Survey on Machine Learning for Intelligent End-to-End Communication Toward 6G: From Network Access, Routing to Traffic Control and Streaming Adaption
The end-to-end quality of service (QoS) and quality of experience (QoE) guarantee is quite important for network optimization. The current 5G and conceived 6G network in the future with ultra high density, bandwidth, mobility and large scale brings urgent requirement of high efficient end-to-end opt...
Uložené v:
| Vydané v: | IEEE Communications surveys and tutorials Ročník 23; číslo 3; s. 1578 - 1598 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.01.2021
|
| Predmet: | |
| ISSN: | 2373-745X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The end-to-end quality of service (QoS) and quality of experience (QoE) guarantee is quite important for network optimization. The current 5G and conceived 6G network in the future with ultra high density, bandwidth, mobility and large scale brings urgent requirement of high efficient end-to-end optimization methods. The conventional network optimization methods without learning and intelligent decision ability are hard to handle the high complexity and dynamic scenarios of 6G. Recently, machine learning based QoS and QoE aware network optimization algorithms emerge as a hot research area and attract much attention, which is widely acknowledged as the potential solution for end-to-end optimization in 6G. However, there are still many critical issues of employing machine learning in networks, especially in 6G. In this paper, we give a comprehensive survey on the recent machine learning based network optimization methods to guarantee the end-to-end QoS and QoE. To easy to follow, we introduce the investigated works following the end-to-end transmission flow from network access, routing to network congestion control and adaptive steaming control. Then we discuss some open issues and potential future research directions. |
|---|---|
| AbstractList | The end-to-end quality of service (QoS) and quality of experience (QoE) guarantee is quite important for network optimization. The current 5G and conceived 6G network in the future with ultra high density, bandwidth, mobility and large scale brings urgent requirement of high efficient end-to-end optimization methods. The conventional network optimization methods without learning and intelligent decision ability are hard to handle the high complexity and dynamic scenarios of 6G. Recently, machine learning based QoS and QoE aware network optimization algorithms emerge as a hot research area and attract much attention, which is widely acknowledged as the potential solution for end-to-end optimization in 6G. However, there are still many critical issues of employing machine learning in networks, especially in 6G. In this paper, we give a comprehensive survey on the recent machine learning based network optimization methods to guarantee the end-to-end QoS and QoE. To easy to follow, we introduce the investigated works following the end-to-end transmission flow from network access, routing to network congestion control and adaptive steaming control. Then we discuss some open issues and potential future research directions. |
| Author | Kawamoto, Yuichi Kato, Nei Tang, Fengxiao Mao, Bomin |
| Author_xml | – sequence: 1 givenname: Fengxiao orcidid: 0000-0003-2414-4802 surname: Tang fullname: Tang, Fengxiao email: fengxiao.tang@it.is.tohoku.ac.jp organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan – sequence: 2 givenname: Bomin orcidid: 0000-0001-7780-5972 surname: Mao fullname: Mao, Bomin email: bomin.mao@it.is.tohoku.ac.jp organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan – sequence: 3 givenname: Yuichi orcidid: 0000-0002-5290-6520 surname: Kawamoto fullname: Kawamoto, Yuichi email: youpsan@it.is.tohoku.ac.jp organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan – sequence: 4 givenname: Nei orcidid: 0000-0001-8769-302X surname: Kato fullname: Kato, Nei email: kato@it.is.tohoku.ac.jp organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan |
| BookMark | eNotzN1OwjAcBfDGaCKgL6A3fQCH7dp91DuyAJKAJDIT70jX_YvVrSVdkfAgvq8jenUuzjm_Ibq0zgJCd5SMKSXisVivNuU4JjEdM5IxQsQFGsQsY1HGk_drNOy6T0J4zAUZoJ_NwX_DCTuLV1J9GAt4CdJbY3dYO48XNkDTmB3YgKe2joKL-sCFa9uDNUoG0z9Ld5S-xun8Cc-8a_ELhKPzX3iiFHTdA351h3AGg8Oll1ob1QM2eNdg2WOb4EG258GklvuzeIOutGw6uP3PEXqbTcviOVqu54tisowUS2mIai6rRFZapVAlNQfQmiSMJlmVJXHK8phL1jeEQs4TJXjNpBKkyoWmUtQ5YyN0_-caANjuvWmlP20FJ4zlhP0CQPdnmA |
| CitedBy_id | crossref_primary_10_1155_2022_7152417 crossref_primary_10_1109_ACCESS_2024_3521579 crossref_primary_10_1002_widm_1521 crossref_primary_10_1016_j_jnca_2023_103647 crossref_primary_10_1109_TMLCN_2024_3352541 crossref_primary_10_1109_JIOT_2022_3155773 crossref_primary_10_1109_JIOT_2022_3206360 crossref_primary_10_1109_COMST_2022_3191697 crossref_primary_10_1109_JIOT_2024_3403756 crossref_primary_10_1039_D5TC01366F crossref_primary_10_1109_COMST_2024_3442149 crossref_primary_10_3390_electronics10222786 crossref_primary_10_3390_s23187709 crossref_primary_10_1016_j_icte_2022_06_006 crossref_primary_10_1109_TVT_2024_3415656 crossref_primary_10_1016_j_comnet_2025_111345 crossref_primary_10_1109_JIOT_2024_3504554 crossref_primary_10_1016_j_comcom_2024_107983 crossref_primary_10_1007_s42979_024_03125_4 crossref_primary_10_1109_JSEN_2024_3434334 crossref_primary_10_1109_TWC_2024_3503060 crossref_primary_10_1109_MCOM_001_2400669 crossref_primary_10_1109_TNSM_2024_3425508 crossref_primary_10_3390_app12031483 crossref_primary_10_1109_TMC_2024_3494757 crossref_primary_10_1134_S1995080223070132 crossref_primary_10_3390_computers13030074 crossref_primary_10_1109_JIOT_2025_3580369 crossref_primary_10_1109_ACCESS_2022_3199689 crossref_primary_10_1016_j_comnet_2024_110540 crossref_primary_10_3390_fi15110358 crossref_primary_10_3390_fi17020050 crossref_primary_10_1109_TVT_2022_3211830 crossref_primary_10_3390_sym14122554 crossref_primary_10_1109_TCOMM_2022_3228611 crossref_primary_10_3390_a16050233 crossref_primary_10_1016_j_adhoc_2025_103983 crossref_primary_10_1109_JIOT_2024_3384313 crossref_primary_10_1109_TETC_2022_3202266 crossref_primary_10_1016_j_jnca_2022_103558 crossref_primary_10_1109_JSAC_2021_3126073 crossref_primary_10_1109_COMST_2023_3273121 crossref_primary_10_1109_ACCESS_2025_3585051 crossref_primary_10_1109_JIOT_2023_3337941 crossref_primary_10_1109_COMST_2022_3199544 crossref_primary_10_3390_s22239236 crossref_primary_10_1109_TVT_2023_3234643 crossref_primary_10_1016_j_eng_2025_05_012 crossref_primary_10_1109_COMST_2024_3393369 crossref_primary_10_1287_ijoc_2023_0128 crossref_primary_10_1016_j_comcom_2023_07_005 crossref_primary_10_1016_j_jnca_2023_103726 crossref_primary_10_1109_TVT_2023_3312142 crossref_primary_10_1109_JIOT_2024_3407512 crossref_primary_10_1134_S106377962403081X crossref_primary_10_1109_MNET_104_2100615 crossref_primary_10_1109_TETC_2024_3473911 crossref_primary_10_1109_ACCESS_2022_3205341 crossref_primary_10_1109_TCCN_2024_3522579 crossref_primary_10_1109_TMC_2024_3389011 crossref_primary_10_1109_TVT_2022_3223250 crossref_primary_10_3390_electronics13030649 crossref_primary_10_1145_3571072 crossref_primary_10_1109_COMST_2022_3175453 crossref_primary_10_1007_s42979_024_02831_3 crossref_primary_10_3390_electronics14051045 crossref_primary_10_3390_technologies13060245 crossref_primary_10_1007_s11276_023_03577_1 crossref_primary_10_1109_COMST_2024_3486690 crossref_primary_10_1109_JIOT_2023_3288050 crossref_primary_10_1109_ACCESS_2021_3112940 crossref_primary_10_1002_dac_5410 crossref_primary_10_1109_JIOT_2023_3242613 crossref_primary_10_1109_TMC_2024_3379191 crossref_primary_10_1109_LCOMM_2025_3543579 crossref_primary_10_3390_s23229240 crossref_primary_10_1109_ACCESS_2022_3232469 crossref_primary_10_1109_JSAC_2023_3310065 crossref_primary_10_1016_j_rser_2022_112722 crossref_primary_10_1109_TVT_2022_3163078 crossref_primary_10_1016_j_jnca_2024_103945 crossref_primary_10_1007_s11276_022_03007_8 crossref_primary_10_3390_e25010101 crossref_primary_10_1016_j_comnet_2024_110220 crossref_primary_10_1109_TGCN_2021_3099580 crossref_primary_10_1109_TMC_2025_3552220 crossref_primary_10_1109_COMST_2023_3347145 crossref_primary_10_1109_TWC_2022_3224045 crossref_primary_10_1002_ett_4693 crossref_primary_10_1109_ACCESS_2024_3523327 crossref_primary_10_1016_j_icte_2024_05_001 crossref_primary_10_1145_3702644 crossref_primary_10_3390_s24154818 crossref_primary_10_1109_JIOT_2024_3496491 crossref_primary_10_1016_j_dsp_2025_105088 crossref_primary_10_1109_ACCESS_2024_3405534 crossref_primary_10_1109_MCE_2022_3201366 crossref_primary_10_1109_COMST_2023_3317242 crossref_primary_10_3390_a17110492 crossref_primary_10_3390_fi16110430 crossref_primary_10_1109_JIOT_2025_3555415 crossref_primary_10_3390_a15060193 crossref_primary_10_1109_JSAC_2022_3213317 crossref_primary_10_1109_MWC_013_2200296 crossref_primary_10_3390_electronics12153327 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE |
| DOI | 10.1109/COMST.2021.3073009 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2373-745X |
| EndPage | 1598 |
| ExternalDocumentID | 9403380 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 2WC 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ IES IFIPE IFJZH IPLJI JAVBF LAI O9- OCL P2P RIA RIE RNS |
| ID | FETCH-LOGICAL-c361t-d4ab5abfc6eb5d4eeff053157b75263824a3eb501e845c94d3ac90b89f1a9d833 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688449200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:25:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-d4ab5abfc6eb5d4eeff053157b75263824a3eb501e845c94d3ac90b89f1a9d833 |
| ORCID | 0000-0001-7780-5972 0000-0002-5290-6520 0000-0001-8769-302X 0000-0003-2414-4802 |
| PageCount | 21 |
| ParticipantIDs | ieee_primary_9403380 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Communications surveys and tutorials |
| PublicationTitleAbbrev | COMST |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0042490 |
| Score | 2.652357 |
| SecondaryResourceType | review_article |
| Snippet | The end-to-end quality of service (QoS) and quality of experience (QoE) guarantee is quite important for network optimization. The current 5G and conceived 6G... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1578 |
| SubjectTerms | 6G mobile communication adaptive bitrate streaming (ABR) adaptive streaming control channel assignment congestion control deep learning (DL) End-to-end Heuristic algorithms machine learning (ML) Machine learning algorithms network access Quality of experience quality of experience (QoE) Quality of service quality of service (QoS) Reinforcement learning resource allocation Routing |
| Title | Survey on Machine Learning for Intelligent End-to-End Communication Toward 6G: From Network Access, Routing to Traffic Control and Streaming Adaption |
| URI | https://ieeexplore.ieee.org/document/9403380 |
| Volume | 23 |
| WOSCitedRecordID | wos000688449200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4AcYADr4F4yweO62ibZG24TdMGSDCQNhA3lIeDOKxFo5vED-H_kqRjAokLp1ZNlEq2Esf258-EnFlJqbMSMuLoo1UCVSS1NJFVzpqklqkktGR5vMkGg_zpSdwvkeaiFgYRA_gMW_415PJNqac-VHYuWOw8KuegL2dZu67V-j51mXMj4u-imFicd-9uhyPn_qVJq-ZkF7_apwTr0d_833-3yMb8lgidWq3bZAmLHbL-gzuwQT6H08kMP6As4DYAIhHmXKkv4C6icL3g2qygV5ioKiP3gF8FITAKoFloX15Af1KOYVCDwqET2ig2weOF_IJVCc6oebYJ6NbYdpBuMZ_SlmM_oWNkOHt2yUO_N-peRfMeC5F2Oqoiw6TiUlndRsUNQ7TWb0ueqYynbm-mTFI3EieYM64FM1RqEatc2EQKk1O6R1aKssB9AhlFzqxMdU4lszT2CUOeGMw4U0Kr_IA0vGif32oajee5VA___nxE1rz26mjHMVmpJlM8Iat6Vr2-T06D7r8A_8iyoQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ignrwLb6dg0erbZPYxtuyuCruroKreFvymIiHbWXtCv4Q_69JWkXBi6eGpiSQaTKZmW--IeTQSkqdlpARR--tEqgiqaWJrHLaJLVMJaEky0M36_fzx0dxO0WOvnNhEDGAz_DYN0Ms35R64l1lJ4LFzqJyBvqMr5zVZGt9nbvMGRLxV1pMLE7aN727gTMA0-S4ZmUXvwqoBP3RWfrfzMtksbknQqsW7AqZwmKVLPxgD1wjH3eT8Ru-Q1lAL0AiERq21CdwV1G4-mbbrOC8MFFVRu4Bv1JCYBBgs3B6cQadcTmCfg0Lh1YopHgEHjHkB6xKcGrN801Au0a3g3SD-aC2HPkPWkaG02ed3HfOB-3LqKmyEGknpSoyTCouldWnqLhhiNb6jckzlfHU7c6USep64gRzxrVghkotYpULm0hhcko3yHRRFrhJIKPImZWpzqlklsY-ZMgTgxlnSmiVb5E1v7TDl5pIY9is6vbfrw_I3OWg1x12r_rXO2TeS7L2feyS6Wo8wT0yq9-q59fxfvgPPgF3wbXq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+Machine+Learning+for+Intelligent+End-to-End+Communication+Toward+6G%3A+From+Network+Access%2C+Routing+to+Traffic+Control+and+Streaming+Adaption&rft.jtitle=IEEE+Communications+surveys+and+tutorials&rft.au=Tang%2C+Fengxiao&rft.au=Mao%2C+Bomin&rft.au=Kawamoto%2C+Yuichi&rft.au=Kato%2C+Nei&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2373-745X&rft.volume=23&rft.issue=3&rft.spage=1578&rft.epage=1598&rft_id=info:doi/10.1109%2FCOMST.2021.3073009&rft.externalDocID=9403380 |