Optimizing Problem-Solving in Technical Education: An Adaptive Learning System Based on Artificial Intelligence

The increasing complexity of educational challenges in technical disciplines highlights the need for personalized learning systems to address diverse student needs. Traditional methods, often relying on static activities or predefined rules, limit their ability to adapt to individual progress, hinde...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 13; pp. 61350 - 61367
Main Authors: Gutierrez, Rommel, Eduardo Villegas-Ch, William, Maldonado Navarro, Alexandra, Lujan-Mora, Sergio
Format: Journal Article
Language:English
Published: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The increasing complexity of educational challenges in technical disciplines highlights the need for personalized learning systems to address diverse student needs. Traditional methods, often relying on static activities or predefined rules, limit their ability to adapt to individual progress, hindering the development of critical skills such as problem-solving. Based on rules or machine learning, existing adaptive systems offer varying levels of personalization and efficiency but face significant scalability and computational demand barriers. This study proposes an adaptive learning system powered by deep learning algorithms designed to optimize problem-solving skills in technical college students. The system dynamically adjusts the difficulty of activities based on real-time performance data, ensuring a personalized and practical learning experience. A controlled experimental study was conducted with 200 students over eight weeks, divided into pretest, intervention, and posttest phases. The experimental group, which used the adaptive system, showed a 14% improvement in precision (from 71.8% to 85%) compared to 5% for the control group. In addition, the experimental group reduced its average time per activity by 15%, achieving 105 seconds compared to 124 seconds for the control group. These results demonstrate the system's ability to improve precision, efficiency, and motivation in problem-solving tasks. By balancing computational efficiency with high personalization, this proposal offers a scalable and innovative solution that responds to current limitations in adaptive learning technologies.
AbstractList The increasing complexity of educational challenges in technical disciplines highlights the need for personalized learning systems to address diverse student needs. Traditional methods, often relying on static activities or predefined rules, limit their ability to adapt to individual progress, hindering the development of critical skills such as problem-solving. Based on rules or machine learning, existing adaptive systems offer varying levels of personalization and efficiency but face significant scalability and computational demand barriers. This study proposes an adaptive learning system powered by deep learning algorithms designed to optimize problem-solving skills in technical college students. The system dynamically adjusts the difficulty of activities based on real-time performance data, ensuring a personalized and practical learning experience. A controlled experimental study was conducted with 200 students over eight weeks, divided into pretest, intervention, and posttest phases. The experimental group, which used the adaptive system, showed a 14% improvement in precision (from 71.8% to 85%) compared to 5% for the control group. In addition, the experimental group reduced its average time per activity by 15%, achieving 105 seconds compared to 124 seconds for the control group. These results demonstrate the system's ability to improve precision, efficiency, and motivation in problem-solving tasks. By balancing computational efficiency with high personalization, this proposal offers a scalable and innovative solution that responds to current limitations in adaptive learning technologies.
Author Gutierrez, Rommel
Maldonado Navarro, Alexandra
Eduardo Villegas-Ch, William
Lujan-Mora, Sergio
Author_xml – sequence: 1
  givenname: Rommel
  orcidid: 0009-0004-3230-4129
  surname: Gutierrez
  fullname: Gutierrez, Rommel
  organization: Escuela de Ingeniería en Ciberseguridad, FICA, Universidad de Las Américas, Quito, Ecuador
– sequence: 2
  givenname: William
  orcidid: 0000-0002-5421-7710
  surname: Eduardo Villegas-Ch
  fullname: Eduardo Villegas-Ch, William
  email: william.villegas@udla.edu.ec
  organization: Escuela de Ingeniería en Ciberseguridad, FICA, Universidad de Las Américas, Quito, Ecuador
– sequence: 3
  givenname: Alexandra
  surname: Maldonado Navarro
  fullname: Maldonado Navarro, Alexandra
  organization: Escuela de Posgrados, Maestría en Derecho Digital, Universidad de Las Américas, Quito, Ecuador
– sequence: 4
  givenname: Sergio
  orcidid: 0000-0001-5000-864X
  surname: Lujan-Mora
  fullname: Lujan-Mora, Sergio
  organization: Departamento de Software y Sistemas Computacionales, Universidad de Alicante, Alicante, Spain
BookMark eNpNUV1rGzEQFCWFpml-Qftw0Odz9a27vrnGbQyGFJw-iz1pz5U5S67uHEh_feVcKNmXnV1mZhfmPbmKKSIhHxldMEbbL8vVar3bLTjlaiGUMrxhb8g1Z7qthRL66hV-R27H8UBLNWWlzDVJ96cpHMPfEPfVz5y6AY_1Lg2PlznE6gHd7xgcDNXanx1MIcWv1TJWSw9F94jVFiHHC3n3NE54rL7BiL5KhZGn0AcXinQTJxyGsMfo8AN528Mw4u1LvyG_vq8fVnf19v7HZrXc1k5oNtVeyo6xlgLXCjUyLz0o0zCgCpyTru9BU0OBOdMb7cEhb1C0smt1AQXekM3s6xMc7CmHI-QnmyDY50XKewvlQzegdR0Hr9AIwzqpJAfeQK9Uy4zkKBpavD7PXqec_pxxnOwhnXMs71vBmlKaUl5YYma5nMYxY___KqP2EpSdg7KXoOxLUEX1aVYFRHylaKUxXIp_mEyREg
CODEN IAECCG
Cites_doi 10.1016/j.measen.2024.101049
10.1080/10494820.2023.2255228
10.1007/s10643-023-01443-5
10.2478/amns.2023.2.00411
10.3390/admsci14010018
10.1109/access.2023.3276439
10.37698/eastj.v1i1.122
10.1016/j.compedu.2024.105184
10.3758/s13423-016-1026-5
10.1145/3447818.3460360
10.1016/j.aprim.2023.102721
10.1109/UBMK.2017.8093543
10.58706/ijorce.v2n1.p1-13
10.37843/rted.v15i1.308
10.14569/ijacsa.2021.0120166
10.47941/jodl.1689
10.2478/amns.2023.2.00216
10.1145/3593663.3593668
10.1109/ACCESS.2023.3298294
10.1007/978-3-031-48573-2_39
10.53623/apga.v3i2.404
10.1016/j.tsc.2023.101421
10.18517/ijaseit.13.6.19042
10.1057/s41599-020-00696-4
10.54254/2755-2721/43/20230825
10.1007/s10639-023-12066-z
10.55905/revconv.17n.2-008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3557281
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 61367
ExternalDocumentID oai_doaj_org_article_cb2ad5e7371b4542a28af5591742e380
10_1109_ACCESS_2025_3557281
10947724
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-d44b1190a265e6e1d4da5781a05acc4cffa6070a1c7f76dace28e394b9628e8e3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001464984900046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:23:51 EDT 2025
Mon Jun 30 11:49:23 EDT 2025
Sat Nov 29 08:03:34 EST 2025
Wed Aug 27 02:04:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-d44b1190a265e6e1d4da5781a05acc4cffa6070a1c7f76dace28e394b9628e8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5421-7710
0000-0001-5000-864X
0009-0004-3230-4129
OpenAccessLink https://doaj.org/article/cb2ad5e7371b4542a28af5591742e380
PQID 3188886002
PQPubID 4845423
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_cb2ad5e7371b4542a28af5591742e380
proquest_journals_3188886002
crossref_primary_10_1109_ACCESS_2025_3557281
ieee_primary_10947724
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Kannan (ref22) 2024; 12
ref15
ref14
Dobrican (ref5)
ref31
ref30
ref11
ref10
ref2
ref17
ref16
ref19
ref18
ref24
ref26
ref25
ref20
ref21
ref28
ref27
Tojimamatovich (ref1) 2023; 2
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Alto (ref23) 2023
References_xml – ident: ref11
  doi: 10.1016/j.measen.2024.101049
– year: 2023
  ident: ref23
  article-title: Modern generative AI with ChatGPT and OpenAI models: Leverage the capabilities of OpenAI’s LLM for productivity and innovation with GPT3 and GPT4
  publication-title: IEEE Trans. Fuzzy Syst.
– ident: ref24
  doi: 10.1080/10494820.2023.2255228
– ident: ref20
  doi: 10.1007/s10643-023-01443-5
– ident: ref31
  doi: 10.2478/amns.2023.2.00411
– ident: ref12
  doi: 10.3390/admsci14010018
– ident: ref8
  doi: 10.1109/access.2023.3276439
– ident: ref18
  doi: 10.37698/eastj.v1i1.122
– volume: 12
  start-page: 228
  issue: 1
  year: 2024
  ident: ref22
  article-title: Graph neural networks for predicting student performance: A deep learning approach for academic success forecasting
  publication-title: Int. J. Intell. Syst. Appl. Eng.
– ident: ref13
  doi: 10.1016/j.compedu.2024.105184
– ident: ref26
  doi: 10.3758/s13423-016-1026-5
– ident: ref19
  doi: 10.1145/3447818.3460360
– ident: ref25
  doi: 10.1016/j.aprim.2023.102721
– ident: ref27
  doi: 10.1109/UBMK.2017.8093543
– start-page: 5824
  volume-title: Proc. Edulearn
  ident: ref5
  article-title: Supporting collaborative learning inside communities of practice through proactive computing
– ident: ref6
  doi: 10.58706/ijorce.v2n1.p1-13
– ident: ref7
  doi: 10.37843/rted.v15i1.308
– ident: ref9
  doi: 10.14569/ijacsa.2021.0120166
– ident: ref2
  doi: 10.47941/jodl.1689
– ident: ref21
  doi: 10.2478/amns.2023.2.00216
– ident: ref17
  doi: 10.1145/3593663.3593668
– ident: ref16
  doi: 10.1109/ACCESS.2023.3298294
– ident: ref29
  doi: 10.1007/978-3-031-48573-2_39
– ident: ref4
  doi: 10.53623/apga.v3i2.404
– ident: ref3
  doi: 10.1016/j.tsc.2023.101421
– ident: ref15
  doi: 10.18517/ijaseit.13.6.19042
– ident: ref14
  doi: 10.1057/s41599-020-00696-4
– ident: ref30
  doi: 10.54254/2755-2721/43/20230825
– ident: ref28
  doi: 10.1007/s10639-023-12066-z
– volume: 2
  start-page: 202
  issue: 4
  year: 2023
  ident: ref1
  article-title: Digital transformation of educational management system
  publication-title: Universal J. Ie Educ.
– ident: ref10
  doi: 10.55905/revconv.17n.2-008
SSID ssj0000816957
Score 2.3344793
Snippet The increasing complexity of educational challenges in technical disciplines highlights the need for personalized learning systems to address diverse student...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 61350
SubjectTerms Adaptation models
Adaptive learning
Adaptive systems
Algorithms
Artificial intelligence
artificial intelligence in education
Colleges & universities
Computational efficiency
Customization
Deep learning
Efficiency
Heuristic algorithms
learning personalization
Machine learning
Measurement
Optimization
Problem solving
Real time
Real-time systems
Skills
Students
Technical colleges
Technical education
Training
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VVQ_0QF9ULIXKhx4JXTt2HHNbVqBWqigSrcTNcvyoVoJkBbsc-usZP1gtqnpoTk7kyI6_zIxnbH8D8Nm4TkYmsKq2LkarqKpUiHtdO4f20HsTQspa8l1eXLTX1-qyHFZPZ2G892nzmT-OxbSW7wa7iqEylHDFcTbIt2BLyiYf1loHVGIGCSVkYRbCql-msxl-BPqATByjWZWspc-sTyLpL1lV_lLFyb6cv_7Pnr2BnTKRJNOM_Ft44ft38GqDXvA9DD9QH9zO_-ANucyJY6qr4SaGEMi8JymqHjEi610eJ2Tak6kzi6gESeFe_U0yrTk5RYvnyNCnRjPzBPm2Qem5C7_Oz37OvlYlwUJl64YuK8d5R3FGYFgjfOOp486gBFMzEcZabkMwDaoEQ60MsnHGetb6WvFONVjA4gcY9UPv94BQ4aSjtZ-YruFGBiVUrGmDYBa9HjGGo6eB14vMo6GT_zFROuOkI0664DSG0wjOumokwU4PcNR1kSltO2ac8LKWtOOCM8NaE9BDQieL-bqdjGE3IrXRXgZpDAdPWOsisfcadRtecZVy_x-vfYTt2MUcfzmA0fJu5Q_hpX1Yzu_vPqWf8RH0L95j
  priority: 102
  providerName: IEEE
Title Optimizing Problem-Solving in Technical Education: An Adaptive Learning System Based on Artificial Intelligence
URI https://ieeexplore.ieee.org/document/10947724
https://www.proquest.com/docview/3188886002
https://doaj.org/article/cb2ad5e7371b4542a28af5591742e380
Volume 13
WOSCitedRecordID wos001464984900046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYNHq02aNI233UVR8AUqeAtpHrKgXdHVgwd_u5OkKxUPXuyhpCWQZqbz7PQbhPa0rUVAAssKY0O2ishM-lDrWluwh85p72PXknNxeVnd38vrTquvUBOW4IET4Q5NTbXlThSC1IwzqmmlPbjB4ElTV1QxWs-F7ARTUQdXpJRctDBDJJeH_eEQdgQBIeUHYGMFrcgPUxQR-9sWK7_0cjQ2J0tosfUScT893TKacc0KWuhgB66i8RUI-9PoAy7wdeoKk92MH0N-AI8aHFPmgQH4u4TjCPcb3Lf6OWg43AKrPuCEWY4HYM4sHjdx0QQrgc86eJ1r6O7k-HZ4mrXdEzJTlGSSWcZqAuZe05K70hHLrAbxJDrn2hhmvNclyLsmRnhRWm0crVwhWS1LGMBwHc0248ZtIEy4FZYULtd1ybTwkssw03hODYQ0vIf2p4RUzwkkQ8XgIpcq0V0FuquW7j00CMT-nhoQruMN4Ltq-a7-4nsPrQVWddaTDCIF1kPbU96pVhxfFSguOMInyM3_WHsLzYf9pEzMNpqdvLy5HTRn3iej15fd-CbC-eLzeDf-T_gFcRbiNA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQQIOPFuxUMAHjqTEjh3H3LYrqlYsSyWK1Jvl-IFWoknVbjnw6xk_utqq4kBOTuTIjr_MjGdsfwPw3rheRiawqrEuRquoqlSIe117h_bQexNCyloyl4tFd3qqjsth9XQWxnufNp_5vVhMa_lutFcxVIYSrjjOBvlduCc4Z3U-rrUOqcQcEkrIwi2ElT9OZzP8DPQCmdhDwypZR2_Yn0TTX_Kq3FLGycIcPPnPvj2Fx2UqSaYZ-2dwxw_P4dEGweALGL-hRjhb_sEbcpxTx1Tfx18xiECWA0lx9YgSWe_z-ESmA5k6cx7VICnsqz9JJjYn-2jzHBmH1GjmniBHG6Se2_Dj4PPJ7LAqKRYq27R0VTnOe4pzAsNa4VtPHXcGZZiaWhhruQ3BtKgUDLUyyNYZ61nnG8V71WIBizuwNYyDfwmECicdbXxt-pYbGZRQsaYNgln0e8QEPlwPvD7PTBo6eSC10hknHXHSBacJ7Edw1lUjDXZ6gKOui1Rp2zPjhJeNpD0XnBnWmYA-ErpZzDddPYHtiNRGexmkCexeY62LzF5q1G54xXXKV_947R08ODz5Otfzo8WX1_AwdjdHY3Zha3Vx5d_Afft7tby8eJt-zL-qDuGq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Problem-Solving+in+Technical+Education%3A+An+Adaptive+Learning+System+Based+on+Artificial+Intelligence&rft.jtitle=IEEE+access&rft.au=Gutierrez%2C+Rommel&rft.au=Eduardo+Villegas-Ch%2C+William&rft.au=Maldonado+Navarro%2C+Alexandra&rft.au=Luj%C3%A1n-Mora%2C+Sergio&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=61350&rft.epage=61367&rft_id=info:doi/10.1109%2FACCESS.2025.3557281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3557281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon