrogram
Time-frequency analysis
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHvTgW1xf5ODR6rbpK8e1rnjQVUTBW0gmCSxoV3a7Iv56J2lcFfHgrZSGpPmSeSXzDSFHEm1okxse8UJzH62KJOrhKE901yZKScvaYhPFYFA-PvLbkKzuc2GMMf7ymTlxj_4sX49g6kJlp6iq0pQl6KHPF0XeJmvNAiquggTPisAsFHf5aa-q8CfQB0yyE0fzlRTxD-3jSfpDVZVfotjrl4vVf45sjawEQ5L2WuTXyZypN8jyN3rBTfJeTdG0ex6-G01dnflmPIruWyqqJ1oNBtTZf9Oxof23ZtwmOFBZa9q_uo7OULtp6ktmDi2qTorGLe0BTB21BL37OqCnN2rGQUvPTeOvdtVb5OGif19dRqHWQgQsj5tI56lF4QjosCijYyYR2pJLFMu4S0twHDcgZWZtqQDBRcfFsIwpAC5znnYl2yYL9ag2O4TiNDAGJcQMm1ltS50VMecyU9Kzr3bI8ScG4qWl1BDeFely0UImHGQiQNYhZw6n2aeOD9u_QABE2F5CSsPQ2waOqystjVIFh1Rn3ELuMouhQ7YcaF_9Bbw6ZP8TdhE270SgjCsdb1rOdv9otkeW3BDbUMw-WcBpNgdkEV6b4WR86NflB20f4x0
  priority: 102
  providerName: IEEE
Title Customized Spectro-Temporal CNN Feature Extraction and ELM-Based Classifier for Accurate Respiratory Obstruction Detection
URI https://ieeexplore.ieee.org/document/11044320
https://www.proquest.com/docview/3228556363
https://doaj.org/article/aae3133c9bba48ebb79c4d59fc63916c
Volume 13
WOSCitedRecordID wos001525527900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQYoABcYpyyQMjgSTOYY8lFDFAQahIbJZPqRKkqE0R6sBv59kOpYiBhSVDFMv2-57f4djfQ-hEQAxtCsMiVmrmd6siAX44KlId21RKYUkoNlH2-_Tpid0vlPpyZ8ICPXAQ3LkQhkAepRi0y6iRsmQq0zmzqnB3RpWzvnHJFpIpb4NpUrC8bGmGkpidd6sKZgQJYZqfOc6vtEx-uCLP2N-WWPlll72zudpA622UiLthdJtoydRbaG2BO3AbzaopxG0vw5nR2BWRb8ajaBB4pp5x1e9jF9xNxwb33ptxuL2ARa1x7-Y2ugDXpbGvhzm04BcxRK64q9TU8Ubgh--_7_hOzglm8aVp_Lmtegc9XvUG1XXUFlKIFCmSJtJFZsHyKchGpNEJEYAbZQJsLixBqhyBjRIit5ZKBchBVmJITqRSTBQsiwXZRcv1qDZ7CJM0BjCoSgg0s9pSnZcJYyKXwlOrdtDpl0z5a-DL4D7PiBkPEHAHAW8h6KALJ_f5p47s2r8AFeCtCvC_VKCDdhxq3_1BipnBQDvo8AtG3q7MCQcDRh0pWkH2_6PvA7Tq5hM2ZQ7RMmBijtCKemuGk_GxV0p43n70jv3Vwk-3vekZ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hggQcWh5FbCngA0fSJnFePm7TrYrYBoQWqTfLHtvSSiWLtlmE-usZO-4WhDhwi6JYdvzZ87LnG4B3imxoW1mRiNqIEK1KFOnhpMpN6nKtleNjsYm665rLS_E5JquHXBhrbbh8Zo_8YzjLNyvc-FDZMamqouA5eej3y6LI0zFdaxtS8TUkRFlHbqEsFcfTtqXfIC8wL4880VdeZ3_on0DTH-uq_CWMg4Y52_vPsT2B3WhKsumI_VO4Z_tn8Pg3gsHncNNuyLj7tryxhvlK88N6lSxGMqor1nYd8xbgZm3Z7OewHlMcmOoNm80vkhPSb4aFoplLR8qTkXnLpogbTy7Bvtwd0bNPestCy07tEC539fvw9Wy2aM-TWG0hQV5lQ2KqwpF4RHJZtDUZVwRuIxQJZtqnDXqWG1SqdK7RSPCS62J5yTWiUJUoUsVfwE6_6u1LYDQNnGODGadmzrjGlHUmhCq1CvyrE3h_i4H8PpJqyOCMpEKOkEkPmYyQTeDE47T91DNihxcEgIwbTCplOfnbKGh9FY3VuhZYmFI4rHxuMU5g34N211_EawKHt7DLuH2vJUm5xjOnVfzgH83ewsPzxcVczj90H1_BIz_cMTBzCDs05fY1PMAfw_J6_Sas0V9e0eZk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Customized+Spectro-Temporal+CNN+Feature+Extraction+and+ELM-Based+Classifier+for+Accurate+Respiratory+Obstruction+Detection&rft.jtitle=IEEE+access&rft.au=Muthulakshmi%2C+M.&rft.au=Venkatesan%2C+K.&rft.au=Bahiyah+Rahayu%2C+Syarifah&rft.au=Nayana+Sree%2C+K.+L.&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=114145&rft.epage=114158&rft_id=info:doi/10.1109%2FACCESS.2025.3581271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3581271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon