Survey on Machine Learning for Intelligent End-to-End Communication Toward 6G: From Network Access, Routing to Traffic Control and Streaming Adaption

The end-to-end quality of service (QoS) and quality of experience (QoE) guarantee is quite important for network optimization. The current 5G and conceived 6G network in the future with ultra high density, bandwidth, mobility and large scale brings urgent requirement of high efficient end-to-end opt...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE Communications surveys and tutorials Ročník 23; číslo 3; s. 1578 - 1598
Hlavní autori: Tang, Fengxiao, Mao, Bomin, Kawamoto, Yuichi, Kato, Nei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.01.2021
Predmet:
ISSN:2373-745X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The end-to-end quality of service (QoS) and quality of experience (QoE) guarantee is quite important for network optimization. The current 5G and conceived 6G network in the future with ultra high density, bandwidth, mobility and large scale brings urgent requirement of high efficient end-to-end optimization methods. The conventional network optimization methods without learning and intelligent decision ability are hard to handle the high complexity and dynamic scenarios of 6G. Recently, machine learning based QoS and QoE aware network optimization algorithms emerge as a hot research area and attract much attention, which is widely acknowledged as the potential solution for end-to-end optimization in 6G. However, there are still many critical issues of employing machine learning in networks, especially in 6G. In this paper, we give a comprehensive survey on the recent machine learning based network optimization methods to guarantee the end-to-end QoS and QoE. To easy to follow, we introduce the investigated works following the end-to-end transmission flow from network access, routing to network congestion control and adaptive steaming control. Then we discuss some open issues and potential future research directions.
AbstractList The end-to-end quality of service (QoS) and quality of experience (QoE) guarantee is quite important for network optimization. The current 5G and conceived 6G network in the future with ultra high density, bandwidth, mobility and large scale brings urgent requirement of high efficient end-to-end optimization methods. The conventional network optimization methods without learning and intelligent decision ability are hard to handle the high complexity and dynamic scenarios of 6G. Recently, machine learning based QoS and QoE aware network optimization algorithms emerge as a hot research area and attract much attention, which is widely acknowledged as the potential solution for end-to-end optimization in 6G. However, there are still many critical issues of employing machine learning in networks, especially in 6G. In this paper, we give a comprehensive survey on the recent machine learning based network optimization methods to guarantee the end-to-end QoS and QoE. To easy to follow, we introduce the investigated works following the end-to-end transmission flow from network access, routing to network congestion control and adaptive steaming control. Then we discuss some open issues and potential future research directions.
Author Kawamoto, Yuichi
Kato, Nei
Tang, Fengxiao
Mao, Bomin
Author_xml – sequence: 1
  givenname: Fengxiao
  orcidid: 0000-0003-2414-4802
  surname: Tang
  fullname: Tang, Fengxiao
  email: fengxiao.tang@it.is.tohoku.ac.jp
  organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan
– sequence: 2
  givenname: Bomin
  orcidid: 0000-0001-7780-5972
  surname: Mao
  fullname: Mao, Bomin
  email: bomin.mao@it.is.tohoku.ac.jp
  organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan
– sequence: 3
  givenname: Yuichi
  orcidid: 0000-0002-5290-6520
  surname: Kawamoto
  fullname: Kawamoto, Yuichi
  email: youpsan@it.is.tohoku.ac.jp
  organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan
– sequence: 4
  givenname: Nei
  orcidid: 0000-0001-8769-302X
  surname: Kato
  fullname: Kato, Nei
  email: kato@it.is.tohoku.ac.jp
  organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan
BookMark eNotzN1OwjAcBfDGaCKgL6A3fQCH7dp91DuyAJKAJDIT70jX_YvVrSVdkfAgvq8jenUuzjm_Ibq0zgJCd5SMKSXisVivNuU4JjEdM5IxQsQFGsQsY1HGk_drNOy6T0J4zAUZoJ_NwX_DCTuLV1J9GAt4CdJbY3dYO48XNkDTmB3YgKe2joKL-sCFa9uDNUoG0z9Ld5S-xun8Cc-8a_ELhKPzX3iiFHTdA351h3AGg8Oll1ob1QM2eNdg2WOb4EG258GklvuzeIOutGw6uP3PEXqbTcviOVqu54tisowUS2mIai6rRFZapVAlNQfQmiSMJlmVJXHK8phL1jeEQs4TJXjNpBKkyoWmUtQ5YyN0_-caANjuvWmlP20FJ4zlhP0CQPdnmA
CitedBy_id crossref_primary_10_1155_2022_7152417
crossref_primary_10_1109_ACCESS_2024_3521579
crossref_primary_10_1002_widm_1521
crossref_primary_10_1016_j_jnca_2023_103647
crossref_primary_10_1109_TMLCN_2024_3352541
crossref_primary_10_1109_JIOT_2022_3155773
crossref_primary_10_1109_JIOT_2022_3206360
crossref_primary_10_1109_COMST_2022_3191697
crossref_primary_10_1109_JIOT_2024_3403756
crossref_primary_10_1039_D5TC01366F
crossref_primary_10_1109_COMST_2024_3442149
crossref_primary_10_3390_electronics10222786
crossref_primary_10_3390_s23187709
crossref_primary_10_1016_j_icte_2022_06_006
crossref_primary_10_1109_TVT_2024_3415656
crossref_primary_10_1016_j_comnet_2025_111345
crossref_primary_10_1109_JIOT_2024_3504554
crossref_primary_10_1016_j_comcom_2024_107983
crossref_primary_10_1007_s42979_024_03125_4
crossref_primary_10_1109_JSEN_2024_3434334
crossref_primary_10_1109_TWC_2024_3503060
crossref_primary_10_1109_MCOM_001_2400669
crossref_primary_10_1109_TNSM_2024_3425508
crossref_primary_10_3390_app12031483
crossref_primary_10_1109_TMC_2024_3494757
crossref_primary_10_1134_S1995080223070132
crossref_primary_10_3390_computers13030074
crossref_primary_10_1109_JIOT_2025_3580369
crossref_primary_10_1109_ACCESS_2022_3199689
crossref_primary_10_1016_j_comnet_2024_110540
crossref_primary_10_3390_fi15110358
crossref_primary_10_3390_fi17020050
crossref_primary_10_1109_TVT_2022_3211830
crossref_primary_10_3390_sym14122554
crossref_primary_10_1109_TCOMM_2022_3228611
crossref_primary_10_3390_a16050233
crossref_primary_10_1016_j_adhoc_2025_103983
crossref_primary_10_1109_JIOT_2024_3384313
crossref_primary_10_1109_TETC_2022_3202266
crossref_primary_10_1016_j_jnca_2022_103558
crossref_primary_10_1109_JSAC_2021_3126073
crossref_primary_10_1109_COMST_2023_3273121
crossref_primary_10_1109_ACCESS_2025_3585051
crossref_primary_10_1109_JIOT_2023_3337941
crossref_primary_10_1109_COMST_2022_3199544
crossref_primary_10_3390_s22239236
crossref_primary_10_1109_TVT_2023_3234643
crossref_primary_10_1016_j_eng_2025_05_012
crossref_primary_10_1109_COMST_2024_3393369
crossref_primary_10_1287_ijoc_2023_0128
crossref_primary_10_1016_j_comcom_2023_07_005
crossref_primary_10_1016_j_jnca_2023_103726
crossref_primary_10_1109_TVT_2023_3312142
crossref_primary_10_1109_JIOT_2024_3407512
crossref_primary_10_1134_S106377962403081X
crossref_primary_10_1109_MNET_104_2100615
crossref_primary_10_1109_TETC_2024_3473911
crossref_primary_10_1109_ACCESS_2022_3205341
crossref_primary_10_1109_TCCN_2024_3522579
crossref_primary_10_1109_TMC_2024_3389011
crossref_primary_10_1109_TVT_2022_3223250
crossref_primary_10_3390_electronics13030649
crossref_primary_10_1145_3571072
crossref_primary_10_1109_COMST_2022_3175453
crossref_primary_10_1007_s42979_024_02831_3
crossref_primary_10_3390_electronics14051045
crossref_primary_10_3390_technologies13060245
crossref_primary_10_1007_s11276_023_03577_1
crossref_primary_10_1109_COMST_2024_3486690
crossref_primary_10_1109_JIOT_2023_3288050
crossref_primary_10_1109_ACCESS_2021_3112940
crossref_primary_10_1002_dac_5410
crossref_primary_10_1109_JIOT_2023_3242613
crossref_primary_10_1109_TMC_2024_3379191
crossref_primary_10_1109_LCOMM_2025_3543579
crossref_primary_10_3390_s23229240
crossref_primary_10_1109_ACCESS_2022_3232469
crossref_primary_10_1109_JSAC_2023_3310065
crossref_primary_10_1016_j_rser_2022_112722
crossref_primary_10_1109_TVT_2022_3163078
crossref_primary_10_1016_j_jnca_2024_103945
crossref_primary_10_1007_s11276_022_03007_8
crossref_primary_10_3390_e25010101
crossref_primary_10_1016_j_comnet_2024_110220
crossref_primary_10_1109_TGCN_2021_3099580
crossref_primary_10_1109_TMC_2025_3552220
crossref_primary_10_1109_COMST_2023_3347145
crossref_primary_10_1109_TWC_2022_3224045
crossref_primary_10_1002_ett_4693
crossref_primary_10_1109_ACCESS_2024_3523327
crossref_primary_10_1016_j_icte_2024_05_001
crossref_primary_10_1145_3702644
crossref_primary_10_3390_s24154818
crossref_primary_10_1109_JIOT_2024_3496491
crossref_primary_10_1016_j_dsp_2025_105088
crossref_primary_10_1109_ACCESS_2024_3405534
crossref_primary_10_1109_MCE_2022_3201366
crossref_primary_10_1109_COMST_2023_3317242
crossref_primary_10_3390_a17110492
crossref_primary_10_3390_fi16110430
crossref_primary_10_1109_JIOT_2025_3555415
crossref_primary_10_3390_a15060193
crossref_primary_10_1109_JSAC_2022_3213317
crossref_primary_10_1109_MWC_013_2200296
crossref_primary_10_3390_electronics12153327
ContentType Journal Article
DBID 97E
RIA
RIE
DOI 10.1109/COMST.2021.3073009
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-745X
EndPage 1598
ExternalDocumentID 9403380
Genre orig-research
GroupedDBID 0R~
29I
2WC
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
O9-
OCL
P2P
RIA
RIE
RNS
ID FETCH-LOGICAL-c361t-d4ab5abfc6eb5d4eeff053157b75263824a3eb501e845c94d3ac90b89f1a9d833
IEDL.DBID RIE
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688449200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-d4ab5abfc6eb5d4eeff053157b75263824a3eb501e845c94d3ac90b89f1a9d833
ORCID 0000-0001-7780-5972
0000-0002-5290-6520
0000-0001-8769-302X
0000-0003-2414-4802
PageCount 21
ParticipantIDs ieee_primary_9403380
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE Communications surveys and tutorials
PublicationTitleAbbrev COMST
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0042490
Score 2.652357
SecondaryResourceType review_article
Snippet The end-to-end quality of service (QoS) and quality of experience (QoE) guarantee is quite important for network optimization. The current 5G and conceived 6G...
SourceID ieee
SourceType Publisher
StartPage 1578
SubjectTerms 6G mobile communication
adaptive bitrate streaming (ABR)
adaptive streaming control
channel assignment
congestion control
deep learning (DL)
End-to-end
Heuristic algorithms
machine learning (ML)
Machine learning algorithms
network access
Quality of experience
quality of experience (QoE)
Quality of service
quality of service (QoS)
Reinforcement learning
resource allocation
Routing
Title Survey on Machine Learning for Intelligent End-to-End Communication Toward 6G: From Network Access, Routing to Traffic Control and Streaming Adaption
URI https://ieeexplore.ieee.org/document/9403380
Volume 23
WOSCitedRecordID wos000688449200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4AcYADr4F4yweO62ibZG24TdMGSDCQNhA3lIeDOKxFo5vED-H_kqRjAokLp1ZNlEq2Esf258-EnFlJqbMSMuLoo1UCVSS1NJFVzpqklqkktGR5vMkGg_zpSdwvkeaiFgYRA_gMW_415PJNqac-VHYuWOw8KuegL2dZu67V-j51mXMj4u-imFicd-9uhyPn_qVJq-ZkF7_apwTr0d_833-3yMb8lgidWq3bZAmLHbL-gzuwQT6H08kMP6As4DYAIhHmXKkv4C6icL3g2qygV5ioKiP3gF8FITAKoFloX15Af1KOYVCDwqET2ig2weOF_IJVCc6oebYJ6NbYdpBuMZ_SlmM_oWNkOHt2yUO_N-peRfMeC5F2Oqoiw6TiUlndRsUNQ7TWb0ueqYynbm-mTFI3EieYM64FM1RqEatc2EQKk1O6R1aKssB9AhlFzqxMdU4lszT2CUOeGMw4U0Kr_IA0vGif32oajee5VA___nxE1rz26mjHMVmpJlM8Iat6Vr2-T06D7r8A_8iyoQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ignrwLb6dg0erbZPYxtuyuCruroKreFvymIiHbWXtCv4Q_69JWkXBi6eGpiSQaTKZmW--IeTQSkqdlpARR--tEqgiqaWJrHLaJLVMJaEky0M36_fzx0dxO0WOvnNhEDGAz_DYN0Ms35R64l1lJ4LFzqJyBvqMr5zVZGt9nbvMGRLxV1pMLE7aN727gTMA0-S4ZmUXvwqoBP3RWfrfzMtksbknQqsW7AqZwmKVLPxgD1wjH3eT8Ru-Q1lAL0AiERq21CdwV1G4-mbbrOC8MFFVRu4Bv1JCYBBgs3B6cQadcTmCfg0Lh1YopHgEHjHkB6xKcGrN801Au0a3g3SD-aC2HPkPWkaG02ed3HfOB-3LqKmyEGknpSoyTCouldWnqLhhiNb6jckzlfHU7c6USep64gRzxrVghkotYpULm0hhcko3yHRRFrhJIKPImZWpzqlklsY-ZMgTgxlnSmiVb5E1v7TDl5pIY9is6vbfrw_I3OWg1x12r_rXO2TeS7L2feyS6Wo8wT0yq9-q59fxfvgPPgF3wbXq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+Machine+Learning+for+Intelligent+End-to-End+Communication+Toward+6G%3A+From+Network+Access%2C+Routing+to+Traffic+Control+and+Streaming+Adaption&rft.jtitle=IEEE+Communications+surveys+and+tutorials&rft.au=Tang%2C+Fengxiao&rft.au=Mao%2C+Bomin&rft.au=Kawamoto%2C+Yuichi&rft.au=Kato%2C+Nei&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2373-745X&rft.volume=23&rft.issue=3&rft.spage=1578&rft.epage=1598&rft_id=info:doi/10.1109%2FCOMST.2021.3073009&rft.externalDocID=9403380