Comparing Sentinel-2 and Landsat 8 for Burn Severity Mapping in Western North America

Accurate assessment of burn severity is a critical need for an improved understanding of fire behavior and ecology and effective post-fire management. Although NASA Landsat satellites have a long history of use for remotely sensed mapping of burn severity, the recently launched (2015 and 2017) Europ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 14; číslo 20; s. 5249
Hlavní autoři: Howe, Alexander A., Parks, Sean A., Harvey, Brian J., Saberi, Saba J., Lutz, James A., Yocom, Larissa L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.10.2022
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate assessment of burn severity is a critical need for an improved understanding of fire behavior and ecology and effective post-fire management. Although NASA Landsat satellites have a long history of use for remotely sensed mapping of burn severity, the recently launched (2015 and 2017) European Space Agency Sentinel-2 satellite constellation offers increased temporal and spatial resolution with global coverage, combined with free data access. Evaluations of burn severity derived from Landsat and Sentinel generally show comparable results, but these studies only assessed a small number of fires with limited field data. We used 912 ground calibration plots from 26 fires that burned between 2016 and 2019 in western North America to compare Sentinel- and Landsat-derived burn severity estimates with the field-based composite burn index. We mapped burn severity using two methods; the well-established paired scene approach, in which a single pre- and post-fire scene are selected for each fire, and also a mean image compositing approach that automatically integrates multiple scenes using the cloud-based remote sensing platform Google Earth Engine. We found that Sentinel generally performed as well or better than Landsat for four spectral indices of burn severity, particularly when using atmospherically corrected Sentinel imagery. Additionally, we tested the effects of mapping burn severity at Sentinel’s finer spatial resolution (10 m) on estimates of the spatial complexity of stand-replacing fire, resulting in a 5% average reduction per-fire in area mapped as high-severity patch interiors (24,273 ha total) compared to mapping at the resolution of Landsat (30 m). These findings suggest Sentinel may improve ecological discrimination of fine-scale fire effects, but also warrant caution when comparing estimates of burn severity spatial patterns derived at different resolutions. Overall, these results indicate that burn severity mapping will benefit substantially from the integration of Sentinel imagery through increased imagery availability, and that Sentinel’s higher spatial resolution improves opportunities for examining finer-scale fire effects across ecosystems.
AbstractList Accurate assessment of burn severity is a critical need for an improved understanding of fire behavior and ecology and effective post-fire management. Although NASA Landsat satellites have a long history of use for remotely sensed mapping of burn severity, the recently launched (2015 and 2017) European Space Agency Sentinel-2 satellite constellation offers increased temporal and spatial resolution with global coverage, combined with free data access. Evaluations of burn severity derived from Landsat and Sentinel generally show comparable results, but these studies only assessed a small number of fires with limited field data. We used 912 ground calibration plots from 26 fires that burned between 2016 and 2019 in western North America to compare Sentinel- and Landsat-derived burn severity estimates with the field-based composite burn index. We mapped burn severity using two methods; the well-established paired scene approach, in which a single pre- and post-fire scene are selected for each fire, and also a mean image compositing approach that automatically integrates multiple scenes using the cloud-based remote sensing platform Google Earth Engine. We found that Sentinel generally performed as well or better than Landsat for four spectral indices of burn severity, particularly when using atmospherically corrected Sentinel imagery. Additionally, we tested the effects of mapping burn severity at Sentinel’s finer spatial resolution (10 m) on estimates of the spatial complexity of stand-replacing fire, resulting in a 5% average reduction per-fire in area mapped as high-severity patch interiors (24,273 ha total) compared to mapping at the resolution of Landsat (30 m). These findings suggest Sentinel may improve ecological discrimination of fine-scale fire effects, but also warrant caution when comparing estimates of burn severity spatial patterns derived at different resolutions. Overall, these results indicate that burn severity mapping will benefit substantially from the integration of Sentinel imagery through increased imagery availability, and that Sentinel’s higher spatial resolution improves opportunities for examining finer-scale fire effects across ecosystems.
Author Howe, Alexander A.
Saberi, Saba J.
Harvey, Brian J.
Parks, Sean A.
Yocom, Larissa L.
Lutz, James A.
Author_xml – sequence: 1
  givenname: Alexander A.
  orcidid: 0000-0002-6815-7536
  surname: Howe
  fullname: Howe, Alexander A.
– sequence: 2
  givenname: Sean A.
  orcidid: 0000-0002-2982-5255
  surname: Parks
  fullname: Parks, Sean A.
– sequence: 3
  givenname: Brian J.
  orcidid: 0000-0002-5902-4862
  surname: Harvey
  fullname: Harvey, Brian J.
– sequence: 4
  givenname: Saba J.
  surname: Saberi
  fullname: Saberi, Saba J.
– sequence: 5
  givenname: James A.
  orcidid: 0000-0002-2560-0710
  surname: Lutz
  fullname: Lutz, James A.
– sequence: 6
  givenname: Larissa L.
  surname: Yocom
  fullname: Yocom, Larissa L.
BookMark eNptkUtLBDEMx4so-NqLn6DgTRjta2baoy4-FlY9qHgsmbarXXbbsdMV_PZWV1TEHtKQ_PJPQnbRZojBIXRAyTHnipykgQpGaibUBtphpGWVYIpt_vK30WgY5qQ8zqkiYgc9jOOyh-TDE75zIfvgFhXDECyeFjNAxhLPYsJnqxQK8eqSz2_4Gvr-o8QH_OiG7EruJqb8jE-XBTCwj7ZmsBjc6OvfQw8X5_fjq2p6ezkZn04rwxuaK1uXSVpLGmlEY1jTUUmo4ba2HUgmeWfpjLgWiOhAicZZRqzqWsWN4Qy443tosta1Eea6T34J6U1H8PozENOThpS9WTitpCVccuCECgGNk11bq9qWJs5wQUXROlxr9Sm-rMpWeh7L0mV8zVoma9ZyRgt1tKZMisOQ3Oy7KyX64wr65woFJn9g4zNkH0NO4Bf_lbwDrWaI9w
CitedBy_id crossref_primary_10_1016_j_rse_2025_114718
crossref_primary_10_3390_cli12030045
crossref_primary_10_1016_j_foreco_2024_122358
crossref_primary_10_1186_s42408_025_00387_y
crossref_primary_10_1016_j_ecoinf_2025_103249
crossref_primary_10_26468_trakyasobed_1479079
crossref_primary_10_3390_f14071508
crossref_primary_10_3390_rs16091523
crossref_primary_10_3390_rs17132307
crossref_primary_10_5194_nhess_24_3337_2024
crossref_primary_10_1016_j_foreco_2024_121756
crossref_primary_10_3390_rs17132196
crossref_primary_10_1071_WF24138
crossref_primary_10_1016_j_rse_2024_114114
crossref_primary_10_1071_WF24137
crossref_primary_10_3390_s24072282
crossref_primary_10_1007_s10661_024_13474_5
crossref_primary_10_7717_peerj_14557
crossref_primary_10_3390_f16020268
crossref_primary_10_1016_j_foreco_2025_122709
crossref_primary_10_3390_fire8040121
crossref_primary_10_3390_rs16020361
crossref_primary_10_1002_ecs2_70360
crossref_primary_10_5194_essd_16_3061_2024
crossref_primary_10_3390_s23052492
crossref_primary_10_1016_j_rse_2025_114687
crossref_primary_10_3390_f14010041
crossref_primary_10_1071_WF22200
crossref_primary_10_3390_fire7120472
Cites_doi 10.1117/12.2278218
10.1007/s10021-008-9211-7
10.3390/su10113889
10.1016/j.isprsjprs.2019.11.011
10.1002/ecs2.2600
10.1016/j.rse.2013.12.008
10.1016/j.foreco.2016.07.001
10.1016/j.rse.2017.06.031
10.1071/WF9960125
10.4996/fireecology.0702051
10.1080/10106049109354290
10.4996/fireecology.0202034
10.1080/17538947.2013.786146
10.1016/j.cageo.2020.104473
10.1071/WF08088
10.4996/fireecology.0501115
10.3390/rs10060879
10.1186/s42408-020-00076-y
10.1126/science.320.5879.1011a
10.1016/0034-4257(79)90013-0
10.1016/j.rse.2020.111702
10.1016/j.rse.2013.09.012
10.1186/s42408-018-0021-9
10.3390/rs6031827
10.3390/rs13183550
10.1007/s10980-013-9923-8
10.3390/rs14133122
10.1890/0012-9658(1999)080[1475:SDNAFP]2.0.CO;2
10.1016/j.rse.2006.12.006
10.1016/j.rse.2017.01.016
10.1007/s10021-001-0060-X
10.1080/01431161.2018.1519284
10.1007/s10980-010-9480-3
10.3390/rs11141735
10.1016/j.rse.2018.09.002
10.1016/S0034-4257(01)00318-2
10.1023/A:1022995922992
10.1890/13-1077.1
10.1007/s10980-021-01318-3
10.1002/rse2.238
10.1016/j.rse.2019.111497
10.1139/cjfr-2020-0353
10.1071/WF05097
10.1071/WF15082
10.3390/rs8050371
10.1111/j.1467-8306.1987.tb00149.x
10.1016/j.rse.2021.112569
10.1071/WF08007
10.1071/WF21062
10.1016/S0034-4257(03)00184-6
10.3390/f10090782
10.1007/s10980-017-0528-5
10.4996/fireecology.0301003
10.1016/j.rse.2010.03.013
10.3390/fire4030052
10.1071/WF13058
10.3390/rs14071661
10.1111/geb.12443
10.1071/WF07106
10.1029/2020GL089858
10.1007/s10980-016-0408-4
10.3955/046.089.0305
10.1071/WF10013
10.1016/j.foreco.2018.10.038
10.3390/f11070749
10.1071/WF08117
10.1139/x98-188
10.1016/j.foreco.2019.01.033
10.3390/fire5030070
10.1016/j.foreco.2017.08.051
10.1016/j.rse.2021.112800
10.3390/rs4020456
10.1016/j.rse.2008.11.009
10.1016/j.rse.2003.12.015
10.1007/s10980-015-0268-3
10.1071/WF07049
10.1016/j.foreco.2012.08.020
10.1071/WF19177
10.1007/s12145-020-00566-2
10.1016/j.rse.2016.08.023
10.3390/rs13122311
10.1080/15481603.2017.1354803
10.1890/ES11-00271.1
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs14205249
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_98d0383a30144a6e8b7595d83bec3414
10_3390_rs14205249
GeographicLocations United States--US
North America
GeographicLocations_xml – name: North America
– name: United States--US
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-d50007d068c46c26b1801c3d5dba8283bd1f0e7a04ba946ed20d9b793cc32a3e3
IEDL.DBID DOA
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000875001700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Mon Nov 10 04:29:40 EST 2025
Fri Jul 25 09:33:01 EDT 2025
Sat Nov 29 07:17:00 EST 2025
Tue Nov 18 22:41:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-d50007d068c46c26b1801c3d5dba8283bd1f0e7a04ba946ed20d9b793cc32a3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2982-5255
0000-0002-5902-4862
0000-0002-2560-0710
0000-0002-6815-7536
OpenAccessLink https://doaj.org/article/98d0383a30144a6e8b7595d83bec3414
PQID 2728527321
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_98d0383a30144a6e8b7595d83bec3414
proquest_journals_2728527321
crossref_primary_10_3390_rs14205249
crossref_citationtrail_10_3390_rs14205249
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Parks (ref_61) 2014; 6
Saberi (ref_22) 2022; 31
Mallinis (ref_25) 2018; 55
Morgan (ref_58) 2014; 23
Harvey (ref_91) 2016; 31
Colson (ref_46) 2018; 73
ref_56
ref_11
ref_55
Keeley (ref_10) 2009; 18
ref_52
Caselles (ref_60) 1991; 6
Robichaud (ref_7) 2009; 5
Picotte (ref_24) 2020; 16
ref_51
Parks (ref_77) 2020; 47
Morresi (ref_42) 2022; 269
Konkathi (ref_40) 2021; 14
Claverie (ref_79) 2018; 219
Meddens (ref_57) 2016; 186
Collins (ref_93) 2017; 32
Dillon (ref_80) 2011; 2
Gibson (ref_37) 2020; 240
Guindon (ref_14) 2021; 51
Woodcock (ref_16) 2008; 320
Omernik (ref_54) 1987; 77
Root (ref_17) 2004; 92
Miller (ref_30) 1999; 29
Quintano (ref_47) 2019; 80
Harvey (ref_87) 2019; 10
Picotte (ref_15) 2021; 263
Clark (ref_74) 1999; 80
Ranghetti (ref_69) 2020; 139
Tucker (ref_63) 1979; 8
Kolden (ref_81) 2015; 24
Fang (ref_84) 2014; 33
ref_68
Collins (ref_65) 2009; 12
Kolden (ref_29) 2015; 89
Miller (ref_20) 2009; 113
French (ref_13) 2008; 17
Holden (ref_88) 2010; 19
Lutz (ref_3) 2011; 7
ref_27
Rollins (ref_78) 2009; 18
Navarro (ref_44) 2017; 58
Miller (ref_62) 2007; 109
Soverel (ref_21) 2010; 114
ref_72
ref_71
Kolden (ref_33) 2012; 286
Chen (ref_85) 2020; 159
Collins (ref_73) 2013; 28
Holsinger (ref_70) 2022; 8
White (ref_18) 1996; 6
Blomdahl (ref_32) 2019; 432
ref_34
Jeronimo (ref_86) 2019; 437
Key (ref_28) 2006; 2
Harvey (ref_36) 2016; 25
ref_39
ref_38
Furniss (ref_31) 2020; 237
Kemp (ref_76) 2016; 31
Chambers (ref_35) 2016; 378
Cansler (ref_19) 2012; 4
Whitman (ref_53) 2020; 29
ref_82
Meddens (ref_95) 2018; 68
Quintano (ref_48) 2018; 64
Eidenshink (ref_23) 2007; 3
Gorelick (ref_67) 2017; 202
Bright (ref_8) 2019; 15
Wu (ref_94) 2002; 17
ref_43
Cansler (ref_2) 2014; 24
ref_41
Picotte (ref_26) 2011; 20
ref_1
Sexton (ref_59) 2013; 6
Lutz (ref_4) 2009; 18
Roy (ref_83) 2014; 140
Singleton (ref_92) 2021; 36
Cohen (ref_64) 2002; 5
Amos (ref_45) 2019; 40
ref_49
Haire (ref_75) 2010; 25
Schroeder (ref_6) 2014; 143
Stevens (ref_90) 2017; 406
ref_9
Meng (ref_89) 2017; 191
Lentile (ref_12) 2006; 15
Wilson (ref_66) 2002; 80
Giglio (ref_5) 2003; 87
References_xml – ident: ref_68
  doi: 10.1117/12.2278218
– volume: 12
  start-page: 114
  year: 2009
  ident: ref_65
  article-title: Interactions among Wildland Fires in a Long-Established Sierra Nevada Natural Fire Area
  publication-title: Ecosystems
  doi: 10.1007/s10021-008-9211-7
– ident: ref_41
  doi: 10.3390/su10113889
– ident: ref_55
– volume: 159
  start-page: 63
  year: 2020
  ident: ref_85
  article-title: A Systematic Evaluation of Influence of Image Selection Process on Remote Sensing-Based Burn Severity Indices in North American Boreal Forest and Tundra Ecosystems
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.11.011
– volume: 10
  start-page: e02600
  year: 2019
  ident: ref_87
  article-title: Incorporating Biophysical Gradients and Uncertainty into Burn Severity Maps in a Temperate Fire-Prone Forested Region
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2600
– volume: 143
  start-page: 85
  year: 2014
  ident: ref_6
  article-title: The New VIIRS 375m Active Fire Detection Data Product: Algorithm Description and Initial Assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.12.008
– volume: 68
  start-page: 944
  year: 2018
  ident: ref_95
  article-title: Fire Refugia: What Are They, and Why Do They Matter for Global Change?
  publication-title: BioScience
– volume: 378
  start-page: 57
  year: 2016
  ident: ref_35
  article-title: Patterns of Conifer Regeneration Following High Severity Wildfire in Ponderosa Pine—Dominated Forests of the Colorado Front Range
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2016.07.001
– volume: 202
  start-page: 18
  year: 2017
  ident: ref_67
  article-title: Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 6
  start-page: 125
  year: 1996
  ident: ref_18
  article-title: Remote Sensing of Forest Fire Severity and Vegetation Recovery
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF9960125
– volume: 7
  start-page: 51
  year: 2011
  ident: ref_3
  article-title: Fire Frequency, Area Burned, and Severity: A Quantitative Approach to Defining a Normal Fire Year
  publication-title: Fire Ecol.
  doi: 10.4996/fireecology.0702051
– volume: 6
  start-page: 31
  year: 1991
  ident: ref_60
  article-title: Mapping Burns and Natural Reforestation Using Thematic Mapper Data
  publication-title: Geocarto Int.
  doi: 10.1080/10106049109354290
– ident: ref_1
– volume: 2
  start-page: 34
  year: 2006
  ident: ref_28
  article-title: Ecological and Sampling Constraints on Defining Landscape Fire Severity
  publication-title: Fire Ecol.
  doi: 10.4996/fireecology.0202034
– volume: 64
  start-page: 221
  year: 2018
  ident: ref_48
  article-title: Combination of Landsat and Sentinel-2 MSI Data for Initial Assessing of Burn Severity
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 6
  start-page: 427
  year: 2013
  ident: ref_59
  article-title: Global, 30-m Resolution Continuous Fields of Tree Cover: Landsat-Based Rescaling of MODIS Vegetation Continuous Fields with Lidar-Based Estimates of Error
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2013.786146
– volume: 139
  start-page: 104473
  year: 2020
  ident: ref_69
  article-title: “Sen2r”: An R Toolbox for Automatically Downloading and Preprocessing Sentinel-2 Satellite Data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104473
– ident: ref_71
– volume: 18
  start-page: 235
  year: 2009
  ident: ref_78
  article-title: LANDFIRE: A Nationally Consistent Vegetation, Wildland Fire, and Fuel Assessment
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF08088
– volume: 5
  start-page: 115
  year: 2009
  ident: ref_7
  article-title: Emergency Post-Fire Rehabilitation Treatment Effects on Burned Area Ecology and Long-Term Restoration
  publication-title: Fire Ecol.
  doi: 10.4996/fireecology.0501115
– ident: ref_50
  doi: 10.3390/rs10060879
– volume: 16
  start-page: 16
  year: 2020
  ident: ref_24
  article-title: Changes to the Monitoring Trends in Burn Severity Program Mapping Production Procedures and Data Products
  publication-title: Fire Ecol.
  doi: 10.1186/s42408-020-00076-y
– volume: 320
  start-page: 1011
  year: 2008
  ident: ref_16
  article-title: Free Access to Landsat Imagery
  publication-title: Science
  doi: 10.1126/science.320.5879.1011a
– volume: 8
  start-page: 127
  year: 1979
  ident: ref_63
  article-title: Red and Photographic Infrared Linear Combinations for Monitoring Vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– volume: 240
  start-page: 111702
  year: 2020
  ident: ref_37
  article-title: A Remote Sensing Approach to Mapping Fire Severity in South-Eastern Australia Using Sentinel 2 and Random Forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111702
– ident: ref_56
– volume: 140
  start-page: 433
  year: 2014
  ident: ref_83
  article-title: Conterminous United States Demonstration and Characterization of MODIS-Based Landsat ETM+ Atmospheric Correction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.09.012
– volume: 15
  start-page: 8
  year: 2019
  ident: ref_8
  article-title: Examining Post-Fire Vegetation Recovery with Landsat Time Series Analysis in Three Western North American Forest Types
  publication-title: Fire Ecol.
  doi: 10.1186/s42408-018-0021-9
– volume: 6
  start-page: 1827
  year: 2014
  ident: ref_61
  article-title: A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio
  publication-title: Remote Sens.
  doi: 10.3390/rs6031827
– ident: ref_82
  doi: 10.3390/rs13183550
– volume: 28
  start-page: 1801
  year: 2013
  ident: ref_73
  article-title: Early Forest Dynamics in Stand-Replacing Fire Patches in the Northern Sierra Nevada, California, USA
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-013-9923-8
– ident: ref_43
  doi: 10.3390/rs14133122
– volume: 80
  start-page: 1475
  year: 1999
  ident: ref_74
  article-title: Seed Dispersal Near and Far: Patterns Across Temperate and Tropical Forests
  publication-title: Ecology
  doi: 10.1890/0012-9658(1999)080[1475:SDNAFP]2.0.CO;2
– volume: 109
  start-page: 66
  year: 2007
  ident: ref_62
  article-title: Quantifying Burn Severity in a Heterogeneous Landscape with a Relative Version of the Delta Normalized Burn Ratio (DNBR)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.12.006
– volume: 191
  start-page: 95
  year: 2017
  ident: ref_89
  article-title: Using High Spatial Resolution Satellite Imagery to Map Forest Burn Severity across Spatial Scales in a Pine Barrens Ecosystem
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.016
– volume: 5
  start-page: 122
  year: 2002
  ident: ref_64
  article-title: Characterizing 23 Years (1972–95) of Stand Replacement Disturbance in Western Oregon Forests with Landsat Imagery
  publication-title: Ecosystems
  doi: 10.1007/s10021-001-0060-X
– volume: 40
  start-page: 905
  year: 2019
  ident: ref_45
  article-title: Determining the Use of Sentinel-2A MSI for Wildfire Burning & Severity Detection
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1519284
– volume: 25
  start-page: 1055
  year: 2010
  ident: ref_75
  article-title: Effects of Landscape Patterns of Fire Severity on Regenerating Ponderosa Pine Forests (Pinus Ponderosa) in New Mexico and Arizona, USA
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-010-9480-3
– ident: ref_51
  doi: 10.3390/rs11141735
– volume: 219
  start-page: 145
  year: 2018
  ident: ref_79
  article-title: The Harmonized Landsat and Sentinel-2 Surface Reflectance Data Set
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.002
– volume: 80
  start-page: 385
  year: 2002
  ident: ref_66
  article-title: Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00318-2
– ident: ref_72
– volume: 17
  start-page: 761
  year: 2002
  ident: ref_94
  article-title: Empirical Patterns of the Effects of Changing Scale on Landscape Metrics
  publication-title: Landsc. Ecol.
  doi: 10.1023/A:1022995922992
– volume: 24
  start-page: 1037
  year: 2014
  ident: ref_2
  article-title: Climate, Fire Size, and Biophysical Setting Control Fire Severity and Spatial Pattern in the Northern Cascade Range, USA
  publication-title: Ecol. Appl.
  doi: 10.1890/13-1077.1
– volume: 36
  start-page: 3429
  year: 2021
  ident: ref_92
  article-title: Management Strategy Influences Landscape Patterns of High-Severity Burn Patches in the Southwestern United States
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-021-01318-3
– volume: 8
  start-page: 222
  year: 2022
  ident: ref_70
  article-title: Improved Fire Severity Mapping in the North American Boreal Forest Using a Hybrid Composite Method
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.238
– volume: 237
  start-page: 111497
  year: 2020
  ident: ref_31
  article-title: Detecting Tree Mortality with Landsat-Derived Spectral Indices: Improving Ecological Accuracy by Examining Uncertainty
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111497
– volume: 51
  start-page: 1230
  year: 2021
  ident: ref_14
  article-title: Trends in Wildfire Burn Severity across Canada, 1985 to 2015
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2020-0353
– volume: 15
  start-page: 319
  year: 2006
  ident: ref_12
  article-title: Remote Sensing Techniques to Assess Active Fire Characteristics and Post-Fire Effects
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF05097
– volume: 24
  start-page: 1023
  year: 2015
  ident: ref_81
  article-title: Limitations and Utilization of Monitoring Trends in Burn Severity Products for Assessing Wildfire Severity in the USA
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF15082
– ident: ref_52
  doi: 10.3390/rs8050371
– volume: 77
  start-page: 118
  year: 1987
  ident: ref_54
  article-title: Ecoregions of the Conterminous United States
  publication-title: Ann. Assoc. Am. Geogr.
  doi: 10.1111/j.1467-8306.1987.tb00149.x
– volume: 263
  start-page: 112569
  year: 2021
  ident: ref_15
  article-title: Determination of Burn Severity Models Ranging from Regional to National Scales for the Conterminous United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112569
– volume: 17
  start-page: 443
  year: 2008
  ident: ref_13
  article-title: Using Landsat Data to Assess Fire and Burn Severity in the North American Boreal Forest Region: An Overview and Summary of Results
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF08007
– volume: 73
  start-page: 262
  year: 2018
  ident: ref_46
  article-title: Exploring the Potential of Sentinels-1 & 2 of the Copernicus Mission in Support of Rapid and Cost-Effective Wildfire Assessment
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_11
– volume: 31
  start-page: 112
  year: 2022
  ident: ref_22
  article-title: Do You CBI What I See? The Relationship between the Composite Burn Index and Quantitative Field Measures of Burn Severity Varies across Gradients of Forest Structure
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF21062
– volume: 87
  start-page: 273
  year: 2003
  ident: ref_5
  article-title: An Enhanced Contextual Fire Detection Algorithm for MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00184-6
– ident: ref_34
  doi: 10.3390/f10090782
– volume: 58
  start-page: 97
  year: 2017
  ident: ref_44
  article-title: Evaluation of Forest Fire on Madeira Island Using Sentinel-2A MSI Imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 32
  start-page: 1543
  year: 2017
  ident: ref_93
  article-title: Alternative Characterization of Forest Fire Regimes: Incorporating Spatial Patterns
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-017-0528-5
– volume: 3
  start-page: 3
  year: 2007
  ident: ref_23
  article-title: A Project for Monitoring Trends in Burn Severity
  publication-title: Fire Ecol.
  doi: 10.4996/fireecology.0301003
– volume: 114
  start-page: 1896
  year: 2010
  ident: ref_21
  article-title: Estimating Burn Severity from Landsat DNBR and RdNBR Indices across Western Canada
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.03.013
– ident: ref_27
  doi: 10.3390/fire4030052
– volume: 23
  start-page: 1045
  year: 2014
  ident: ref_58
  article-title: Challenges of Assessing Fire and Burn Severity Using Field Measures, Remote Sensing and Modelling
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF13058
– ident: ref_38
  doi: 10.3390/rs14071661
– volume: 25
  start-page: 655
  year: 2016
  ident: ref_36
  article-title: High and Dry: Post-Fire Tree Seedling Establishment in Subalpine Forests Decreases with Post-Fire Drought and Large Stand-Replacing Burn Patches
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12443
– volume: 80
  start-page: 137
  year: 2019
  ident: ref_47
  article-title: Evaluation and Comparison of Landsat 8, Sentinel-2 and Deimos-1 Remote Sensing Indices for Assessing Burn Severity in Mediterranean Fire-Prone Ecosystems
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 19
  start-page: 449
  year: 2010
  ident: ref_88
  article-title: Beyond Landsat: A Comparison of Four Satellite Sensors for Detecting Burn Severity in Ponderosa Pine Forests of the Gila Wilderness, NM, USA
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF07106
– volume: 47
  start-page: e2020GL089858
  year: 2020
  ident: ref_77
  article-title: Warmer and Drier Fire Seasons Contribute to Increases in Area Burned at High Severity in Western US Forests from 1985 to 2017
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL089858
– volume: 31
  start-page: 2367
  year: 2016
  ident: ref_91
  article-title: Drivers and Trends in Landscape Patterns of Stand-Replacing Fire in Forests of the US Northern Rocky Mountains (1984–2010)
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-016-0408-4
– volume: 89
  start-page: 219
  year: 2015
  ident: ref_29
  article-title: Climate Contributors to Forest Mosaics: Ecological Persistence Following Wildfire
  publication-title: Northwest Sci.
  doi: 10.3955/046.089.0305
– volume: 20
  start-page: 453
  year: 2011
  ident: ref_26
  article-title: Validation of Remote Sensing of Burn Severity in South-Eastern US Ecosystems
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF10013
– volume: 432
  start-page: 1041
  year: 2019
  ident: ref_32
  article-title: The Importance of Small Fire Refugia in the Central Sierra Nevada, California, USA
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2018.10.038
– ident: ref_9
  doi: 10.3390/f11070749
– volume: 18
  start-page: 765
  year: 2009
  ident: ref_4
  article-title: Climate, Lightning Ignitions, and Fire Severity in Yosemite National Park, California, USA
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF08117
– volume: 29
  start-page: 202
  year: 1999
  ident: ref_30
  article-title: Interactions between Forest Heterogeneity and Surface Fire Regimes in the Southern Sierra Nevada
  publication-title: Can. J. For. Res.
  doi: 10.1139/x98-188
– volume: 437
  start-page: 70
  year: 2019
  ident: ref_86
  article-title: Forest Structure and Pattern Vary by Climate and Landform across Active-Fire Landscapes in the Montane Sierra Nevada
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2019.01.033
– ident: ref_39
  doi: 10.3390/fire5030070
– volume: 33
  start-page: 10
  year: 2014
  ident: ref_84
  article-title: Atmospheric Effects on the Performance and Threshold Extrapolation of Multi-Temporal Landsat Derived DNBR for Burn Severity Assessment
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 406
  start-page: 28
  year: 2017
  ident: ref_90
  article-title: Changing Spatial Patterns of Stand-Replacing Fire in California Conifer Forests
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2017.08.051
– volume: 269
  start-page: 112800
  year: 2022
  ident: ref_42
  article-title: Mapping Burn Severity in the Western Italian Alps through Phenologically Coherent Reflectance Composites Derived from Sentinel-2 Imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112800
– volume: 4
  start-page: 456
  year: 2012
  ident: ref_19
  article-title: How Robust Are Burn Severity Indices When Applied in a New Region? Evaluation of Alternate Field-Based and Remote-Sensing Methods
  publication-title: Remote Sens.
  doi: 10.3390/rs4020456
– volume: 113
  start-page: 645
  year: 2009
  ident: ref_20
  article-title: Calibration and Validation of the Relative Differenced Normalized Burn Ratio (RdNBR) to Three Measures of Fire Severity in the Sierra Nevada and Klamath Mountains, California, USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.11.009
– volume: 92
  start-page: 397
  year: 2004
  ident: ref_17
  article-title: Comparison of AVIRIS and Landsat ETM+ Detection Capabilities for Burn Severity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.12.015
– volume: 31
  start-page: 619
  year: 2016
  ident: ref_76
  article-title: Fire Legacies Impact Conifer Regeneration across Environmental Gradients in the U.S. Northern Rockies
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-015-0268-3
– volume: 18
  start-page: 116
  year: 2009
  ident: ref_10
  article-title: Fire Intensity, Fire Severity and Burn Severity: A Brief Review and Suggested Usage
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF07049
– volume: 286
  start-page: 38
  year: 2012
  ident: ref_33
  article-title: Mapped versus Actual Burned Area within Wildfire Perimeters: Characterizing the Unburned
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2012.08.020
– volume: 29
  start-page: 995
  year: 2020
  ident: ref_53
  article-title: A Method for Creating a Burn Severity Atlas: An Example from Alberta, Canada
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF19177
– volume: 14
  start-page: 645
  year: 2021
  ident: ref_40
  article-title: Inter Comparison of Post-Fire Burn Severity Indices of Landsat-8 and Sentinel-2 Imagery Using Google Earth Engine
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-020-00566-2
– volume: 186
  start-page: 275
  year: 2016
  ident: ref_57
  article-title: Detecting Unburned Areas within Wildfire Perimeters Using Landsat and Ancillary Data across the Northwestern United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.023
– ident: ref_49
  doi: 10.3390/rs13122311
– volume: 55
  start-page: 1
  year: 2018
  ident: ref_25
  article-title: Evaluating and Comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) Spectral Indices for Estimating Fire Severity in a Mediterranean Pine Ecosystem of Greece
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2017.1354803
– volume: 2
  start-page: 1
  year: 2011
  ident: ref_80
  article-title: Both Topography and Climate Affected Forest and Woodland Burn Severity in Two Regions of the Western US, 1984 to 2006
  publication-title: Ecosphere
  doi: 10.1890/ES11-00271.1
SSID ssj0000331904
Score 2.4741533
Snippet Accurate assessment of burn severity is a critical need for an improved understanding of fire behavior and ecology and effective post-fire management. Although...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5249
SubjectTerms Accuracy
Atmospheric correction
Cloud computing
composite burn index
Datasets
Ecological effects
Estimates
fire severity
Fires
Forest & brush fires
Google Earth Engine
image compositing
Imagery
Landsat
Landsat satellites
Mapping
Remote sensing
Satellite constellations
Spatial discrimination
Spatial resolution
temperate forests
Vegetation
wildfire
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4SXAp9KVuC8hSufRgET9ix6eqrIo4AEKCBW6R7fFukVCWJqFS_31tx7sgUfXSazKKkszL4xl_H0IHBiRoOrWESmmIEA6ItsyTKVfaSCOoSXAM16fq_Ly6vdUXecOty2OVi5iYAjXMXdwjP2SKVREsjNGvDz9JZI2K3dVMobGK1iNKAk2je5fLPZaCBwMrxIBKykN1f9h2VLCiZBE681keSnD9L6JxSjHH2__7cjvoVV5c4m-DNbxGK755gzYzz_mP32_RZDzQDjYzfBnHhBp_Txg2DeDTeOTX9LjCYRWLj8KDgkQw87BIx2cmgjjM8F2DbwZgBZzaPTi3e96hyfH3q_EJycQKxHFJewKRBUFBISsnpGPS0pCnHIcSrAkVGLdAp4VXphDWaCE9sAK0DZ7sHGeGe_4erTXzxn9AWHvpxJSDVtwLD1xTwyoJznJVOVXSEfqy-M21y6jjkfzivg7VR1RJ_aSSEfq8lH0YsDb-KnUUtbWUiPjY6cK8ndXZ3WpdQRFqb5MKRiN9ZVWpSwif5l3I22KEdheKrLPTdvWTFj_--_YntMXiKYg007eL1vr20e-hDferv-va_WSDfwDtB-Se
  priority: 102
  providerName: ProQuest
Title Comparing Sentinel-2 and Landsat 8 for Burn Severity Mapping in Western North America
URI https://www.proquest.com/docview/2728527321
https://doaj.org/article/98d0383a30144a6e8b7595d83bec3414
Volume 14
WOSCitedRecordID wos000875001700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database (ProQuest)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6igl7EJ9ZHCejFw-LmsXkcrVQUtCzWR_Wy5FUVZJW2Cl787SbZbS0oePGSw-6wWWYmmRky-T4A9pVlVqK-ThBjKqHU2ERq7JI-4VIxRZGKcAw357zTEb2ezKeovkJPWAUPXCnuUAqb-ipKxdRfMSc0z2RmBfGTk4rCGqdcThVTcQ8m3rVSWuGREl_XHw6GiOI0wwE0cyoCRaD-H_twDC4ny2CpzgrhUfU3K2DGlatgoSYof_xYA9fHFV9g-QC7ob-ndM8Jhqq08Dzc1VUjKKBPP2HLf8hLeP_02TW8UAF94QE-lfC2QkSA8ZwG1uc06-D6pH11fJrUjAiJIQyNEhvoC7hNmTCUGcw08gHGEJtZrXzpRLRF_dRxlVKtJGXO4tRK7ZegMQQr4sgGmC1fSrcJoHTM0D6xkhNHnSUSKSyYNZpwYXiGGuBgrKXC1HDhgbXiufBlQ9Bo8a3RBtibyL5WIBm_SrWCsicSAdg6PvDmLmpzF3-ZuwF2xqYq6tU2LDDHIgDJYbT1H3Nsg0UcLjnElr0dMDsavLldMG_eR0_DQRPMtdqd_LIZHa4ZekW7Yfxs-zHP7v37_Owiv_sC7sXcBQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFKlcylukLWAJOHBY1a_144AQLVSNmkSRaKGctn4lVKo2bZIW9U_xG7H3kSKBuPXAdT2y5PXn8YzH_j6A18YLr8nYZkQIk3HufKYtDdmYSW2E4cRUdAxf-nI4VMfHerQCP9u3MOlaZesTK0ftpy6dkW9TSVUiC6Pk_flFllSjUnW1ldCoYXEQrn_ElG3-rvcxzu8bSvc-He7uZ42qQOaYIIvMJwkA6bFQjgtHhSXRSTvmc29NTD-Y9WSMgzSYW6O5CJ5ir22EsXOMGhZY7PcOrPIE9g6sjnqD0bflqQ5mEdKY1zyojGm8PZsTTnFOE1nnbztfJRDwh_-vNrW9-__b73gA6034jD7UeH8IK6F8BGuNkvv368dwtFsLK5YT9DldhCrDWUaRKT3qp0fNZoEUinE62okdRYu4kGMaggYm0VRM0GmJvtbUEagqaKGmoPUEjm5lVE-hU07L8AyQDsLxMfNassCDZ5oYqoR3lknlZE668Lad1sI1vOpJ3uOsiPlVgkBxA4EuvFrantdsIn-12knoWFokBvDqw3Q2KRqHUmjlMVPMVCmxEUFZmevcx6EFFyMT3oWtFjhF45bmxQ1qNv7d_BLW9g8H_aLfGx5swj2a3nxUNxi3oLOYXYbncNddLU7nsxfNCkBwctso-wXJBULz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VgoALb0SggCXgwMGKX-vHASHaElE1RJGgUHFZvLY3VKo2JQmg_jV-HbZ3N0UCceuB63pkyevPY489830AT62X3tC6wlRKi4VwHpuKBVxzZay0gtpMx_BhrCYTfXhophvws6-FSWmVvU_MjtrPXbojHzLFdCILY3RYd2kR093Ry5OvOClIpZfWXk6jhch-OP0Rw7fli73dONfPGBu9fr_zBncKA9hxSVfYJzkA5YnUTkjHZEWjw3bcF76yMRThlac1CcoSUVkjZPCMeFNFSDvHmeWBx34vwEUVY8yUTjgtPq3vdwiP4CaiZUTl3JDhYkkFIwVLtJ2_7YFZKuCPnSBvb6Pr__OPuQHXukM1etWugpuwEZpbcKXTd_9yehsOdlq5xWaG3qX0qCYcY4Zs49E4lTrbFdIont7RduwoWsTlHYMT9NYm8ooZOmrQx5ZQAuVnLtQ9c92Bg3MZ1V3YbOZNuAfIBOlEzb1RPIjguaGWaeldxZV2qqADeN5Pcek6tvUk-nFcxqgrwaE8g8MAnqxtT1qOkb9abSekrC0SL3j-MF_Mys7NlEZ7wjW3OVC2MuhKFabwcWjBxfOKGMBWD6Kyc1bL8gxB9__d_BguR2iV473J_gO4ylIhSE5r3ILN1eJbeAiX3PfV0XLxKC8FBJ_PG2K_ANVhSlY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Sentinel-2+and+Landsat+8+for+Burn+Severity+Mapping+in+Western+North+America&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Alexander+A.+Howe&rft.au=Sean+A.+Parks&rft.au=Brian+J.+Harvey&rft.au=Saba+J.+Saberi&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=20&rft.spage=5249&rft_id=info:doi/10.3390%2Frs14205249&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_98d0383a30144a6e8b7595d83bec3414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon