Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches
Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better load scheduling and reduce excessive electricity production. However, developing and selecting accurate time series models is a challenging t...
Uložené v:
| Vydané v: | Energies (Basel) Ročník 11; číslo 7; s. 1636 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
2018
|
| Predmet: | |
| ISSN: | 1996-1073, 1996-1073 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better load scheduling and reduce excessive electricity production. However, developing and selecting accurate time series models is a challenging task as this requires training several different models for selecting the best amongst them along with substantial feature engineering to derive informative features and finding optimal time lags, a commonly used input features for time series models. Methods: Our approach uses machine learning and a long short-term memory (LSTM)-based neural network with various configurations to construct forecasting models for short to medium term aggregate load forecasting. The research solves above mentioned problems by training several linear and non-linear machine learning algorithms and picking the best as baseline, choosing best features using wrapper and embedded feature selection methods and finally using genetic algorithm (GA) to find optimal time lags and number of layers for LSTM model predictive performance optimization. Results: Using France metropolitan’s electricity consumption data as a case study, obtained results show that LSTM based model has shown high accuracy then machine learning model that is optimized with hyperparameter tuning. Using the best features, optimal lags, layers and training various LSTM configurations further improved forecasting accuracy. Conclusions: A LSTM model using only optimally selected time lagged features captured all the characteristics of complex time series and showed decreased Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for medium to long range forecasting for a wider metropolitan area. |
|---|---|
| AbstractList | Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better load scheduling and reduce excessive electricity production. However, developing and selecting accurate time series models is a challenging task as this requires training several different models for selecting the best amongst them along with substantial feature engineering to derive informative features and finding optimal time lags, a commonly used input features for time series models. Methods: Our approach uses machine learning and a long short-term memory (LSTM)-based neural network with various configurations to construct forecasting models for short to medium term aggregate load forecasting. The research solves above mentioned problems by training several linear and non-linear machine learning algorithms and picking the best as baseline, choosing best features using wrapper and embedded feature selection methods and finally using genetic algorithm (GA) to find optimal time lags and number of layers for LSTM model predictive performance optimization. Results: Using France metropolitan’s electricity consumption data as a case study, obtained results show that LSTM based model has shown high accuracy then machine learning model that is optimized with hyperparameter tuning. Using the best features, optimal lags, layers and training various LSTM configurations further improved forecasting accuracy. Conclusions: A LSTM model using only optimally selected time lagged features captured all the characteristics of complex time series and showed decreased Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for medium to long range forecasting for a wider metropolitan area. |
| Author | Bouktif, Salah Ouni, Ali Serhani, Mohamed Fiaz, Ali |
| Author_xml | – sequence: 1 givenname: Salah surname: Bouktif fullname: Bouktif, Salah – sequence: 2 givenname: Ali surname: Fiaz fullname: Fiaz, Ali – sequence: 3 givenname: Ali orcidid: 0000-0003-4708-0362 surname: Ouni fullname: Ouni, Ali – sequence: 4 givenname: Mohamed orcidid: 0000-0001-7001-3710 surname: Serhani fullname: Serhani, Mohamed |
| BookMark | eNptkU1vEzEQhi1UJErohV9giRtSwN7ZL3OLQlMqbdRDy9ly7HHqaGMvtqOKn8K_xUsQRQgf_DF63hnPO6_JhQ8eCXnL2QcAwT6i55x1vIX2BbnkQrTL8oSLv-6vyFVKB1YWAAeAS_LjbsruqEb6GXGiA6rond_T4f5hS7fB4EhtiPR6RJ2j03QIytBNiKhVyjN4SvO-QZVPEek9zqALnipv6A16zEW0Gvchuvx4_ETX4Tip6FIhnkqEbpV-dB6fC6-mKYYSxPSGvLRqTHj1-1yQr5vrh_WX5XB3c7teDUsNLc9L06hKdwJ1bWrW6F21A2iAW401F6Y1pmE1b3rd9grqjjElOCDnFjreW6sFLMjtOa8J6iCnWNyI32VQTv4KhLiXKpY2RpTKNLzWnd3VUNe6iHdWMNsbY4FVpvi7IO_OuUoT306YsjyEU_Tl-7LirG-4gKYq1PszpWNIKaL9U5UzOU9SPk-ywOwfWLusZo9zVG78n-QncLujDw |
| CitedBy_id | crossref_primary_10_1007_s11277_022_10077_6 crossref_primary_10_3390_electronics11182940 crossref_primary_10_3390_en16247962 crossref_primary_10_1007_s00521_021_06266_2 crossref_primary_10_1016_j_asoc_2022_108877 crossref_primary_10_1016_j_egyr_2023_01_094 crossref_primary_10_3390_app11167484 crossref_primary_10_1016_j_atmosenv_2024_120560 crossref_primary_10_1049_tje2_12186 crossref_primary_10_3390_en18123094 crossref_primary_10_1029_2025WR040635 crossref_primary_10_1016_j_rser_2021_111459 crossref_primary_10_3390_en14248505 crossref_primary_10_1038_s41598_023_51111_2 crossref_primary_10_32604_cmc_2021_016042 crossref_primary_10_3390_s25103204 crossref_primary_10_3390_electronics10232999 crossref_primary_10_1109_ACCESS_2020_3010800 crossref_primary_10_1109_ACCESS_2019_2943752 crossref_primary_10_32604_EE_2021_017795 crossref_primary_10_54392_irjmt2552 crossref_primary_10_3390_en13092377 crossref_primary_10_1155_2020_8828479 crossref_primary_10_1016_j_eswa_2021_114844 crossref_primary_10_1016_j_heliyon_2024_e25838 crossref_primary_10_1109_ACCESS_2019_2949065 crossref_primary_10_1016_j_ocemod_2023_102259 crossref_primary_10_1016_j_asoc_2025_112872 crossref_primary_10_1016_j_engappai_2024_107845 crossref_primary_10_3390_w16091248 crossref_primary_10_1109_ACCESS_2019_2931990 crossref_primary_10_1016_j_heliyon_2024_e36519 crossref_primary_10_1016_j_suscom_2023_100954 crossref_primary_10_1016_j_engappai_2025_111169 crossref_primary_10_1007_s00521_022_07203_7 crossref_primary_10_1051_shsconf_202419602006 crossref_primary_10_1016_j_renene_2021_06_079 crossref_primary_10_1016_j_jii_2024_100662 crossref_primary_10_1007_s10311_023_01604_3 crossref_primary_10_1016_j_engappai_2020_104000 crossref_primary_10_1109_ACCESS_2024_3407121 crossref_primary_10_3390_en16114294 crossref_primary_10_1007_s12530_021_09393_2 crossref_primary_10_1016_j_egyr_2025_03_048 crossref_primary_10_1016_j_iot_2024_101086 crossref_primary_10_3390_app13042660 crossref_primary_10_3390_info15110709 crossref_primary_10_1007_s10661_023_12080_1 crossref_primary_10_1080_1206212X_2020_1766769 crossref_primary_10_3390_info15020094 crossref_primary_10_3390_su13116056 crossref_primary_10_1007_s00202_024_02833_7 crossref_primary_10_3390_su16135718 crossref_primary_10_1016_j_apenergy_2021_117877 crossref_primary_10_3390_math10142363 crossref_primary_10_1007_s12145_024_01322_6 crossref_primary_10_1016_j_petrol_2021_110066 crossref_primary_10_1109_ACCESS_2021_3053069 crossref_primary_10_38120_banusad_1580979 crossref_primary_10_3390_app11114927 crossref_primary_10_1016_j_energy_2022_123788 crossref_primary_10_3390_coatings12030390 crossref_primary_10_1016_j_iswa_2025_200532 crossref_primary_10_3390_en14061596 crossref_primary_10_3390_s25092787 crossref_primary_10_1155_2022_4049685 crossref_primary_10_1016_j_ymssp_2021_108573 crossref_primary_10_3390_en14217098 crossref_primary_10_3390_en16041641 crossref_primary_10_3390_app14103971 crossref_primary_10_1109_ACCESS_2024_3390781 crossref_primary_10_1007_s11227_024_06663_z crossref_primary_10_1007_s00521_021_06735_8 crossref_primary_10_3390_app12147243 crossref_primary_10_1016_j_apenergy_2020_116177 crossref_primary_10_3390_s20247187 crossref_primary_10_1155_2024_5452005 crossref_primary_10_3390_cli13010019 crossref_primary_10_3390_en16062878 crossref_primary_10_1016_j_enbuild_2021_111647 crossref_primary_10_1007_s00521_023_09175_8 crossref_primary_10_1109_ACCESS_2020_3039410 crossref_primary_10_1186_s42162_022_00212_9 crossref_primary_10_1109_ACCESS_2023_3322167 crossref_primary_10_3390_stats4010006 crossref_primary_10_1109_JIOT_2022_3211889 crossref_primary_10_1016_j_heliyon_2024_e40934 crossref_primary_10_1016_j_measurement_2022_111543 crossref_primary_10_1111_exsy_13741 crossref_primary_10_3390_su151410816 crossref_primary_10_1016_j_epsr_2024_111185 crossref_primary_10_1038_s41598_021_86137_x crossref_primary_10_1007_s00521_023_08777_6 crossref_primary_10_1016_j_energy_2023_127350 crossref_primary_10_1016_j_isatra_2021_08_030 crossref_primary_10_1038_s41598_025_07755_3 crossref_primary_10_1088_1742_6596_2600_7_072008 crossref_primary_10_1016_j_ijepes_2025_110698 crossref_primary_10_3390_en13020391 crossref_primary_10_1016_j_epsr_2019_106004 crossref_primary_10_1016_j_engappai_2019_07_011 crossref_primary_10_1109_ACCESS_2021_3056115 crossref_primary_10_1007_s42835_024_02045_w crossref_primary_10_1108_PM_12_2021_0106 crossref_primary_10_1007_s12204_020_2178_z crossref_primary_10_1088_1757_899X_725_1_012060 crossref_primary_10_1016_j_enbuild_2022_111951 crossref_primary_10_1109_TETCI_2023_3290050 crossref_primary_10_1007_s11831_022_09860_2 crossref_primary_10_3390_en18061418 crossref_primary_10_1109_ACCESS_2022_3218322 crossref_primary_10_1007_s13369_024_09818_5 crossref_primary_10_1016_j_ijepes_2021_106916 crossref_primary_10_1016_j_energy_2021_123060 crossref_primary_10_1016_j_egyr_2020_11_030 crossref_primary_10_1155_2023_9713905 crossref_primary_10_1016_j_wear_2023_204793 crossref_primary_10_3390_ma15217586 crossref_primary_10_1016_j_asoc_2022_109794 crossref_primary_10_1088_1757_899X_725_1_012053 crossref_primary_10_1109_MSMC_2023_3334483 crossref_primary_10_1109_ACCESS_2023_3297957 crossref_primary_10_3390_buildings13061434 crossref_primary_10_1088_1755_1315_440_3_032134 crossref_primary_10_1016_j_aei_2021_101357 crossref_primary_10_1016_j_apenergy_2025_125444 crossref_primary_10_3390_en12061140 crossref_primary_10_3390_rs15235456 crossref_primary_10_3390_en12163095 crossref_primary_10_1016_j_camwa_2023_11_022 crossref_primary_10_32604_cmc_2023_038564 crossref_primary_10_3390_app12104882 crossref_primary_10_1061__ASCE_EM_1943_7889_0002062 crossref_primary_10_3390_atmos11050487 crossref_primary_10_1016_j_ymssp_2024_112196 crossref_primary_10_3390_s21134544 crossref_primary_10_3390_pr7050310 crossref_primary_10_3390_smartcities4010014 crossref_primary_10_1007_s12046_022_01825_2 crossref_primary_10_3390_app14135769 crossref_primary_10_1109_ACCESS_2025_3556980 crossref_primary_10_3390_en16237878 crossref_primary_10_1016_j_jbi_2022_104198 crossref_primary_10_3390_batteries9020093 crossref_primary_10_3390_en13246641 crossref_primary_10_3390_s25154632 crossref_primary_10_1109_TKDE_2021_3118389 crossref_primary_10_1371_journal_pone_0277257 crossref_primary_10_1109_ACCESS_2021_3129601 crossref_primary_10_1007_s42979_023_02587_2 crossref_primary_10_1109_ACCESS_2022_3152818 crossref_primary_10_1109_ACCESS_2020_3028281 crossref_primary_10_1016_j_petrol_2020_106937 crossref_primary_10_3390_sym13101942 crossref_primary_10_1109_ACCESS_2020_2975738 crossref_primary_10_1515_cppm_2024_0033 crossref_primary_10_1109_JIOT_2022_3230586 crossref_primary_10_1109_JSEN_2022_3153398 crossref_primary_10_3390_app9091723 crossref_primary_10_3390_en15093001 crossref_primary_10_1016_j_ijepes_2024_110111 crossref_primary_10_1016_j_egyai_2025_100470 crossref_primary_10_1007_s10844_019_00550_3 crossref_primary_10_1016_j_procs_2020_11_031 crossref_primary_10_1016_j_engappai_2024_107918 crossref_primary_10_1016_j_jclepro_2021_127801 crossref_primary_10_1109_ACCESS_2024_3397676 crossref_primary_10_1016_j_seta_2022_102223 crossref_primary_10_3390_math12010019 crossref_primary_10_1109_ACCESS_2024_3376737 crossref_primary_10_3390_su12177076 crossref_primary_10_1038_s41598_022_18635_5 crossref_primary_10_3389_fpls_2020_593897 crossref_primary_10_1016_j_ecocom_2020_100903 crossref_primary_10_3389_fenrg_2023_1182287 crossref_primary_10_1007_s00521_024_10618_z crossref_primary_10_1155_2023_8996138 crossref_primary_10_1016_j_buildenv_2024_111584 crossref_primary_10_3390_asi4030043 crossref_primary_10_3390_math12060839 crossref_primary_10_3390_fi14090252 crossref_primary_10_3390_s20102990 crossref_primary_10_1016_j_knosys_2020_105596 crossref_primary_10_3390_math10152666 crossref_primary_10_3390_su132413783 crossref_primary_10_3390_rs17071186 crossref_primary_10_1016_j_jwpe_2020_101388 crossref_primary_10_3390_computation9080083 crossref_primary_10_1016_j_eswa_2023_120337 crossref_primary_10_1088_1755_1315_666_6_062073 crossref_primary_10_3390_info12120499 crossref_primary_10_1016_j_watres_2024_123041 crossref_primary_10_1016_j_egyai_2025_100576 crossref_primary_10_1016_j_heliyon_2022_e12345 crossref_primary_10_3390_en15051741 crossref_primary_10_1016_j_bspc_2025_108312 crossref_primary_10_1186_s43067_020_00021_8 crossref_primary_10_3233_JIFS_201857 crossref_primary_10_3390_s22030749 crossref_primary_10_1007_s43621_024_00356_6 crossref_primary_10_38088_jise_1635104 crossref_primary_10_3390_make6030078 crossref_primary_10_1109_ACCESS_2022_3187839 crossref_primary_10_1155_2022_2316474 crossref_primary_10_3390_pr8040484 crossref_primary_10_1155_2024_6176898 crossref_primary_10_1016_j_asr_2022_02_027 crossref_primary_10_1016_j_epsr_2022_108837 crossref_primary_10_1155_2022_6909558 crossref_primary_10_3390_math13050813 crossref_primary_10_1007_s00607_023_01217_2 crossref_primary_10_1016_j_enbuild_2023_113829 crossref_primary_10_1007_s13762_022_04406_2 crossref_primary_10_1016_j_rineng_2024_102773 crossref_primary_10_1016_j_ecolind_2021_107499 crossref_primary_10_1016_j_jobe_2024_111539 crossref_primary_10_1016_j_egyr_2025_03_056 crossref_primary_10_1002_2050_7038_12706 crossref_primary_10_1007_s00521_019_04310_w crossref_primary_10_3390_atmos15060734 crossref_primary_10_1007_s10311_024_01799_z crossref_primary_10_1016_j_apenergy_2023_122079 crossref_primary_10_1051_e3sconf_201911105019 crossref_primary_10_1016_j_heliyon_2024_e35621 crossref_primary_10_1007_s11269_023_03713_8 crossref_primary_10_1007_s13369_024_09351_5 crossref_primary_10_1177_01445987251360272 crossref_primary_10_1016_j_ijepes_2022_108084 crossref_primary_10_1016_j_fuel_2020_118764 crossref_primary_10_3390_en13215633 crossref_primary_10_1016_j_dwt_2025_101432 crossref_primary_10_3390_app122211724 crossref_primary_10_1016_j_jobe_2023_108071 crossref_primary_10_1111_coin_70084 crossref_primary_10_1038_s41598_023_41545_z crossref_primary_10_1186_s13673_020_00242_w crossref_primary_10_1109_ACCESS_2022_3171270 crossref_primary_10_1109_JESTIE_2022_3218257 crossref_primary_10_3390_s20226419 crossref_primary_10_1007_s11227_021_03686_8 crossref_primary_10_1016_j_compbiomed_2023_106734 crossref_primary_10_1016_j_energy_2019_05_230 crossref_primary_10_3390_en13225885 crossref_primary_10_1016_j_compchemeng_2023_108276 crossref_primary_10_1109_ACCESS_2024_3525194 crossref_primary_10_1155_2024_1041791 crossref_primary_10_3389_fenrg_2023_1284076 crossref_primary_10_3390_jpm14080812 crossref_primary_10_1016_j_compeleceng_2023_109059 crossref_primary_10_3390_en13174358 crossref_primary_10_1007_s00477_021_01969_3 crossref_primary_10_1016_j_farsys_2023_100053 crossref_primary_10_17341_gazimmfd_1473453 crossref_primary_10_3390_act10040084 crossref_primary_10_3390_en16010057 crossref_primary_10_3390_en16186656 crossref_primary_10_1016_j_atmosenv_2024_120891 crossref_primary_10_1016_j_compbiomed_2020_103810 crossref_primary_10_1016_j_energy_2023_128022 crossref_primary_10_1109_TSG_2024_3371448 crossref_primary_10_1007_s10462_022_10199_0 crossref_primary_10_3390_en12081487 crossref_primary_10_1007_s12046_025_02761_7 crossref_primary_10_3390_en12142692 crossref_primary_10_3390_en13061407 crossref_primary_10_3390_molecules28134901 crossref_primary_10_1002_er_6679 crossref_primary_10_3390_info14110598 crossref_primary_10_3390_en15093425 crossref_primary_10_3390_su141711074 crossref_primary_10_3390_en15072623 crossref_primary_10_1007_s41870_024_01761_w crossref_primary_10_3390_su12041653 crossref_primary_10_3390_en15238919 crossref_primary_10_3390_en18154032 crossref_primary_10_1016_j_irfa_2023_102914 crossref_primary_10_1016_j_memori_2023_100086 crossref_primary_10_1016_j_heliyon_2023_e16290 crossref_primary_10_3390_en17010078 crossref_primary_10_1016_j_envpol_2022_119347 crossref_primary_10_1016_j_eswa_2022_117854 crossref_primary_10_1002_er_5331 crossref_primary_10_1016_j_segan_2025_101794 crossref_primary_10_1016_j_apacoust_2022_108849 crossref_primary_10_1016_j_cose_2023_103211 crossref_primary_10_3390_buildings15060925 crossref_primary_10_1016_j_egyai_2025_100518 crossref_primary_10_1016_j_suscom_2020_100427 crossref_primary_10_3390_f12040428 crossref_primary_10_3390_en11102623 crossref_primary_10_1016_j_jocs_2023_101984 crossref_primary_10_1109_ACCESS_2021_3110960 crossref_primary_10_1111_coin_12562 crossref_primary_10_1016_j_buildenv_2022_109536 crossref_primary_10_7717_peerj_cs_2113 crossref_primary_10_1016_j_apenergy_2019_114169 crossref_primary_10_3390_en16031480 crossref_primary_10_1088_1755_1315_692_2_022117 crossref_primary_10_1016_j_engappai_2022_105776 crossref_primary_10_1049_iet_rpg_2018_5779 crossref_primary_10_3390_electronics12153256 crossref_primary_10_1016_j_epsr_2025_111834 crossref_primary_10_1016_j_energy_2024_133309 crossref_primary_10_1016_j_asoc_2025_113497 crossref_primary_10_1016_j_compind_2019_103182 crossref_primary_10_1093_jigpal_jzae035 crossref_primary_10_3390_app15094717 crossref_primary_10_3390_a16110508 crossref_primary_10_1587_transinf_2020BDP0006 crossref_primary_10_1049_gtd2_12763 crossref_primary_10_1016_j_energy_2024_133535 crossref_primary_10_1016_j_jpowsour_2025_237882 crossref_primary_10_1016_j_ijepes_2021_107752 crossref_primary_10_3390_s21134254 crossref_primary_10_4271_2021_01_0246 crossref_primary_10_3390_en14175510 crossref_primary_10_3390_en17174360 crossref_primary_10_3390_asi6060100 crossref_primary_10_7256_2454_0714_2025_2_74270 crossref_primary_10_3390_app9204237 crossref_primary_10_1016_j_apenergy_2019_03_163 crossref_primary_10_3390_en13030571 crossref_primary_10_1002_mde_3345 crossref_primary_10_1049_cit2_12060 crossref_primary_10_1038_s41598_023_33133_y crossref_primary_10_1155_2022_6297746 crossref_primary_10_1051_e3sconf_202454501004 crossref_primary_10_1080_09613218_2019_1691488 crossref_primary_10_3390_su12041417 crossref_primary_10_47026_1810_1909_2025_2_112_123 crossref_primary_10_3390_en17153676 crossref_primary_10_1016_j_egyr_2024_06_034 crossref_primary_10_1007_s42108_021_00114_8 crossref_primary_10_3390_app8091603 crossref_primary_10_1016_j_jairtraman_2023_102525 crossref_primary_10_1155_2022_6709779 crossref_primary_10_1109_ACCESS_2025_3556540 crossref_primary_10_1002_er_6745 crossref_primary_10_3390_s25123658 crossref_primary_10_3390_app12189288 crossref_primary_10_3390_coatings10090859 crossref_primary_10_1016_j_catena_2021_105957 crossref_primary_10_7717_peerj_cs_2391 crossref_primary_10_1109_ACCESS_2022_3170685 crossref_primary_10_1016_j_egyr_2025_01_063 crossref_primary_10_1016_j_renene_2024_120059 crossref_primary_10_1155_2022_6892995 crossref_primary_10_1088_1742_6596_3086_1_012007 crossref_primary_10_3390_app10031144 crossref_primary_10_1002_ente_202301091 crossref_primary_10_1109_ACCESS_2024_3416321 crossref_primary_10_1038_s41598_024_56517_0 crossref_primary_10_5194_asr_20_129_2024 crossref_primary_10_3390_app132312946 crossref_primary_10_1002_2050_7038_12637 crossref_primary_10_1016_j_apenergy_2021_116912 crossref_primary_10_1007_s40684_023_00537_0 crossref_primary_10_3390_en14227794 crossref_primary_10_3390_su13010104 crossref_primary_10_3390_su151813592 crossref_primary_10_1109_ACCESS_2023_3331329 crossref_primary_10_1109_JIOT_2022_3157299 crossref_primary_10_1007_s12555_021_1113_x crossref_primary_10_3390_en11123433 crossref_primary_10_3390_mi14112016 crossref_primary_10_1007_s13762_025_06371_y crossref_primary_10_1016_j_jobe_2024_108505 crossref_primary_10_1007_s42979_025_03928_z crossref_primary_10_1007_s00521_021_06773_2 crossref_primary_10_1109_ACCESS_2021_3072280 crossref_primary_10_1109_ACCESS_2024_3401179 crossref_primary_10_3390_en12010149 crossref_primary_10_1016_j_eswa_2021_115153 crossref_primary_10_1016_j_jobe_2025_114134 crossref_primary_10_3390_en15093265 crossref_primary_10_3390_en17092156 crossref_primary_10_1016_j_rineng_2025_104522 crossref_primary_10_1007_s40866_023_00168_z crossref_primary_10_1049_gtd2_12214 crossref_primary_10_1038_s41598_023_46264_z crossref_primary_10_3390_en16031404 crossref_primary_10_1080_23248378_2022_2094484 crossref_primary_10_1016_j_procs_2019_09_458 crossref_primary_10_1016_j_ifacol_2021_08_044 crossref_primary_10_1007_s10924_022_02514_1 crossref_primary_10_1007_s10515_021_00319_5 crossref_primary_10_3390_math8040565 crossref_primary_10_3390_jrfm16060298 crossref_primary_10_3390_en17194910 crossref_primary_10_1109_ACCESS_2021_3060654 crossref_primary_10_3390_s24227205 crossref_primary_10_1016_j_eswa_2024_123208 crossref_primary_10_1515_jisys_2024_0101 crossref_primary_10_1016_j_eswa_2022_117689 crossref_primary_10_1007_s11063_023_11187_3 crossref_primary_10_3390_en12112122 crossref_primary_10_3390_electronics8020122 crossref_primary_10_3390_en15103824 crossref_primary_10_1177_1550147719883134 crossref_primary_10_1002_ima_23204 crossref_primary_10_3390_e22010068 crossref_primary_10_1016_j_apenergy_2022_120493 crossref_primary_10_1016_j_applthermaleng_2025_125740 crossref_primary_10_1016_j_procs_2020_03_257 crossref_primary_10_3389_fenrg_2022_844838 crossref_primary_10_3390_pathogens11020185 crossref_primary_10_1007_s10845_020_01556_3 crossref_primary_10_1016_j_najef_2022_101867 crossref_primary_10_1016_j_meaene_2025_100060 crossref_primary_10_1080_03081060_2024_2408427 crossref_primary_10_1007_s00500_022_06755_z crossref_primary_10_3390_en14123576 crossref_primary_10_1016_j_apr_2025_102676 crossref_primary_10_3390_en15207584 crossref_primary_10_1016_j_neucom_2022_08_055 crossref_primary_10_3390_su11040987 crossref_primary_10_3390_pr11072157 crossref_primary_10_3389_fenrg_2023_1297849 crossref_primary_10_1038_s41598_025_94173_0 crossref_primary_10_3390_en14185831 crossref_primary_10_3390_en12183560 crossref_primary_10_3390_su15010469 crossref_primary_10_1007_s42835_020_00424_7 crossref_primary_10_3390_s21217115 crossref_primary_10_1109_ACCESS_2024_3491914 crossref_primary_10_3390_su12093612 crossref_primary_10_1145_3447987 crossref_primary_10_1016_j_applthermaleng_2023_120751 crossref_primary_10_1109_TPWRD_2021_3055622 crossref_primary_10_3390_en14020409 crossref_primary_10_3390_en18112675 crossref_primary_10_3390_su142114663 crossref_primary_10_1016_j_rineng_2023_100888 crossref_primary_10_1109_ACCESS_2021_3135934 crossref_primary_10_1139_cjfr_2021_0265 crossref_primary_10_3390_su132212653 crossref_primary_10_1016_j_enbuild_2023_113036 crossref_primary_10_1038_s41598_025_91878_0 crossref_primary_10_1016_j_scs_2019_101642 crossref_primary_10_1080_15567036_2021_2007179 crossref_primary_10_3390_s20113040 crossref_primary_10_3390_en11123493 crossref_primary_10_3390_s22103664 crossref_primary_10_3390_s22124363 crossref_primary_10_3390_electronics10202518 crossref_primary_10_3389_fenrg_2024_1355222 crossref_primary_10_1007_s00521_022_07266_6 crossref_primary_10_1016_j_heliyon_2024_e37241 crossref_primary_10_1108_CI_01_2023_0005 crossref_primary_10_1016_j_rser_2025_115980 crossref_primary_10_32604_cmc_2022_028292 crossref_primary_10_1049_tje2_12132 crossref_primary_10_3390_app14209308 crossref_primary_10_1007_s12667_024_00704_5 crossref_primary_10_3390_info12120516 crossref_primary_10_1038_s41598_025_11301_6 crossref_primary_10_1109_JIOT_2025_3586115 crossref_primary_10_1155_2021_3250732 crossref_primary_10_1016_j_matcom_2021_05_006 crossref_primary_10_3389_fenrg_2022_1093667 crossref_primary_10_1007_s00521_022_07529_2 crossref_primary_10_1016_j_asoc_2022_109945 crossref_primary_10_3390_en13184722 crossref_primary_10_1016_j_measen_2023_100855 crossref_primary_10_1007_s12065_025_01053_7 crossref_primary_10_1016_j_apenergy_2023_121439 crossref_primary_10_3390_en15124213 crossref_primary_10_1088_1742_6596_2828_1_012028 crossref_primary_10_3390_electronics14142820 crossref_primary_10_1007_s10614_023_10358_7 crossref_primary_10_1016_j_ijrefrig_2020_02_035 crossref_primary_10_3390_app142411970 crossref_primary_10_3390_data9010013 crossref_primary_10_3390_en16217444 crossref_primary_10_1016_j_chemolab_2021_104329 crossref_primary_10_1007_s11042_022_13561_0 crossref_primary_10_1111_anzs_12394 crossref_primary_10_1016_j_epsr_2020_106823 crossref_primary_10_1088_1742_6596_1997_1_012024 crossref_primary_10_1088_1742_6596_1997_1_012023 crossref_primary_10_1007_s13369_023_08036_9 |
| Cites_doi | 10.3390/en10081168 10.1016/j.rser.2016.10.079 10.1007/978-0-387-84858-7 10.1017/CBO9780511841644 10.1016/j.neucom.2010.02.014 10.1016/j.neucom.2005.06.010 10.1109/59.76685 10.1016/j.apenergy.2014.05.023 10.1109/59.910780 10.1109/TPWRS.2009.2036017 10.1016/j.apenergy.2017.12.051 10.1016/j.ijforecast.2014.08.008 10.3390/en10010003 10.1142/S012906571350024X 10.1016/j.rser.2017.09.108 10.1109/59.667372 10.1109/TPWRS.2008.2008606 10.3390/algor2030973 10.1504/EJIE.2009.025049 10.1140/epjb/e2009-00438-2 10.1016/j.rser.2012.02.049 10.1109/IECON.2016.7793413 10.1057/palgrave.jors.2601589 10.1016/j.rser.2013.03.004 10.1109/TPWRS.2005.860944 10.1016/j.rser.2017.02.023 10.1016/j.ijforecast.2005.06.006 10.1016/j.segan.2016.02.005 10.3233/AIC-140599 10.1016/0378-7796(95)00977-1 10.1109/TPAMI.2013.50 10.1109/59.496166 10.1109/IJCNN.2011.6033535 10.1162/neco.2010.08-09-1081 10.1109/SURV.2014.032014.00094 10.1109/TPWRS.1987.4335210 10.3390/en6031385 10.1016/j.ijepes.2008.06.001 |
| ContentType | Journal Article |
| Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en11071636 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_ad514c7fb4344cfc9bf90f8ddf302d07 10_3390_en11071636 |
| GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO IPNFZ KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC RIG TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-d5a2c79ec4d405cb2b33531fce419d6dd504158c68a34700a913e11f3718ffc93 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 586 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441830500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:43:09 EDT 2025 Mon Oct 20 01:51:26 EDT 2025 Sat Nov 29 07:15:36 EST 2025 Tue Nov 18 22:13:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-d5a2c79ec4d405cb2b33531fce419d6dd504158c68a34700a913e11f3718ffc93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4708-0362 0000-0001-7001-3710 |
| OpenAccessLink | https://www.proquest.com/docview/2108519352?pq-origsite=%requestingapplication% |
| PQID | 2108519352 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ad514c7fb4344cfc9bf90f8ddf302d07 proquest_journals_2108519352 crossref_primary_10_3390_en11071636 crossref_citationtrail_10_3390_en11071636 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-00-00 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: 2018-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2018 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Wei (ref_39) 2018; 82 Zhao (ref_23) 2012; 16 ref_14 Bakirtzis (ref_27) 1996; 11 Taylor (ref_17) 2006; 22 ref_10 ref_51 Bashir (ref_29) 2009; 24 Huang (ref_45) 2009; 2 Weron (ref_13) 2014; 30 Hagan (ref_15) 1987; 2 Sun (ref_48) 2006; 69 Mocanu (ref_1) 2016; 6 Bengio (ref_32) 2013; 35 Hernandez (ref_19) 2013; 6 Fan (ref_31) 2006; 21 ref_21 Foucquier (ref_24) 2013; 23 Yildiz (ref_40) 2017; 73 Kodogiannis (ref_30) 2013; 23 Hippert (ref_20) 2001; 16 Park (ref_18) 1991; 6 Papadakis (ref_28) 1998; 13 Hernandez (ref_4) 2014; 16 ref_35 Lukoseviciute (ref_47) 2010; 73 ref_33 Chui (ref_3) 2009; 3 Wang (ref_11) 2017; 75 ref_38 ref_37 Hyndman (ref_2) 2010; 25 Liu (ref_12) 2014; 129 Cincotti (ref_25) 2014; 27 Scellato (ref_50) 2010; 73 ref_46 ref_44 ref_43 Amjady (ref_26) 2008; 30 Roux (ref_36) 2010; 22 ref_42 ref_41 Taylor (ref_16) 2003; 54 Rahman (ref_34) 2018; 212 Chen (ref_22) 1995; 34 ref_49 ref_9 ref_8 ref_5 ref_7 ref_6 |
| References_xml | – ident: ref_35 doi: 10.3390/en10081168 – volume: 75 start-page: 796 year: 2017 ident: ref_11 article-title: A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.10.079 – ident: ref_49 – ident: ref_5 – ident: ref_51 – ident: ref_44 doi: 10.1007/978-0-387-84858-7 – ident: ref_43 doi: 10.1017/CBO9780511841644 – volume: 73 start-page: 2077 year: 2010 ident: ref_47 article-title: Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.02.014 – volume: 69 start-page: 884 year: 2006 ident: ref_48 article-title: Optimal selection of time lags for TDSEP based on genetic algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.06.010 – volume: 6 start-page: 442 year: 1991 ident: ref_18 article-title: Electric load forecasting using an artificial neural network publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.76685 – ident: ref_42 – volume: 129 start-page: 336 year: 2014 ident: ref_12 article-title: A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.05.023 – volume: 16 start-page: 44 year: 2001 ident: ref_20 article-title: Neural networks for short-term load forecasting: A review and evaluation publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.910780 – volume: 25 start-page: 1142 year: 2010 ident: ref_2 article-title: Density forecasting for long-term peak electricity demand publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2036017 – ident: ref_8 – volume: 212 start-page: 372 year: 2018 ident: ref_34 article-title: Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.051 – volume: 30 start-page: 1030 year: 2014 ident: ref_13 article-title: Electricity price forecasting: A review of the state-of-the-art with a look into the future publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2014.08.008 – ident: ref_14 doi: 10.3390/en10010003 – volume: 23 start-page: 1350024 year: 2013 ident: ref_30 article-title: A clustering-based fuzzy wavelet neural network model for short-term load forecasting publication-title: Int. J. Neural Syst. doi: 10.1142/S012906571350024X – ident: ref_10 – volume: 82 start-page: 1027 year: 2018 ident: ref_39 article-title: A review of data-driven approaches for prediction and classification of building energy consumption publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.108 – volume: 13 start-page: 480 year: 1998 ident: ref_28 article-title: A novel approach to short-term load forecasting using fuzzy neural networks publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.667372 – ident: ref_41 – volume: 24 start-page: 20 year: 2009 ident: ref_29 article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2008.2008606 – volume: 2 start-page: 973 year: 2009 ident: ref_45 article-title: Advances in Artificial Neural Networks—Methodological Development and Application publication-title: Algorithms doi: 10.3390/algor2030973 – ident: ref_38 – volume: 3 start-page: 277 year: 2009 ident: ref_3 article-title: Long-term electricity demand forecasting for power system planning using economic, demographic and climatic variables publication-title: Eur. J. Ind. Eng. doi: 10.1504/EJIE.2009.025049 – volume: 73 start-page: 303 year: 2010 ident: ref_50 article-title: Traffic optimization in transport networks based on local routing publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2009-00438-2 – volume: 16 start-page: 3586 year: 2012 ident: ref_23 article-title: A review on the prediction of building energy consumption publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.02.049 – ident: ref_7 – ident: ref_33 doi: 10.1109/IECON.2016.7793413 – volume: 54 start-page: 799 year: 2003 ident: ref_16 article-title: Short-term electricity demand forecasting using double seasonal exponential smoothing publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2601589 – volume: 23 start-page: 272 year: 2013 ident: ref_24 article-title: State of the art in building modelling and energy performances prediction: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.03.004 – volume: 21 start-page: 392 year: 2006 ident: ref_31 article-title: Short-term load forecasting based on an adaptive hybrid method publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2005.860944 – volume: 73 start-page: 1104 year: 2017 ident: ref_40 article-title: A review and analysis of regression and machine learning models on commercial building electricity load forecasting publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.02.023 – ident: ref_37 – volume: 22 start-page: 1 year: 2006 ident: ref_17 article-title: A comparison of univariate methods for forecasting electricity demand up to a day ahead publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2005.06.006 – volume: 6 start-page: 91 year: 2016 ident: ref_1 article-title: Deep learning for estimating building energy consumption publication-title: Sustain. Energy Grids Netw. doi: 10.1016/j.segan.2016.02.005 – ident: ref_21 – volume: 27 start-page: 301 year: 2014 ident: ref_25 article-title: Modeling and forecasting of electricity spot-prices: Computational intelligence vs classical econometrics publication-title: AI Commun. doi: 10.3233/AIC-140599 – volume: 34 start-page: 187 year: 1995 ident: ref_22 article-title: Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/0378-7796(95)00977-1 – volume: 35 start-page: 1798 year: 2013 ident: ref_32 article-title: Representation Learning: A Review and New Perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume: 11 start-page: 858 year: 1996 ident: ref_27 article-title: A neural network short term load forecasting model for the Greek power system publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.496166 – ident: ref_6 – ident: ref_9 doi: 10.1109/IJCNN.2011.6033535 – ident: ref_46 – volume: 22 start-page: 2192 year: 2010 ident: ref_36 article-title: Deep Belief Networks Are Compact Universal Approximators publication-title: Neural Comput. doi: 10.1162/neco.2010.08-09-1081 – volume: 16 start-page: 1460 year: 2014 ident: ref_4 article-title: A survey on electric power demand forecasting: Future trends in smart grids, microgrids and smart buildings publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2014.032014.00094 – volume: 2 start-page: 785 year: 1987 ident: ref_15 article-title: The time series approach to short term load forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.1987.4335210 – volume: 6 start-page: 1385 year: 2013 ident: ref_19 article-title: Short-term load forecasting for microgrids based on artificial neural networks publication-title: Energies doi: 10.3390/en6031385 – volume: 30 start-page: 533 year: 2008 ident: ref_26 article-title: Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2008.06.001 |
| SSID | ssj0000331333 |
| Score | 2.6479335 |
| Snippet | Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1636 |
| SubjectTerms | Artificial intelligence deep neural networks feature selection genetic algorithm Genetic algorithms long short term memory networks machine learning Neural networks short- and medium-term load forecasting Time series |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlpZNgYYhoYjdO2MqjYigPqUXqFjlnu1RqU9QW_gv_lrMTShFILCwZolMc-c72d9bd9zF2qpTkMkzzIOJCBMLQI88l0qORKpTIhfaNwm15f5_0eunjgtSXqwkr6YHLiTtXmo50lDYX9DG0mOY2rdtEa8vrkS77yAn1LCRTfg_mnJIvXvKRcsrrz03hMh1CH_G3E8gT9f_Yh_3h0tpg6xUqhGb5N5tsyRRbbG2BK3CbvT_Q4h6R0bUxL1DRovah3enegRM0GwLBT7jxqjYDhPZYaXC6m6imrrIZXIF7Hxzie50Y6Hj5G_IJqEKD456mkaE57I8ng9nz6AKu5vqE4K5q4c4XXZqvgZsVGbmZ7rCn1k336jaodBUC5HE4C3RDRShTg0ITXMM8yjmnpWjRiDDVsdYN17efYJwoLmS9rtKQmzC05NTEkgf4LlsuxoXZY0CAQ1jyjqPJF0IiwQUTJ0LZKLS5lqrGzj7nOsOKdNxpXwwzSj6cX7Ivv9TYydz2paTa-NXq0rlsbuHosf0LCpqsCprsr6CpscNPh2fVmp1mkWvEIDzbiPb_Y4wDtkrgKimvaw7Z8mzyao7YCr7NBtPJsQ_XDyJX8lM priority: 102 providerName: Directory of Open Access Journals |
| Title | Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches |
| URI | https://www.proquest.com/docview/2108519352 https://doaj.org/article/ad514c7fb4344cfc9bf90f8ddf302d07 |
| Volume | 11 |
| WOSCitedRecordID | wos000441830500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWgywEOfK8oLKuR4MIh2iR244QL6i5dgdSWil2k5RQ5Y7us1E1L0-XI_-DfMpO6LQjEhYsPzkixNOPx82TynhAvjdFSJ0UVpVKpSDkaqkojDb3CoEapbPuj8FCPx_nFRTEJBbcmtFVucmKbqO0cuUZ-lHKbPKGNXvpm8TVi1Sj-uhokNG6KPWYqUx2xdzwYTz5uqyyxlHQJk2teUkn3-yNX842HUEj220nUEvb_kY_bQ-b03v8u7764G-Al9Nfx8EDccPVDcecX0sFH4scHyhJXZPTWuQUEftUpDM_OR8DKaDMgHAuDVh7nEmE4NxZYwBNNwy3SwJ3yU2DoeL10cNbq6JBzwdQWmMSa3gz92ZQWt_py9RpOtkKHwDVfGLXdm2734n5gNXfNY_HpdHB-8i4KAg0RyixZRbZnUtSFQ2UJ92GVVlLSnvboVFLYzNoeEwDkmOVGKh3HpkikSxJP0ZF7j4XcF516XrsnAgi5KI_aM9--UhoJd7gsV8ania-sNl3xauOsEgN7OYtozEq6xbBjy51ju-LF1nax5uz4q9Ux-3xrwTzb7cR8OS3Dti2NJUBJy6oUhTLSkitfxD631ss4tbHuioNNOJRh8zflLhae_vvxM3Gb8Fe-rugciM5qee2ei1v4bXXZLA9DLB-2ZQIaR98HNDd5P5p8_gltbARY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLWmDQl4GN-iY8CVgAceoiWxGydICHVbp01Ly8SKtLfM8UeZ1KWl6UD8FP4Ev5F789GCQLztgRc_xJbsOMfXx459DmMvlZJcBknuhVwIT1hM8lxqTLqJ0lJzYaqLwqkcDuOzs-Rkjf1o78LQsco2JlaB2kw17ZHvhHRMHtlGN3w3--yRaxT9XW0tNGpYHNtvX3HJVr492sfv-yoMD_qjvUOvcRXwNI-ChWe6KtQysVoYJCs6D3POEYhOWxEkJjKmS7fWYx3Figvp-yoJuA0Ch68UO6dJfAlD_obATBxXG7v94cmH5a6Ozzku-nitg8p54u_YglZYyHqi32a-yiDgj_hfTWoHd_637rjLNhv6DL0a7_fYmi3us9u_iCo-YN_fYxS8xEL71s6g0Y8dQ3o6GgA5v00AeTr0K_ufCw3pVBkgg1KtSjoCDnQTYAxEja_mFk4rnyAEL6jCAIl0Y83Qm4yxMxafLt_A3tLIEWhPGwbV6VS7qrjXqLbb8iH7eC1984itF9PCPmaAzEw4LR35CQghNfIqG8VCuTBwuZGqw1634Mh0o85OJiGTDFdpBKRsBaQOe7EsO6s1Sf5aapcwtixBOuLVg-l8nDVhKVMGCTM2K0c4C41Nzl3iu9gYx_3Q-LLDtlv4ZU1wK7MV9rb-nf2c3TwcDdIsPRoeP2G3kGvG9e7VNltfzK_sU3ZDf1lclPNnzTgCdn7dWP0JOdhcaQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLWmDSF4GN-iY8CVgAceoiaxGydICJV1FdXaUmlDGk-Z448yqUtL04H4KfwVfh335qMFgXjbAy95SCzZcY6vj53rcxh7rpTkMkgyL-RCeMLiJcukxksnUVpqLkx5UHgox-P49DSZbLEfzVkYSqtsYmIZqM1c0x55O6Q0eWQbnbDt6rSISa__ZvHZIwcp-tPa2GlUEDmy377i8q14Pejht34Rhv3Dk4N3Xu0w4GkeBSvPdFSoZWK1MEhcdBZmnCMonbYiSExkTIdOsMc6ihUX0vdVEnAbBA5fL3ZOkxAThv8dpOQCx9jOZDCafFzv8Pic4wKQV5qonCd-2-a02kIGFP02C5ZmAX_MBeUE17_1P3fNbbZb02roVuPgDtuy-V128xexxXvs-3uMjhdYqGftAmpd2SkMj09GQI5wM0D-DoelLdC5huFcGSDjUq0KSg0HOiEwBaLMl0sLx6V_EIIaVG6AxLuxZujOptgZq08Xr-BgbfAItNcNozJr1W4q7tZq7ra4zz5cSd88YNv5PLcPGSBjE05LRz4DQkiNfMtGsVAuDFxmpGqxlw1QUl2rtpN5yCzF1RuBKt2AqsWercsuKq2Sv5Z6S3hblyB98fLGfDlN63CVKoNEGpuVCRzCGpucucR3sTGO-6HxZYvtN1BM66BXpBsc7v378VN2HQGaDgfjo0fsBlLQuNrU2mfbq-Wlfcyu6S-r82L5pB5SwM6uGqo_AZVZZVs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Deep+Learning+LSTM+Model+for+Electric+Load+Forecasting+using+Feature+Selection+and+Genetic+Algorithm%3A+Comparison+with+Machine+Learning+Approaches&rft.jtitle=Energies+%28Basel%29&rft.au=Bouktif%2C+Salah&rft.au=Ali+Fiaz&rft.au=Ouni%2C+Ali&rft.au=Mohamed+Adel+Serhani&rft.date=2018&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=11&rft.issue=7&rft.spage=1636&rft_id=info:doi/10.3390%2Fen11071636&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |