Optimizing Problem-Solving in Technical Education: An Adaptive Learning System Based on Artificial Intelligence
The increasing complexity of educational challenges in technical disciplines highlights the need for personalized learning systems to address diverse student needs. Traditional methods, often relying on static activities or predefined rules, limit their ability to adapt to individual progress, hinde...
Saved in:
| Published in: | IEEE access Vol. 13; pp. 61350 - 61367 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The increasing complexity of educational challenges in technical disciplines highlights the need for personalized learning systems to address diverse student needs. Traditional methods, often relying on static activities or predefined rules, limit their ability to adapt to individual progress, hindering the development of critical skills such as problem-solving. Based on rules or machine learning, existing adaptive systems offer varying levels of personalization and efficiency but face significant scalability and computational demand barriers. This study proposes an adaptive learning system powered by deep learning algorithms designed to optimize problem-solving skills in technical college students. The system dynamically adjusts the difficulty of activities based on real-time performance data, ensuring a personalized and practical learning experience. A controlled experimental study was conducted with 200 students over eight weeks, divided into pretest, intervention, and posttest phases. The experimental group, which used the adaptive system, showed a 14% improvement in precision (from 71.8% to 85%) compared to 5% for the control group. In addition, the experimental group reduced its average time per activity by 15%, achieving 105 seconds compared to 124 seconds for the control group. These results demonstrate the system's ability to improve precision, efficiency, and motivation in problem-solving tasks. By balancing computational efficiency with high personalization, this proposal offers a scalable and innovative solution that responds to current limitations in adaptive learning technologies. |
|---|---|
| AbstractList | The increasing complexity of educational challenges in technical disciplines highlights the need for personalized learning systems to address diverse student needs. Traditional methods, often relying on static activities or predefined rules, limit their ability to adapt to individual progress, hindering the development of critical skills such as problem-solving. Based on rules or machine learning, existing adaptive systems offer varying levels of personalization and efficiency but face significant scalability and computational demand barriers. This study proposes an adaptive learning system powered by deep learning algorithms designed to optimize problem-solving skills in technical college students. The system dynamically adjusts the difficulty of activities based on real-time performance data, ensuring a personalized and practical learning experience. A controlled experimental study was conducted with 200 students over eight weeks, divided into pretest, intervention, and posttest phases. The experimental group, which used the adaptive system, showed a 14% improvement in precision (from 71.8% to 85%) compared to 5% for the control group. In addition, the experimental group reduced its average time per activity by 15%, achieving 105 seconds compared to 124 seconds for the control group. These results demonstrate the system's ability to improve precision, efficiency, and motivation in problem-solving tasks. By balancing computational efficiency with high personalization, this proposal offers a scalable and innovative solution that responds to current limitations in adaptive learning technologies. |
| Author | Gutierrez, Rommel Maldonado Navarro, Alexandra Eduardo Villegas-Ch, William Lujan-Mora, Sergio |
| Author_xml | – sequence: 1 givenname: Rommel orcidid: 0009-0004-3230-4129 surname: Gutierrez fullname: Gutierrez, Rommel organization: Escuela de Ingeniería en Ciberseguridad, FICA, Universidad de Las Américas, Quito, Ecuador – sequence: 2 givenname: William orcidid: 0000-0002-5421-7710 surname: Eduardo Villegas-Ch fullname: Eduardo Villegas-Ch, William email: william.villegas@udla.edu.ec organization: Escuela de Ingeniería en Ciberseguridad, FICA, Universidad de Las Américas, Quito, Ecuador – sequence: 3 givenname: Alexandra surname: Maldonado Navarro fullname: Maldonado Navarro, Alexandra organization: Escuela de Posgrados, Maestría en Derecho Digital, Universidad de Las Américas, Quito, Ecuador – sequence: 4 givenname: Sergio orcidid: 0000-0001-5000-864X surname: Lujan-Mora fullname: Lujan-Mora, Sergio organization: Departamento de Software y Sistemas Computacionales, Universidad de Alicante, Alicante, Spain |
| BookMark | eNpNUV1rGzEQFCWFpml-Qftw0Odz9a27vrnGbQyGFJw-iz1pz5U5S67uHEh_feVcKNmXnV1mZhfmPbmKKSIhHxldMEbbL8vVar3bLTjlaiGUMrxhb8g1Z7qthRL66hV-R27H8UBLNWWlzDVJ96cpHMPfEPfVz5y6AY_1Lg2PlznE6gHd7xgcDNXanx1MIcWv1TJWSw9F94jVFiHHC3n3NE54rL7BiL5KhZGn0AcXinQTJxyGsMfo8AN528Mw4u1LvyG_vq8fVnf19v7HZrXc1k5oNtVeyo6xlgLXCjUyLz0o0zCgCpyTru9BU0OBOdMb7cEhb1C0smt1AQXekM3s6xMc7CmHI-QnmyDY50XKewvlQzegdR0Hr9AIwzqpJAfeQK9Uy4zkKBpavD7PXqec_pxxnOwhnXMs71vBmlKaUl5YYma5nMYxY___KqP2EpSdg7KXoOxLUEX1aVYFRHylaKUxXIp_mEyREg |
| CODEN | IAECCG |
| Cites_doi | 10.1016/j.measen.2024.101049 10.1080/10494820.2023.2255228 10.1007/s10643-023-01443-5 10.2478/amns.2023.2.00411 10.3390/admsci14010018 10.1109/access.2023.3276439 10.37698/eastj.v1i1.122 10.1016/j.compedu.2024.105184 10.3758/s13423-016-1026-5 10.1145/3447818.3460360 10.1016/j.aprim.2023.102721 10.1109/UBMK.2017.8093543 10.58706/ijorce.v2n1.p1-13 10.37843/rted.v15i1.308 10.14569/ijacsa.2021.0120166 10.47941/jodl.1689 10.2478/amns.2023.2.00216 10.1145/3593663.3593668 10.1109/ACCESS.2023.3298294 10.1007/978-3-031-48573-2_39 10.53623/apga.v3i2.404 10.1016/j.tsc.2023.101421 10.18517/ijaseit.13.6.19042 10.1057/s41599-020-00696-4 10.54254/2755-2721/43/20230825 10.1007/s10639-023-12066-z 10.55905/revconv.17n.2-008 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3557281 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 61367 |
| ExternalDocumentID | oai_doaj_org_article_cb2ad5e7371b4542a28af5591742e380 10_1109_ACCESS_2025_3557281 10947724 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-d44b1190a265e6e1d4da5781a05acc4cffa6070a1c7f76dace28e394b9628e8e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001464984900046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:23:51 EDT 2025 Mon Jun 30 11:49:23 EDT 2025 Sat Nov 29 08:03:34 EST 2025 Wed Aug 27 02:04:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-d44b1190a265e6e1d4da5781a05acc4cffa6070a1c7f76dace28e394b9628e8e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5421-7710 0000-0001-5000-864X 0009-0004-3230-4129 |
| OpenAccessLink | https://doaj.org/article/cb2ad5e7371b4542a28af5591742e380 |
| PQID | 3188886002 |
| PQPubID | 4845423 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cb2ad5e7371b4542a28af5591742e380 proquest_journals_3188886002 crossref_primary_10_1109_ACCESS_2025_3557281 ieee_primary_10947724 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 Kannan (ref22) 2024; 12 ref15 ref14 Dobrican (ref5) ref31 ref30 ref11 ref10 ref2 ref17 ref16 ref19 ref18 ref24 ref26 ref25 ref20 ref21 ref28 ref27 Tojimamatovich (ref1) 2023; 2 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Alto (ref23) 2023 |
| References_xml | – ident: ref11 doi: 10.1016/j.measen.2024.101049 – year: 2023 ident: ref23 article-title: Modern generative AI with ChatGPT and OpenAI models: Leverage the capabilities of OpenAI’s LLM for productivity and innovation with GPT3 and GPT4 publication-title: IEEE Trans. Fuzzy Syst. – ident: ref24 doi: 10.1080/10494820.2023.2255228 – ident: ref20 doi: 10.1007/s10643-023-01443-5 – ident: ref31 doi: 10.2478/amns.2023.2.00411 – ident: ref12 doi: 10.3390/admsci14010018 – ident: ref8 doi: 10.1109/access.2023.3276439 – ident: ref18 doi: 10.37698/eastj.v1i1.122 – volume: 12 start-page: 228 issue: 1 year: 2024 ident: ref22 article-title: Graph neural networks for predicting student performance: A deep learning approach for academic success forecasting publication-title: Int. J. Intell. Syst. Appl. Eng. – ident: ref13 doi: 10.1016/j.compedu.2024.105184 – ident: ref26 doi: 10.3758/s13423-016-1026-5 – ident: ref19 doi: 10.1145/3447818.3460360 – ident: ref25 doi: 10.1016/j.aprim.2023.102721 – ident: ref27 doi: 10.1109/UBMK.2017.8093543 – start-page: 5824 volume-title: Proc. Edulearn ident: ref5 article-title: Supporting collaborative learning inside communities of practice through proactive computing – ident: ref6 doi: 10.58706/ijorce.v2n1.p1-13 – ident: ref7 doi: 10.37843/rted.v15i1.308 – ident: ref9 doi: 10.14569/ijacsa.2021.0120166 – ident: ref2 doi: 10.47941/jodl.1689 – ident: ref21 doi: 10.2478/amns.2023.2.00216 – ident: ref17 doi: 10.1145/3593663.3593668 – ident: ref16 doi: 10.1109/ACCESS.2023.3298294 – ident: ref29 doi: 10.1007/978-3-031-48573-2_39 – ident: ref4 doi: 10.53623/apga.v3i2.404 – ident: ref3 doi: 10.1016/j.tsc.2023.101421 – ident: ref15 doi: 10.18517/ijaseit.13.6.19042 – ident: ref14 doi: 10.1057/s41599-020-00696-4 – ident: ref30 doi: 10.54254/2755-2721/43/20230825 – ident: ref28 doi: 10.1007/s10639-023-12066-z – volume: 2 start-page: 202 issue: 4 year: 2023 ident: ref1 article-title: Digital transformation of educational management system publication-title: Universal J. Ie Educ. – ident: ref10 doi: 10.55905/revconv.17n.2-008 |
| SSID | ssj0000816957 |
| Score | 2.3344793 |
| Snippet | The increasing complexity of educational challenges in technical disciplines highlights the need for personalized learning systems to address diverse student... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 61350 |
| SubjectTerms | Adaptation models Adaptive learning Adaptive systems Algorithms Artificial intelligence artificial intelligence in education Colleges & universities Computational efficiency Customization Deep learning Efficiency Heuristic algorithms learning personalization Machine learning Measurement Optimization Problem solving Real time Real-time systems Skills Students Technical colleges Technical education Training |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VVQ_0QF9ULIXKhx4JXTt2HHNbVqBWqigSrcTNcvyoVoJkBbsc-usZP1gtqnpoTk7kyI6_zIxnbH8D8Nm4TkYmsKq2LkarqKpUiHtdO4f20HsTQspa8l1eXLTX1-qyHFZPZ2G892nzmT-OxbSW7wa7iqEylHDFcTbIt2BLyiYf1loHVGIGCSVkYRbCql-msxl-BPqATByjWZWspc-sTyLpL1lV_lLFyb6cv_7Pnr2BnTKRJNOM_Ft44ft38GqDXvA9DD9QH9zO_-ANucyJY6qr4SaGEMi8JymqHjEi610eJ2Tak6kzi6gESeFe_U0yrTk5RYvnyNCnRjPzBPm2Qem5C7_Oz37OvlYlwUJl64YuK8d5R3FGYFgjfOOp486gBFMzEcZabkMwDaoEQ60MsnHGetb6WvFONVjA4gcY9UPv94BQ4aSjtZ-YruFGBiVUrGmDYBa9HjGGo6eB14vMo6GT_zFROuOkI0664DSG0wjOumokwU4PcNR1kSltO2ac8LKWtOOCM8NaE9BDQieL-bqdjGE3IrXRXgZpDAdPWOsisfcadRtecZVy_x-vfYTt2MUcfzmA0fJu5Q_hpX1Yzu_vPqWf8RH0L95j priority: 102 providerName: IEEE |
| Title | Optimizing Problem-Solving in Technical Education: An Adaptive Learning System Based on Artificial Intelligence |
| URI | https://ieeexplore.ieee.org/document/10947724 https://www.proquest.com/docview/3188886002 https://doaj.org/article/cb2ad5e7371b4542a28af5591742e380 |
| Volume | 13 |
| WOSCitedRecordID | wos001464984900046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYNHq02aNI233UVR8AUqeAtpHrKgXdHVgwd_u5OkKxUPXuyhpCWQZqbz7PQbhPa0rUVAAssKY0O2ishM-lDrWluwh85p72PXknNxeVnd38vrTquvUBOW4IET4Q5NTbXlThSC1IwzqmmlPbjB4ElTV1QxWs-F7ARTUQdXpJRctDBDJJeH_eEQdgQBIeUHYGMFrcgPUxQR-9sWK7_0cjQ2J0tosfUScT893TKacc0KWuhgB66i8RUI-9PoAy7wdeoKk92MH0N-AI8aHFPmgQH4u4TjCPcb3Lf6OWg43AKrPuCEWY4HYM4sHjdx0QQrgc86eJ1r6O7k-HZ4mrXdEzJTlGSSWcZqAuZe05K70hHLrAbxJDrn2hhmvNclyLsmRnhRWm0crVwhWS1LGMBwHc0248ZtIEy4FZYULtd1ybTwkssw03hODYQ0vIf2p4RUzwkkQ8XgIpcq0V0FuquW7j00CMT-nhoQruMN4Ltq-a7-4nsPrQVWddaTDCIF1kPbU96pVhxfFSguOMInyM3_WHsLzYf9pEzMNpqdvLy5HTRn3iej15fd-CbC-eLzeDf-T_gFcRbiNA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQQIOPFuxUMAHjqTEjh3H3LYrqlYsSyWK1Jvl-IFWoknVbjnw6xk_utqq4kBOTuTIjr_MjGdsfwPw3rheRiawqrEuRquoqlSIe117h_bQexNCyloyl4tFd3qqjsth9XQWxnufNp_5vVhMa_lutFcxVIYSrjjOBvlduCc4Z3U-rrUOqcQcEkrIwi2ElT9OZzP8DPQCmdhDwypZR2_Yn0TTX_Kq3FLGycIcPPnPvj2Fx2UqSaYZ-2dwxw_P4dEGweALGL-hRjhb_sEbcpxTx1Tfx18xiECWA0lx9YgSWe_z-ESmA5k6cx7VICnsqz9JJjYn-2jzHBmH1GjmniBHG6Se2_Dj4PPJ7LAqKRYq27R0VTnOe4pzAsNa4VtPHXcGZZiaWhhruQ3BtKgUDLUyyNYZ61nnG8V71WIBizuwNYyDfwmECicdbXxt-pYbGZRQsaYNgln0e8QEPlwPvD7PTBo6eSC10hknHXHSBacJ7Edw1lUjDXZ6gKOui1Rp2zPjhJeNpD0XnBnWmYA-ErpZzDddPYHtiNRGexmkCexeY62LzF5q1G54xXXKV_947R08ODz5Otfzo8WX1_AwdjdHY3Zha3Vx5d_Afft7tby8eJt-zL-qDuGq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Problem-Solving+in+Technical+Education%3A+An+Adaptive+Learning+System+Based+on+Artificial+Intelligence&rft.jtitle=IEEE+access&rft.au=Gutierrez%2C+Rommel&rft.au=Eduardo+Villegas-Ch%2C+William&rft.au=Maldonado+Navarro%2C+Alexandra&rft.au=Luj%C3%A1n-Mora%2C+Sergio&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=61350&rft.epage=61367&rft_id=info:doi/10.1109%2FACCESS.2025.3557281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3557281 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |