Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches

Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better load scheduling and reduce excessive electricity production. However, developing and selecting accurate time series models is a challenging t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energies (Basel) Ročník 11; číslo 7; s. 1636
Hlavní autori: Bouktif, Salah, Fiaz, Ali, Ouni, Ali, Serhani, Mohamed
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 2018
Predmet:
ISSN:1996-1073, 1996-1073
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better load scheduling and reduce excessive electricity production. However, developing and selecting accurate time series models is a challenging task as this requires training several different models for selecting the best amongst them along with substantial feature engineering to derive informative features and finding optimal time lags, a commonly used input features for time series models. Methods: Our approach uses machine learning and a long short-term memory (LSTM)-based neural network with various configurations to construct forecasting models for short to medium term aggregate load forecasting. The research solves above mentioned problems by training several linear and non-linear machine learning algorithms and picking the best as baseline, choosing best features using wrapper and embedded feature selection methods and finally using genetic algorithm (GA) to find optimal time lags and number of layers for LSTM model predictive performance optimization. Results: Using France metropolitan’s electricity consumption data as a case study, obtained results show that LSTM based model has shown high accuracy then machine learning model that is optimized with hyperparameter tuning. Using the best features, optimal lags, layers and training various LSTM configurations further improved forecasting accuracy. Conclusions: A LSTM model using only optimally selected time lagged features captured all the characteristics of complex time series and showed decreased Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for medium to long range forecasting for a wider metropolitan area.
AbstractList Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better load scheduling and reduce excessive electricity production. However, developing and selecting accurate time series models is a challenging task as this requires training several different models for selecting the best amongst them along with substantial feature engineering to derive informative features and finding optimal time lags, a commonly used input features for time series models. Methods: Our approach uses machine learning and a long short-term memory (LSTM)-based neural network with various configurations to construct forecasting models for short to medium term aggregate load forecasting. The research solves above mentioned problems by training several linear and non-linear machine learning algorithms and picking the best as baseline, choosing best features using wrapper and embedded feature selection methods and finally using genetic algorithm (GA) to find optimal time lags and number of layers for LSTM model predictive performance optimization. Results: Using France metropolitan’s electricity consumption data as a case study, obtained results show that LSTM based model has shown high accuracy then machine learning model that is optimized with hyperparameter tuning. Using the best features, optimal lags, layers and training various LSTM configurations further improved forecasting accuracy. Conclusions: A LSTM model using only optimally selected time lagged features captured all the characteristics of complex time series and showed decreased Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for medium to long range forecasting for a wider metropolitan area.
Author Bouktif, Salah
Ouni, Ali
Serhani, Mohamed
Fiaz, Ali
Author_xml – sequence: 1
  givenname: Salah
  surname: Bouktif
  fullname: Bouktif, Salah
– sequence: 2
  givenname: Ali
  surname: Fiaz
  fullname: Fiaz, Ali
– sequence: 3
  givenname: Ali
  orcidid: 0000-0003-4708-0362
  surname: Ouni
  fullname: Ouni, Ali
– sequence: 4
  givenname: Mohamed
  orcidid: 0000-0001-7001-3710
  surname: Serhani
  fullname: Serhani, Mohamed
BookMark eNptkU1vEzEQhi1UJErohV9giRtSwN7ZL3OLQlMqbdRDy9ly7HHqaGMvtqOKn8K_xUsQRQgf_DF63hnPO6_JhQ8eCXnL2QcAwT6i55x1vIX2BbnkQrTL8oSLv-6vyFVKB1YWAAeAS_LjbsruqEb6GXGiA6rond_T4f5hS7fB4EhtiPR6RJ2j03QIytBNiKhVyjN4SvO-QZVPEek9zqALnipv6A16zEW0Gvchuvx4_ETX4Tip6FIhnkqEbpV-dB6fC6-mKYYSxPSGvLRqTHj1-1yQr5vrh_WX5XB3c7teDUsNLc9L06hKdwJ1bWrW6F21A2iAW401F6Y1pmE1b3rd9grqjjElOCDnFjreW6sFLMjtOa8J6iCnWNyI32VQTv4KhLiXKpY2RpTKNLzWnd3VUNe6iHdWMNsbY4FVpvi7IO_OuUoT306YsjyEU_Tl-7LirG-4gKYq1PszpWNIKaL9U5UzOU9SPk-ywOwfWLusZo9zVG78n-QncLujDw
CitedBy_id crossref_primary_10_1007_s11277_022_10077_6
crossref_primary_10_3390_electronics11182940
crossref_primary_10_3390_en16247962
crossref_primary_10_1007_s00521_021_06266_2
crossref_primary_10_1016_j_asoc_2022_108877
crossref_primary_10_1016_j_egyr_2023_01_094
crossref_primary_10_3390_app11167484
crossref_primary_10_1016_j_atmosenv_2024_120560
crossref_primary_10_1049_tje2_12186
crossref_primary_10_3390_en18123094
crossref_primary_10_1029_2025WR040635
crossref_primary_10_1016_j_rser_2021_111459
crossref_primary_10_3390_en14248505
crossref_primary_10_1038_s41598_023_51111_2
crossref_primary_10_32604_cmc_2021_016042
crossref_primary_10_3390_s25103204
crossref_primary_10_3390_electronics10232999
crossref_primary_10_1109_ACCESS_2020_3010800
crossref_primary_10_1109_ACCESS_2019_2943752
crossref_primary_10_32604_EE_2021_017795
crossref_primary_10_54392_irjmt2552
crossref_primary_10_3390_en13092377
crossref_primary_10_1155_2020_8828479
crossref_primary_10_1016_j_eswa_2021_114844
crossref_primary_10_1016_j_heliyon_2024_e25838
crossref_primary_10_1109_ACCESS_2019_2949065
crossref_primary_10_1016_j_ocemod_2023_102259
crossref_primary_10_1016_j_asoc_2025_112872
crossref_primary_10_1016_j_engappai_2024_107845
crossref_primary_10_3390_w16091248
crossref_primary_10_1109_ACCESS_2019_2931990
crossref_primary_10_1016_j_heliyon_2024_e36519
crossref_primary_10_1016_j_suscom_2023_100954
crossref_primary_10_1016_j_engappai_2025_111169
crossref_primary_10_1007_s00521_022_07203_7
crossref_primary_10_1051_shsconf_202419602006
crossref_primary_10_1016_j_renene_2021_06_079
crossref_primary_10_1016_j_jii_2024_100662
crossref_primary_10_1007_s10311_023_01604_3
crossref_primary_10_1016_j_engappai_2020_104000
crossref_primary_10_1109_ACCESS_2024_3407121
crossref_primary_10_3390_en16114294
crossref_primary_10_1007_s12530_021_09393_2
crossref_primary_10_1016_j_egyr_2025_03_048
crossref_primary_10_1016_j_iot_2024_101086
crossref_primary_10_3390_app13042660
crossref_primary_10_3390_info15110709
crossref_primary_10_1007_s10661_023_12080_1
crossref_primary_10_1080_1206212X_2020_1766769
crossref_primary_10_3390_info15020094
crossref_primary_10_3390_su13116056
crossref_primary_10_1007_s00202_024_02833_7
crossref_primary_10_3390_su16135718
crossref_primary_10_1016_j_apenergy_2021_117877
crossref_primary_10_3390_math10142363
crossref_primary_10_1007_s12145_024_01322_6
crossref_primary_10_1016_j_petrol_2021_110066
crossref_primary_10_1109_ACCESS_2021_3053069
crossref_primary_10_38120_banusad_1580979
crossref_primary_10_3390_app11114927
crossref_primary_10_1016_j_energy_2022_123788
crossref_primary_10_3390_coatings12030390
crossref_primary_10_1016_j_iswa_2025_200532
crossref_primary_10_3390_en14061596
crossref_primary_10_3390_s25092787
crossref_primary_10_1155_2022_4049685
crossref_primary_10_1016_j_ymssp_2021_108573
crossref_primary_10_3390_en14217098
crossref_primary_10_3390_en16041641
crossref_primary_10_3390_app14103971
crossref_primary_10_1109_ACCESS_2024_3390781
crossref_primary_10_1007_s11227_024_06663_z
crossref_primary_10_1007_s00521_021_06735_8
crossref_primary_10_3390_app12147243
crossref_primary_10_1016_j_apenergy_2020_116177
crossref_primary_10_3390_s20247187
crossref_primary_10_1155_2024_5452005
crossref_primary_10_3390_cli13010019
crossref_primary_10_3390_en16062878
crossref_primary_10_1016_j_enbuild_2021_111647
crossref_primary_10_1007_s00521_023_09175_8
crossref_primary_10_1109_ACCESS_2020_3039410
crossref_primary_10_1186_s42162_022_00212_9
crossref_primary_10_1109_ACCESS_2023_3322167
crossref_primary_10_3390_stats4010006
crossref_primary_10_1109_JIOT_2022_3211889
crossref_primary_10_1016_j_heliyon_2024_e40934
crossref_primary_10_1016_j_measurement_2022_111543
crossref_primary_10_1111_exsy_13741
crossref_primary_10_3390_su151410816
crossref_primary_10_1016_j_epsr_2024_111185
crossref_primary_10_1038_s41598_021_86137_x
crossref_primary_10_1007_s00521_023_08777_6
crossref_primary_10_1016_j_energy_2023_127350
crossref_primary_10_1016_j_isatra_2021_08_030
crossref_primary_10_1038_s41598_025_07755_3
crossref_primary_10_1088_1742_6596_2600_7_072008
crossref_primary_10_1016_j_ijepes_2025_110698
crossref_primary_10_3390_en13020391
crossref_primary_10_1016_j_epsr_2019_106004
crossref_primary_10_1016_j_engappai_2019_07_011
crossref_primary_10_1109_ACCESS_2021_3056115
crossref_primary_10_1007_s42835_024_02045_w
crossref_primary_10_1108_PM_12_2021_0106
crossref_primary_10_1007_s12204_020_2178_z
crossref_primary_10_1088_1757_899X_725_1_012060
crossref_primary_10_1016_j_enbuild_2022_111951
crossref_primary_10_1109_TETCI_2023_3290050
crossref_primary_10_1007_s11831_022_09860_2
crossref_primary_10_3390_en18061418
crossref_primary_10_1109_ACCESS_2022_3218322
crossref_primary_10_1007_s13369_024_09818_5
crossref_primary_10_1016_j_ijepes_2021_106916
crossref_primary_10_1016_j_energy_2021_123060
crossref_primary_10_1016_j_egyr_2020_11_030
crossref_primary_10_1155_2023_9713905
crossref_primary_10_1016_j_wear_2023_204793
crossref_primary_10_3390_ma15217586
crossref_primary_10_1016_j_asoc_2022_109794
crossref_primary_10_1088_1757_899X_725_1_012053
crossref_primary_10_1109_MSMC_2023_3334483
crossref_primary_10_1109_ACCESS_2023_3297957
crossref_primary_10_3390_buildings13061434
crossref_primary_10_1088_1755_1315_440_3_032134
crossref_primary_10_1016_j_aei_2021_101357
crossref_primary_10_1016_j_apenergy_2025_125444
crossref_primary_10_3390_en12061140
crossref_primary_10_3390_rs15235456
crossref_primary_10_3390_en12163095
crossref_primary_10_1016_j_camwa_2023_11_022
crossref_primary_10_32604_cmc_2023_038564
crossref_primary_10_3390_app12104882
crossref_primary_10_1061__ASCE_EM_1943_7889_0002062
crossref_primary_10_3390_atmos11050487
crossref_primary_10_1016_j_ymssp_2024_112196
crossref_primary_10_3390_s21134544
crossref_primary_10_3390_pr7050310
crossref_primary_10_3390_smartcities4010014
crossref_primary_10_1007_s12046_022_01825_2
crossref_primary_10_3390_app14135769
crossref_primary_10_1109_ACCESS_2025_3556980
crossref_primary_10_3390_en16237878
crossref_primary_10_1016_j_jbi_2022_104198
crossref_primary_10_3390_batteries9020093
crossref_primary_10_3390_en13246641
crossref_primary_10_3390_s25154632
crossref_primary_10_1109_TKDE_2021_3118389
crossref_primary_10_1371_journal_pone_0277257
crossref_primary_10_1109_ACCESS_2021_3129601
crossref_primary_10_1007_s42979_023_02587_2
crossref_primary_10_1109_ACCESS_2022_3152818
crossref_primary_10_1109_ACCESS_2020_3028281
crossref_primary_10_1016_j_petrol_2020_106937
crossref_primary_10_3390_sym13101942
crossref_primary_10_1109_ACCESS_2020_2975738
crossref_primary_10_1515_cppm_2024_0033
crossref_primary_10_1109_JIOT_2022_3230586
crossref_primary_10_1109_JSEN_2022_3153398
crossref_primary_10_3390_app9091723
crossref_primary_10_3390_en15093001
crossref_primary_10_1016_j_ijepes_2024_110111
crossref_primary_10_1016_j_egyai_2025_100470
crossref_primary_10_1007_s10844_019_00550_3
crossref_primary_10_1016_j_procs_2020_11_031
crossref_primary_10_1016_j_engappai_2024_107918
crossref_primary_10_1016_j_jclepro_2021_127801
crossref_primary_10_1109_ACCESS_2024_3397676
crossref_primary_10_1016_j_seta_2022_102223
crossref_primary_10_3390_math12010019
crossref_primary_10_1109_ACCESS_2024_3376737
crossref_primary_10_3390_su12177076
crossref_primary_10_1038_s41598_022_18635_5
crossref_primary_10_3389_fpls_2020_593897
crossref_primary_10_1016_j_ecocom_2020_100903
crossref_primary_10_3389_fenrg_2023_1182287
crossref_primary_10_1007_s00521_024_10618_z
crossref_primary_10_1155_2023_8996138
crossref_primary_10_1016_j_buildenv_2024_111584
crossref_primary_10_3390_asi4030043
crossref_primary_10_3390_math12060839
crossref_primary_10_3390_fi14090252
crossref_primary_10_3390_s20102990
crossref_primary_10_1016_j_knosys_2020_105596
crossref_primary_10_3390_math10152666
crossref_primary_10_3390_su132413783
crossref_primary_10_3390_rs17071186
crossref_primary_10_1016_j_jwpe_2020_101388
crossref_primary_10_3390_computation9080083
crossref_primary_10_1016_j_eswa_2023_120337
crossref_primary_10_1088_1755_1315_666_6_062073
crossref_primary_10_3390_info12120499
crossref_primary_10_1016_j_watres_2024_123041
crossref_primary_10_1016_j_egyai_2025_100576
crossref_primary_10_1016_j_heliyon_2022_e12345
crossref_primary_10_3390_en15051741
crossref_primary_10_1016_j_bspc_2025_108312
crossref_primary_10_1186_s43067_020_00021_8
crossref_primary_10_3233_JIFS_201857
crossref_primary_10_3390_s22030749
crossref_primary_10_1007_s43621_024_00356_6
crossref_primary_10_38088_jise_1635104
crossref_primary_10_3390_make6030078
crossref_primary_10_1109_ACCESS_2022_3187839
crossref_primary_10_1155_2022_2316474
crossref_primary_10_3390_pr8040484
crossref_primary_10_1155_2024_6176898
crossref_primary_10_1016_j_asr_2022_02_027
crossref_primary_10_1016_j_epsr_2022_108837
crossref_primary_10_1155_2022_6909558
crossref_primary_10_3390_math13050813
crossref_primary_10_1007_s00607_023_01217_2
crossref_primary_10_1016_j_enbuild_2023_113829
crossref_primary_10_1007_s13762_022_04406_2
crossref_primary_10_1016_j_rineng_2024_102773
crossref_primary_10_1016_j_ecolind_2021_107499
crossref_primary_10_1016_j_jobe_2024_111539
crossref_primary_10_1016_j_egyr_2025_03_056
crossref_primary_10_1002_2050_7038_12706
crossref_primary_10_1007_s00521_019_04310_w
crossref_primary_10_3390_atmos15060734
crossref_primary_10_1007_s10311_024_01799_z
crossref_primary_10_1016_j_apenergy_2023_122079
crossref_primary_10_1051_e3sconf_201911105019
crossref_primary_10_1016_j_heliyon_2024_e35621
crossref_primary_10_1007_s11269_023_03713_8
crossref_primary_10_1007_s13369_024_09351_5
crossref_primary_10_1177_01445987251360272
crossref_primary_10_1016_j_ijepes_2022_108084
crossref_primary_10_1016_j_fuel_2020_118764
crossref_primary_10_3390_en13215633
crossref_primary_10_1016_j_dwt_2025_101432
crossref_primary_10_3390_app122211724
crossref_primary_10_1016_j_jobe_2023_108071
crossref_primary_10_1111_coin_70084
crossref_primary_10_1038_s41598_023_41545_z
crossref_primary_10_1186_s13673_020_00242_w
crossref_primary_10_1109_ACCESS_2022_3171270
crossref_primary_10_1109_JESTIE_2022_3218257
crossref_primary_10_3390_s20226419
crossref_primary_10_1007_s11227_021_03686_8
crossref_primary_10_1016_j_compbiomed_2023_106734
crossref_primary_10_1016_j_energy_2019_05_230
crossref_primary_10_3390_en13225885
crossref_primary_10_1016_j_compchemeng_2023_108276
crossref_primary_10_1109_ACCESS_2024_3525194
crossref_primary_10_1155_2024_1041791
crossref_primary_10_3389_fenrg_2023_1284076
crossref_primary_10_3390_jpm14080812
crossref_primary_10_1016_j_compeleceng_2023_109059
crossref_primary_10_3390_en13174358
crossref_primary_10_1007_s00477_021_01969_3
crossref_primary_10_1016_j_farsys_2023_100053
crossref_primary_10_17341_gazimmfd_1473453
crossref_primary_10_3390_act10040084
crossref_primary_10_3390_en16010057
crossref_primary_10_3390_en16186656
crossref_primary_10_1016_j_atmosenv_2024_120891
crossref_primary_10_1016_j_compbiomed_2020_103810
crossref_primary_10_1016_j_energy_2023_128022
crossref_primary_10_1109_TSG_2024_3371448
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_3390_en12081487
crossref_primary_10_1007_s12046_025_02761_7
crossref_primary_10_3390_en12142692
crossref_primary_10_3390_en13061407
crossref_primary_10_3390_molecules28134901
crossref_primary_10_1002_er_6679
crossref_primary_10_3390_info14110598
crossref_primary_10_3390_en15093425
crossref_primary_10_3390_su141711074
crossref_primary_10_3390_en15072623
crossref_primary_10_1007_s41870_024_01761_w
crossref_primary_10_3390_su12041653
crossref_primary_10_3390_en15238919
crossref_primary_10_3390_en18154032
crossref_primary_10_1016_j_irfa_2023_102914
crossref_primary_10_1016_j_memori_2023_100086
crossref_primary_10_1016_j_heliyon_2023_e16290
crossref_primary_10_3390_en17010078
crossref_primary_10_1016_j_envpol_2022_119347
crossref_primary_10_1016_j_eswa_2022_117854
crossref_primary_10_1002_er_5331
crossref_primary_10_1016_j_segan_2025_101794
crossref_primary_10_1016_j_apacoust_2022_108849
crossref_primary_10_1016_j_cose_2023_103211
crossref_primary_10_3390_buildings15060925
crossref_primary_10_1016_j_egyai_2025_100518
crossref_primary_10_1016_j_suscom_2020_100427
crossref_primary_10_3390_f12040428
crossref_primary_10_3390_en11102623
crossref_primary_10_1016_j_jocs_2023_101984
crossref_primary_10_1109_ACCESS_2021_3110960
crossref_primary_10_1111_coin_12562
crossref_primary_10_1016_j_buildenv_2022_109536
crossref_primary_10_7717_peerj_cs_2113
crossref_primary_10_1016_j_apenergy_2019_114169
crossref_primary_10_3390_en16031480
crossref_primary_10_1088_1755_1315_692_2_022117
crossref_primary_10_1016_j_engappai_2022_105776
crossref_primary_10_1049_iet_rpg_2018_5779
crossref_primary_10_3390_electronics12153256
crossref_primary_10_1016_j_epsr_2025_111834
crossref_primary_10_1016_j_energy_2024_133309
crossref_primary_10_1016_j_asoc_2025_113497
crossref_primary_10_1016_j_compind_2019_103182
crossref_primary_10_1093_jigpal_jzae035
crossref_primary_10_3390_app15094717
crossref_primary_10_3390_a16110508
crossref_primary_10_1587_transinf_2020BDP0006
crossref_primary_10_1049_gtd2_12763
crossref_primary_10_1016_j_energy_2024_133535
crossref_primary_10_1016_j_jpowsour_2025_237882
crossref_primary_10_1016_j_ijepes_2021_107752
crossref_primary_10_3390_s21134254
crossref_primary_10_4271_2021_01_0246
crossref_primary_10_3390_en14175510
crossref_primary_10_3390_en17174360
crossref_primary_10_3390_asi6060100
crossref_primary_10_7256_2454_0714_2025_2_74270
crossref_primary_10_3390_app9204237
crossref_primary_10_1016_j_apenergy_2019_03_163
crossref_primary_10_3390_en13030571
crossref_primary_10_1002_mde_3345
crossref_primary_10_1049_cit2_12060
crossref_primary_10_1038_s41598_023_33133_y
crossref_primary_10_1155_2022_6297746
crossref_primary_10_1051_e3sconf_202454501004
crossref_primary_10_1080_09613218_2019_1691488
crossref_primary_10_3390_su12041417
crossref_primary_10_47026_1810_1909_2025_2_112_123
crossref_primary_10_3390_en17153676
crossref_primary_10_1016_j_egyr_2024_06_034
crossref_primary_10_1007_s42108_021_00114_8
crossref_primary_10_3390_app8091603
crossref_primary_10_1016_j_jairtraman_2023_102525
crossref_primary_10_1155_2022_6709779
crossref_primary_10_1109_ACCESS_2025_3556540
crossref_primary_10_1002_er_6745
crossref_primary_10_3390_s25123658
crossref_primary_10_3390_app12189288
crossref_primary_10_3390_coatings10090859
crossref_primary_10_1016_j_catena_2021_105957
crossref_primary_10_7717_peerj_cs_2391
crossref_primary_10_1109_ACCESS_2022_3170685
crossref_primary_10_1016_j_egyr_2025_01_063
crossref_primary_10_1016_j_renene_2024_120059
crossref_primary_10_1155_2022_6892995
crossref_primary_10_1088_1742_6596_3086_1_012007
crossref_primary_10_3390_app10031144
crossref_primary_10_1002_ente_202301091
crossref_primary_10_1109_ACCESS_2024_3416321
crossref_primary_10_1038_s41598_024_56517_0
crossref_primary_10_5194_asr_20_129_2024
crossref_primary_10_3390_app132312946
crossref_primary_10_1002_2050_7038_12637
crossref_primary_10_1016_j_apenergy_2021_116912
crossref_primary_10_1007_s40684_023_00537_0
crossref_primary_10_3390_en14227794
crossref_primary_10_3390_su13010104
crossref_primary_10_3390_su151813592
crossref_primary_10_1109_ACCESS_2023_3331329
crossref_primary_10_1109_JIOT_2022_3157299
crossref_primary_10_1007_s12555_021_1113_x
crossref_primary_10_3390_en11123433
crossref_primary_10_3390_mi14112016
crossref_primary_10_1007_s13762_025_06371_y
crossref_primary_10_1016_j_jobe_2024_108505
crossref_primary_10_1007_s42979_025_03928_z
crossref_primary_10_1007_s00521_021_06773_2
crossref_primary_10_1109_ACCESS_2021_3072280
crossref_primary_10_1109_ACCESS_2024_3401179
crossref_primary_10_3390_en12010149
crossref_primary_10_1016_j_eswa_2021_115153
crossref_primary_10_1016_j_jobe_2025_114134
crossref_primary_10_3390_en15093265
crossref_primary_10_3390_en17092156
crossref_primary_10_1016_j_rineng_2025_104522
crossref_primary_10_1007_s40866_023_00168_z
crossref_primary_10_1049_gtd2_12214
crossref_primary_10_1038_s41598_023_46264_z
crossref_primary_10_3390_en16031404
crossref_primary_10_1080_23248378_2022_2094484
crossref_primary_10_1016_j_procs_2019_09_458
crossref_primary_10_1016_j_ifacol_2021_08_044
crossref_primary_10_1007_s10924_022_02514_1
crossref_primary_10_1007_s10515_021_00319_5
crossref_primary_10_3390_math8040565
crossref_primary_10_3390_jrfm16060298
crossref_primary_10_3390_en17194910
crossref_primary_10_1109_ACCESS_2021_3060654
crossref_primary_10_3390_s24227205
crossref_primary_10_1016_j_eswa_2024_123208
crossref_primary_10_1515_jisys_2024_0101
crossref_primary_10_1016_j_eswa_2022_117689
crossref_primary_10_1007_s11063_023_11187_3
crossref_primary_10_3390_en12112122
crossref_primary_10_3390_electronics8020122
crossref_primary_10_3390_en15103824
crossref_primary_10_1177_1550147719883134
crossref_primary_10_1002_ima_23204
crossref_primary_10_3390_e22010068
crossref_primary_10_1016_j_apenergy_2022_120493
crossref_primary_10_1016_j_applthermaleng_2025_125740
crossref_primary_10_1016_j_procs_2020_03_257
crossref_primary_10_3389_fenrg_2022_844838
crossref_primary_10_3390_pathogens11020185
crossref_primary_10_1007_s10845_020_01556_3
crossref_primary_10_1016_j_najef_2022_101867
crossref_primary_10_1016_j_meaene_2025_100060
crossref_primary_10_1080_03081060_2024_2408427
crossref_primary_10_1007_s00500_022_06755_z
crossref_primary_10_3390_en14123576
crossref_primary_10_1016_j_apr_2025_102676
crossref_primary_10_3390_en15207584
crossref_primary_10_1016_j_neucom_2022_08_055
crossref_primary_10_3390_su11040987
crossref_primary_10_3390_pr11072157
crossref_primary_10_3389_fenrg_2023_1297849
crossref_primary_10_1038_s41598_025_94173_0
crossref_primary_10_3390_en14185831
crossref_primary_10_3390_en12183560
crossref_primary_10_3390_su15010469
crossref_primary_10_1007_s42835_020_00424_7
crossref_primary_10_3390_s21217115
crossref_primary_10_1109_ACCESS_2024_3491914
crossref_primary_10_3390_su12093612
crossref_primary_10_1145_3447987
crossref_primary_10_1016_j_applthermaleng_2023_120751
crossref_primary_10_1109_TPWRD_2021_3055622
crossref_primary_10_3390_en14020409
crossref_primary_10_3390_en18112675
crossref_primary_10_3390_su142114663
crossref_primary_10_1016_j_rineng_2023_100888
crossref_primary_10_1109_ACCESS_2021_3135934
crossref_primary_10_1139_cjfr_2021_0265
crossref_primary_10_3390_su132212653
crossref_primary_10_1016_j_enbuild_2023_113036
crossref_primary_10_1038_s41598_025_91878_0
crossref_primary_10_1016_j_scs_2019_101642
crossref_primary_10_1080_15567036_2021_2007179
crossref_primary_10_3390_s20113040
crossref_primary_10_3390_en11123493
crossref_primary_10_3390_s22103664
crossref_primary_10_3390_s22124363
crossref_primary_10_3390_electronics10202518
crossref_primary_10_3389_fenrg_2024_1355222
crossref_primary_10_1007_s00521_022_07266_6
crossref_primary_10_1016_j_heliyon_2024_e37241
crossref_primary_10_1108_CI_01_2023_0005
crossref_primary_10_1016_j_rser_2025_115980
crossref_primary_10_32604_cmc_2022_028292
crossref_primary_10_1049_tje2_12132
crossref_primary_10_3390_app14209308
crossref_primary_10_1007_s12667_024_00704_5
crossref_primary_10_3390_info12120516
crossref_primary_10_1038_s41598_025_11301_6
crossref_primary_10_1109_JIOT_2025_3586115
crossref_primary_10_1155_2021_3250732
crossref_primary_10_1016_j_matcom_2021_05_006
crossref_primary_10_3389_fenrg_2022_1093667
crossref_primary_10_1007_s00521_022_07529_2
crossref_primary_10_1016_j_asoc_2022_109945
crossref_primary_10_3390_en13184722
crossref_primary_10_1016_j_measen_2023_100855
crossref_primary_10_1007_s12065_025_01053_7
crossref_primary_10_1016_j_apenergy_2023_121439
crossref_primary_10_3390_en15124213
crossref_primary_10_1088_1742_6596_2828_1_012028
crossref_primary_10_3390_electronics14142820
crossref_primary_10_1007_s10614_023_10358_7
crossref_primary_10_1016_j_ijrefrig_2020_02_035
crossref_primary_10_3390_app142411970
crossref_primary_10_3390_data9010013
crossref_primary_10_3390_en16217444
crossref_primary_10_1016_j_chemolab_2021_104329
crossref_primary_10_1007_s11042_022_13561_0
crossref_primary_10_1111_anzs_12394
crossref_primary_10_1016_j_epsr_2020_106823
crossref_primary_10_1088_1742_6596_1997_1_012024
crossref_primary_10_1088_1742_6596_1997_1_012023
crossref_primary_10_1007_s13369_023_08036_9
Cites_doi 10.3390/en10081168
10.1016/j.rser.2016.10.079
10.1007/978-0-387-84858-7
10.1017/CBO9780511841644
10.1016/j.neucom.2010.02.014
10.1016/j.neucom.2005.06.010
10.1109/59.76685
10.1016/j.apenergy.2014.05.023
10.1109/59.910780
10.1109/TPWRS.2009.2036017
10.1016/j.apenergy.2017.12.051
10.1016/j.ijforecast.2014.08.008
10.3390/en10010003
10.1142/S012906571350024X
10.1016/j.rser.2017.09.108
10.1109/59.667372
10.1109/TPWRS.2008.2008606
10.3390/algor2030973
10.1504/EJIE.2009.025049
10.1140/epjb/e2009-00438-2
10.1016/j.rser.2012.02.049
10.1109/IECON.2016.7793413
10.1057/palgrave.jors.2601589
10.1016/j.rser.2013.03.004
10.1109/TPWRS.2005.860944
10.1016/j.rser.2017.02.023
10.1016/j.ijforecast.2005.06.006
10.1016/j.segan.2016.02.005
10.3233/AIC-140599
10.1016/0378-7796(95)00977-1
10.1109/TPAMI.2013.50
10.1109/59.496166
10.1109/IJCNN.2011.6033535
10.1162/neco.2010.08-09-1081
10.1109/SURV.2014.032014.00094
10.1109/TPWRS.1987.4335210
10.3390/en6031385
10.1016/j.ijepes.2008.06.001
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en11071636
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_ad514c7fb4344cfc9bf90f8ddf302d07
10_3390_en11071636
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
IPNFZ
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-d5a2c79ec4d405cb2b33531fce419d6dd504158c68a34700a913e11f3718ffc93
IEDL.DBID BENPR
ISICitedReferencesCount 586
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441830500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:43:09 EDT 2025
Mon Oct 20 01:51:26 EDT 2025
Sat Nov 29 07:15:36 EST 2025
Tue Nov 18 22:13:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-d5a2c79ec4d405cb2b33531fce419d6dd504158c68a34700a913e11f3718ffc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4708-0362
0000-0001-7001-3710
OpenAccessLink https://www.proquest.com/docview/2108519352?pq-origsite=%requestingapplication%
PQID 2108519352
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_ad514c7fb4344cfc9bf90f8ddf302d07
proquest_journals_2108519352
crossref_primary_10_3390_en11071636
crossref_citationtrail_10_3390_en11071636
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wei (ref_39) 2018; 82
Zhao (ref_23) 2012; 16
ref_14
Bakirtzis (ref_27) 1996; 11
Taylor (ref_17) 2006; 22
ref_10
ref_51
Bashir (ref_29) 2009; 24
Huang (ref_45) 2009; 2
Weron (ref_13) 2014; 30
Hagan (ref_15) 1987; 2
Sun (ref_48) 2006; 69
Mocanu (ref_1) 2016; 6
Bengio (ref_32) 2013; 35
Hernandez (ref_19) 2013; 6
Fan (ref_31) 2006; 21
ref_21
Foucquier (ref_24) 2013; 23
Yildiz (ref_40) 2017; 73
Kodogiannis (ref_30) 2013; 23
Hippert (ref_20) 2001; 16
Park (ref_18) 1991; 6
Papadakis (ref_28) 1998; 13
Hernandez (ref_4) 2014; 16
ref_35
Lukoseviciute (ref_47) 2010; 73
ref_33
Chui (ref_3) 2009; 3
Wang (ref_11) 2017; 75
ref_38
ref_37
Hyndman (ref_2) 2010; 25
Liu (ref_12) 2014; 129
Cincotti (ref_25) 2014; 27
Scellato (ref_50) 2010; 73
ref_46
ref_44
ref_43
Amjady (ref_26) 2008; 30
Roux (ref_36) 2010; 22
ref_42
ref_41
Taylor (ref_16) 2003; 54
Rahman (ref_34) 2018; 212
Chen (ref_22) 1995; 34
ref_49
ref_9
ref_8
ref_5
ref_7
ref_6
References_xml – ident: ref_35
  doi: 10.3390/en10081168
– volume: 75
  start-page: 796
  year: 2017
  ident: ref_11
  article-title: A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.10.079
– ident: ref_49
– ident: ref_5
– ident: ref_51
– ident: ref_44
  doi: 10.1007/978-0-387-84858-7
– ident: ref_43
  doi: 10.1017/CBO9780511841644
– volume: 73
  start-page: 2077
  year: 2010
  ident: ref_47
  article-title: Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.02.014
– volume: 69
  start-page: 884
  year: 2006
  ident: ref_48
  article-title: Optimal selection of time lags for TDSEP based on genetic algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.06.010
– volume: 6
  start-page: 442
  year: 1991
  ident: ref_18
  article-title: Electric load forecasting using an artificial neural network
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.76685
– ident: ref_42
– volume: 129
  start-page: 336
  year: 2014
  ident: ref_12
  article-title: A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.05.023
– volume: 16
  start-page: 44
  year: 2001
  ident: ref_20
  article-title: Neural networks for short-term load forecasting: A review and evaluation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.910780
– volume: 25
  start-page: 1142
  year: 2010
  ident: ref_2
  article-title: Density forecasting for long-term peak electricity demand
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2036017
– ident: ref_8
– volume: 212
  start-page: 372
  year: 2018
  ident: ref_34
  article-title: Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.051
– volume: 30
  start-page: 1030
  year: 2014
  ident: ref_13
  article-title: Electricity price forecasting: A review of the state-of-the-art with a look into the future
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2014.08.008
– ident: ref_14
  doi: 10.3390/en10010003
– volume: 23
  start-page: 1350024
  year: 2013
  ident: ref_30
  article-title: A clustering-based fuzzy wavelet neural network model for short-term load forecasting
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S012906571350024X
– ident: ref_10
– volume: 82
  start-page: 1027
  year: 2018
  ident: ref_39
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.09.108
– volume: 13
  start-page: 480
  year: 1998
  ident: ref_28
  article-title: A novel approach to short-term load forecasting using fuzzy neural networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.667372
– ident: ref_41
– volume: 24
  start-page: 20
  year: 2009
  ident: ref_29
  article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2008.2008606
– volume: 2
  start-page: 973
  year: 2009
  ident: ref_45
  article-title: Advances in Artificial Neural Networks—Methodological Development and Application
  publication-title: Algorithms
  doi: 10.3390/algor2030973
– ident: ref_38
– volume: 3
  start-page: 277
  year: 2009
  ident: ref_3
  article-title: Long-term electricity demand forecasting for power system planning using economic, demographic and climatic variables
  publication-title: Eur. J. Ind. Eng.
  doi: 10.1504/EJIE.2009.025049
– volume: 73
  start-page: 303
  year: 2010
  ident: ref_50
  article-title: Traffic optimization in transport networks based on local routing
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00438-2
– volume: 16
  start-page: 3586
  year: 2012
  ident: ref_23
  article-title: A review on the prediction of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.02.049
– ident: ref_7
– ident: ref_33
  doi: 10.1109/IECON.2016.7793413
– volume: 54
  start-page: 799
  year: 2003
  ident: ref_16
  article-title: Short-term electricity demand forecasting using double seasonal exponential smoothing
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601589
– volume: 23
  start-page: 272
  year: 2013
  ident: ref_24
  article-title: State of the art in building modelling and energy performances prediction: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.03.004
– volume: 21
  start-page: 392
  year: 2006
  ident: ref_31
  article-title: Short-term load forecasting based on an adaptive hybrid method
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.860944
– volume: 73
  start-page: 1104
  year: 2017
  ident: ref_40
  article-title: A review and analysis of regression and machine learning models on commercial building electricity load forecasting
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.02.023
– ident: ref_37
– volume: 22
  start-page: 1
  year: 2006
  ident: ref_17
  article-title: A comparison of univariate methods for forecasting electricity demand up to a day ahead
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2005.06.006
– volume: 6
  start-page: 91
  year: 2016
  ident: ref_1
  article-title: Deep learning for estimating building energy consumption
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2016.02.005
– ident: ref_21
– volume: 27
  start-page: 301
  year: 2014
  ident: ref_25
  article-title: Modeling and forecasting of electricity spot-prices: Computational intelligence vs classical econometrics
  publication-title: AI Commun.
  doi: 10.3233/AIC-140599
– volume: 34
  start-page: 187
  year: 1995
  ident: ref_22
  article-title: Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/0378-7796(95)00977-1
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_32
  article-title: Representation Learning: A Review and New Perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 11
  start-page: 858
  year: 1996
  ident: ref_27
  article-title: A neural network short term load forecasting model for the Greek power system
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.496166
– ident: ref_6
– ident: ref_9
  doi: 10.1109/IJCNN.2011.6033535
– ident: ref_46
– volume: 22
  start-page: 2192
  year: 2010
  ident: ref_36
  article-title: Deep Belief Networks Are Compact Universal Approximators
  publication-title: Neural Comput.
  doi: 10.1162/neco.2010.08-09-1081
– volume: 16
  start-page: 1460
  year: 2014
  ident: ref_4
  article-title: A survey on electric power demand forecasting: Future trends in smart grids, microgrids and smart buildings
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2014.032014.00094
– volume: 2
  start-page: 785
  year: 1987
  ident: ref_15
  article-title: The time series approach to short term load forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.1987.4335210
– volume: 6
  start-page: 1385
  year: 2013
  ident: ref_19
  article-title: Short-term load forecasting for microgrids based on artificial neural networks
  publication-title: Energies
  doi: 10.3390/en6031385
– volume: 30
  start-page: 533
  year: 2008
  ident: ref_26
  article-title: Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2008.06.001
SSID ssj0000331333
Score 2.6479335
Snippet Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1636
SubjectTerms Artificial intelligence
deep neural networks
feature selection
genetic algorithm
Genetic algorithms
long short term memory networks
machine learning
Neural networks
short- and medium-term load forecasting
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlpZNgYYhoYjdO2MqjYigPqUXqFjlnu1RqU9QW_gv_lrMTShFILCwZolMc-c72d9bd9zF2qpTkMkzzIOJCBMLQI88l0qORKpTIhfaNwm15f5_0eunjgtSXqwkr6YHLiTtXmo50lDYX9DG0mOY2rdtEa8vrkS77yAn1LCRTfg_mnJIvXvKRcsrrz03hMh1CH_G3E8gT9f_Yh_3h0tpg6xUqhGb5N5tsyRRbbG2BK3CbvT_Q4h6R0bUxL1DRovah3enegRM0GwLBT7jxqjYDhPZYaXC6m6imrrIZXIF7Hxzie50Y6Hj5G_IJqEKD456mkaE57I8ng9nz6AKu5vqE4K5q4c4XXZqvgZsVGbmZ7rCn1k336jaodBUC5HE4C3RDRShTg0ITXMM8yjmnpWjRiDDVsdYN17efYJwoLmS9rtKQmzC05NTEkgf4LlsuxoXZY0CAQ1jyjqPJF0IiwQUTJ0LZKLS5lqrGzj7nOsOKdNxpXwwzSj6cX7Ivv9TYydz2paTa-NXq0rlsbuHosf0LCpqsCprsr6CpscNPh2fVmp1mkWvEIDzbiPb_Y4wDtkrgKimvaw7Z8mzyao7YCr7NBtPJsQ_XDyJX8lM
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches
URI https://www.proquest.com/docview/2108519352
https://doaj.org/article/ad514c7fb4344cfc9bf90f8ddf302d07
Volume 11
WOSCitedRecordID wos000441830500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWgywEOfK8oLKuR4MIh2iR244QL6i5dgdSWil2k5RQ5Y7us1E1L0-XI_-DfMpO6LQjEhYsPzkixNOPx82TynhAvjdFSJ0UVpVKpSDkaqkojDb3CoEapbPuj8FCPx_nFRTEJBbcmtFVucmKbqO0cuUZ-lHKbPKGNXvpm8TVi1Sj-uhokNG6KPWYqUx2xdzwYTz5uqyyxlHQJk2teUkn3-yNX842HUEj220nUEvb_kY_bQ-b03v8u7764G-Al9Nfx8EDccPVDcecX0sFH4scHyhJXZPTWuQUEftUpDM_OR8DKaDMgHAuDVh7nEmE4NxZYwBNNwy3SwJ3yU2DoeL10cNbq6JBzwdQWmMSa3gz92ZQWt_py9RpOtkKHwDVfGLXdm2734n5gNXfNY_HpdHB-8i4KAg0RyixZRbZnUtSFQ2UJ92GVVlLSnvboVFLYzNoeEwDkmOVGKh3HpkikSxJP0ZF7j4XcF516XrsnAgi5KI_aM9--UhoJd7gsV8ania-sNl3xauOsEgN7OYtozEq6xbBjy51ju-LF1nax5uz4q9Ux-3xrwTzb7cR8OS3Dti2NJUBJy6oUhTLSkitfxD631ss4tbHuioNNOJRh8zflLhae_vvxM3Gb8Fe-rugciM5qee2ei1v4bXXZLA9DLB-2ZQIaR98HNDd5P5p8_gltbARY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLWmDQl4GN-iY8CVgAceoiWxGydICHVbp01Ly8SKtLfM8UeZ1KWl6UD8FP4Ev5F789GCQLztgRc_xJbsOMfXx459DmMvlZJcBknuhVwIT1hM8lxqTLqJ0lJzYaqLwqkcDuOzs-Rkjf1o78LQsco2JlaB2kw17ZHvhHRMHtlGN3w3--yRaxT9XW0tNGpYHNtvX3HJVr492sfv-yoMD_qjvUOvcRXwNI-ChWe6KtQysVoYJCs6D3POEYhOWxEkJjKmS7fWYx3Figvp-yoJuA0Ch68UO6dJfAlD_obATBxXG7v94cmH5a6Ozzku-nitg8p54u_YglZYyHqi32a-yiDgj_hfTWoHd_637rjLNhv6DL0a7_fYmi3us9u_iCo-YN_fYxS8xEL71s6g0Y8dQ3o6GgA5v00AeTr0K_ufCw3pVBkgg1KtSjoCDnQTYAxEja_mFk4rnyAEL6jCAIl0Y83Qm4yxMxafLt_A3tLIEWhPGwbV6VS7qrjXqLbb8iH7eC1984itF9PCPmaAzEw4LR35CQghNfIqG8VCuTBwuZGqw1634Mh0o85OJiGTDFdpBKRsBaQOe7EsO6s1Sf5aapcwtixBOuLVg-l8nDVhKVMGCTM2K0c4C41Nzl3iu9gYx_3Q-LLDtlv4ZU1wK7MV9rb-nf2c3TwcDdIsPRoeP2G3kGvG9e7VNltfzK_sU3ZDf1lclPNnzTgCdn7dWP0JOdhcaQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLWmDSF4GN-iY8CVgAceoiaxGydICJV1FdXaUmlDGk-Z448yqUtL04H4KfwVfh335qMFgXjbAy95SCzZcY6vj53rcxh7rpTkMkgyL-RCeMLiJcukxksnUVpqLkx5UHgox-P49DSZbLEfzVkYSqtsYmIZqM1c0x55O6Q0eWQbnbDt6rSISa__ZvHZIwcp-tPa2GlUEDmy377i8q14Pejht34Rhv3Dk4N3Xu0w4GkeBSvPdFSoZWK1MEhcdBZmnCMonbYiSExkTIdOsMc6ihUX0vdVEnAbBA5fL3ZOkxAThv8dpOQCx9jOZDCafFzv8Pic4wKQV5qonCd-2-a02kIGFP02C5ZmAX_MBeUE17_1P3fNbbZb02roVuPgDtuy-V128xexxXvs-3uMjhdYqGftAmpd2SkMj09GQI5wM0D-DoelLdC5huFcGSDjUq0KSg0HOiEwBaLMl0sLx6V_EIIaVG6AxLuxZujOptgZq08Xr-BgbfAItNcNozJr1W4q7tZq7ra4zz5cSd88YNv5PLcPGSBjE05LRz4DQkiNfMtGsVAuDFxmpGqxlw1QUl2rtpN5yCzF1RuBKt2AqsWercsuKq2Sv5Z6S3hblyB98fLGfDlN63CVKoNEGpuVCRzCGpucucR3sTGO-6HxZYvtN1BM66BXpBsc7v378VN2HQGaDgfjo0fsBlLQuNrU2mfbq-Wlfcyu6S-r82L5pB5SwM6uGqo_AZVZZVs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Deep+Learning+LSTM+Model+for+Electric+Load+Forecasting+using+Feature+Selection+and+Genetic+Algorithm%3A+Comparison+with+Machine+Learning+Approaches&rft.jtitle=Energies+%28Basel%29&rft.au=Bouktif%2C+Salah&rft.au=Ali+Fiaz&rft.au=Ouni%2C+Ali&rft.au=Mohamed+Adel+Serhani&rft.date=2018&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=11&rft.issue=7&rft.spage=1636&rft_id=info:doi/10.3390%2Fen11071636&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon