Application of Machine Learning Method of Data-Driven Deep Learning Model to Predict Well Production Rate in the Shale Gas Reservoirs

Reservoir modeling to predict shale reservoir productivity is considerably uncertain and time consuming. Since we need to simulate the physical phenomenon of multi-stage hydraulic fracturing. To overcome these limitations, this paper presents an alternative proxy model based on data-driven deep lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 14; H. 12; S. 3629
Hauptverfasser: Han, Dongkwon, Kwon, Sunil
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2021
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Reservoir modeling to predict shale reservoir productivity is considerably uncertain and time consuming. Since we need to simulate the physical phenomenon of multi-stage hydraulic fracturing. To overcome these limitations, this paper presents an alternative proxy model based on data-driven deep learning model. Furthermore, this study not only proposes the development process of a proxy model, but also verifies using field data for 1239 horizontal wells from the Montney shale formation in Alberta, Canada. A deep neural network (DNN) based on multi-layer perceptron was applied to predict the cumulative gas production as the dependent variable. The independent variable is largely divided into four types: well information, completion and hydraulic fracturing and production data. It was found that the prediction performance was better when using a principal component with a cumulative contribution of 85% using principal component analysis that extracts important information from multivariate data, and when predicting with a DNN model using 6 variables calculated through variable importance analysis. Hence, to develop a reliable deep learning model, sensitivity analysis of hyperparameters was performed to determine one-hot encoding, dropout, activation function, learning rate, hidden layer number and neuron number. As a result, the best prediction of the mean absolute percentage error of the cumulative gas production improved to at least 0.2% and up to 9.1%. The novel approach of this study can also be applied to other shale formations. Furthermore, a useful guide for economic analysis and future development plans of nearby reservoirs.
AbstractList Reservoir modeling to predict shale reservoir productivity is considerably uncertain and time consuming. Since we need to simulate the physical phenomenon of multi-stage hydraulic fracturing. To overcome these limitations, this paper presents an alternative proxy model based on data-driven deep learning model. Furthermore, this study not only proposes the development process of a proxy model, but also verifies using field data for 1239 horizontal wells from the Montney shale formation in Alberta, Canada. A deep neural network (DNN) based on multi-layer perceptron was applied to predict the cumulative gas production as the dependent variable. The independent variable is largely divided into four types: well information, completion and hydraulic fracturing and production data. It was found that the prediction performance was better when using a principal component with a cumulative contribution of 85% using principal component analysis that extracts important information from multivariate data, and when predicting with a DNN model using 6 variables calculated through variable importance analysis. Hence, to develop a reliable deep learning model, sensitivity analysis of hyperparameters was performed to determine one-hot encoding, dropout, activation function, learning rate, hidden layer number and neuron number. As a result, the best prediction of the mean absolute percentage error of the cumulative gas production improved to at least 0.2% and up to 9.1%. The novel approach of this study can also be applied to other shale formations. Furthermore, a useful guide for economic analysis and future development plans of nearby reservoirs.
Author Han, Dongkwon
Kwon, Sunil
Author_xml – sequence: 1
  givenname: Dongkwon
  orcidid: 0000-0002-5325-7841
  surname: Han
  fullname: Han, Dongkwon
– sequence: 2
  givenname: Sunil
  orcidid: 0000-0003-1513-5103
  surname: Kwon
  fullname: Kwon, Sunil
BookMark eNptkVFrFDEQx4NUsNa--AkCvgmrSWZ3kzyWnq2FK0pVfAzZZLaXY03WJFfwA_i93bsTLWJeJjPzm_8M_J-Tk5giEvKSszcAmr3FyFsuoBf6CTnlWvcNZxJOHv2fkfNStmx5ABwATsnPi3megrM1pEjTSG-t24SIdI02xxDv6S3WTfL71spW26xyeMBIV4jzIyZ5nGhN9GNGH1ylX3GaliT5nTsI39mKNERaN0g_beyE9NoWeocF80MKubwgT0c7FTz_Hc_Il6t3ny_fN-sP1zeXF-vGQc9r42HwKMHzXmvW-bEHLwepJCjomOBO9rJD3bUjjBa09n4QwvGhxaEbVNcrOCM3R12f7NbMOXyz-YdJNphDIeV7Y3MNbkLTOiW4ErIDNbTaKdVL6UYcvOeA0otF69VRa87p-w5LNdu0y3E534iubbVsFdtTr4-Uy6mUjOOfrZyZvWvmr2sLzP6BXagHa2q2YfrfyC8E5Zps
CitedBy_id crossref_primary_10_3390_en18030657
crossref_primary_10_3390_en16031500
crossref_primary_10_1016_j_apenergy_2024_123293
crossref_primary_10_32604_ee_2025_060489
crossref_primary_10_1155_gfl_9802201
crossref_primary_10_3390_electronics14132655
crossref_primary_10_1016_j_asoc_2024_111885
crossref_primary_10_3390_app14103954
crossref_primary_10_3390_sym16050600
crossref_primary_10_1007_s41872_025_00313_w
crossref_primary_10_3390_pr13092820
crossref_primary_10_3390_s22145326
crossref_primary_10_1016_j_flowmeasinst_2024_102601
crossref_primary_10_1007_s13202_025_01939_3
crossref_primary_10_1016_j_gsme_2025_09_003
crossref_primary_10_1144_petgeo2022_071
crossref_primary_10_2118_230283_PA
crossref_primary_10_1016_j_chemosphere_2024_142367
crossref_primary_10_1016_j_energy_2023_130184
crossref_primary_10_1007_s11770_022_0932_8
crossref_primary_10_1016_j_cherd_2022_08_016
crossref_primary_10_3390_en17235910
crossref_primary_10_3390_en15176161
crossref_primary_10_3390_en18143881
crossref_primary_10_1016_j_jgsce_2024_205475
crossref_primary_10_3390_jcs9060278
crossref_primary_10_1016_j_petrol_2022_110544
crossref_primary_10_1515_phys_2022_0233
crossref_primary_10_1016_j_petrol_2022_110900
crossref_primary_10_1016_j_petsci_2022_12_003
crossref_primary_10_1016_j_resourpol_2023_103994
Cites_doi 10.2118/169531-MS
10.1016/j.petrol.2020.107032
10.2118/178653-MS
10.1016/j.petrol.2018.05.001
10.1016/j.coal.2017.06.011
10.15530/urtec-2020-2465
10.1016/j.neuroimage.2018.01.046
10.2118/184064-MS
10.1016/j.petrol.2017.10.079
10.1016/j.petrol.2019.106692
10.15530/urtec-2020-2434
10.3390/sym12071122
10.3390/app10041267
10.2118/119369-MS
10.3390/fluids4030126
10.3390/en12020220
10.2118/116731-MS
10.1016/j.jngse.2013.01.003
10.2118/153072-MS
10.2118/167753-PA
10.1007/s12517-019-4567-x
10.2118/137748-PA
10.1016/j.petrol.2018.12.020
10.1038/nature14539
10.2118/184822-MS
10.1016/j.petlm.2018.08.002
10.15530/urtec-2018-2892966
10.1016/j.jngse.2017.01.014
10.1016/j.petrol.2020.107243
10.1016/j.cageo.2017.03.009
10.2118/173334-MS
10.2118/179171-MS
10.1016/j.petrol.2016.06.029
10.2118/187505-MS
10.3233/IDA-1997-1302
10.1016/j.petrol.2018.11.076
10.2118/191362-PA
10.15530/AP-URTEC-2019-198198
10.1016/j.jngse.2015.08.005
10.2118/152530-MS
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en14123629
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_4c821827538b49c88677cfebdd13e7d2
10_3390_en14123629
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-d3bde73d169905df63d7b7873835021c7675e954f3fa399ddb22c1b4eb5b85683
IEDL.DBID DOA
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000666510500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:46:17 EDT 2025
Mon Jun 30 07:27:01 EDT 2025
Sat Nov 29 07:11:15 EST 2025
Tue Nov 18 21:52:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-d3bde73d169905df63d7b7873835021c7675e954f3fa399ddb22c1b4eb5b85683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1513-5103
0000-0002-5325-7841
OpenAccessLink https://doaj.org/article/4c821827538b49c88677cfebdd13e7d2
PQID 2544974802
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_4c821827538b49c88677cfebdd13e7d2
proquest_journals_2544974802
crossref_primary_10_3390_en14123629
crossref_citationtrail_10_3390_en14123629
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Arps (ref_10) 1945; 160
Hu (ref_18) 2018; 162
ref_14
ref_13
Davarpanah (ref_9) 2019; 12
ref_51
Duong (ref_16) 2011; 14
LeCun (ref_43) 2015; 521
ref_17
ref_15
Mahta (ref_39) 2019; 174
ref_24
ref_21
Makinde (ref_40) 2019; 5
ref_20
Weijermars (ref_23) 2020; 190
Kulga (ref_19) 2017; 103
Wang (ref_38) 2019; 174
ref_29
ref_28
ref_27
Tugan (ref_11) 2020; 187
Tugan (ref_25) 2018; 168
Khanal (ref_41) 2017; 38
Mohaghegh (ref_26) 2013; 12
Dash (ref_44) 1997; 1
Shengwei (ref_49) 2018; 172
ref_36
ref_35
Wu (ref_5) 2018; 22
ref_34
ref_33
ref_32
ref_31
ref_30
Tugan (ref_12) 2020; 192
ref_37
Mustafa (ref_48) 2016; 145
ref_47
ref_46
Hongyan (ref_50) 2017; 179
ref_45
ref_42
Knudsen (ref_22) 2015; 27 Pt 2
ref_1
ref_3
ref_2
Sun (ref_7) 2015; 20
ref_8
ref_4
ref_6
References_xml – ident: ref_46
  doi: 10.2118/169531-MS
– volume: 190
  start-page: 107032
  year: 2020
  ident: ref_23
  article-title: Production rates and EUR forecasts for interfering parent-parent wells and parent-child wells: Fast analytical solutions and validation with numerical reservoir simulators
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107032
– ident: ref_47
  doi: 10.2118/178653-MS
– ident: ref_51
– volume: 168
  start-page: 107
  year: 2018
  ident: ref_25
  article-title: A new fully probabilistic methodology and a software for assessing uncertainties and managing risks in shale gas projects at any maturity stage
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.05.001
– volume: 179
  start-page: 269
  year: 2017
  ident: ref_50
  article-title: A new method for TOC estimation in tight shale gas reservoirs
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2017.06.011
– ident: ref_42
– ident: ref_36
  doi: 10.15530/urtec-2020-2465
– volume: 172
  start-page: 40
  year: 2018
  ident: ref_49
  article-title: Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template characteristics, spatial normalization accuracy, and detection of small inter-group FA differences
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.01.046
– ident: ref_32
  doi: 10.2118/184064-MS
– volume: 162
  start-page: 617
  year: 2018
  ident: ref_18
  article-title: Benchmarking EUR estimates for hydraulically fractured wells with and without fracture hits using various DCA methods
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.10.079
– volume: 187
  start-page: 106692
  year: 2020
  ident: ref_11
  article-title: Improved EUR prediction for multi-fractured hydrocarbon wells based on 3-segment DCA: Implications for production forecasting of parent and child wells
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.106692
– ident: ref_8
– ident: ref_24
  doi: 10.15530/urtec-2020-2434
– ident: ref_6
  doi: 10.3390/sym12071122
– ident: ref_27
  doi: 10.3390/app10041267
– ident: ref_31
– ident: ref_14
  doi: 10.2118/119369-MS
– ident: ref_20
  doi: 10.3390/fluids4030126
– volume: 160
  start-page: 228
  year: 1945
  ident: ref_10
  article-title: Analysis of decline curves
  publication-title: Trans. Am. Inst. Min. Metall. Eng.
– ident: ref_21
  doi: 10.3390/en12020220
– ident: ref_15
  doi: 10.2118/116731-MS
– ident: ref_17
– volume: 12
  start-page: 22
  year: 2013
  ident: ref_26
  article-title: Reservoir Modeling of Shale Formations
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2013.01.003
– ident: ref_1
  doi: 10.2118/153072-MS
– volume: 20
  start-page: 142
  year: 2015
  ident: ref_7
  article-title: Understanding Shale Gas Flow Behavior Using Numerical Simulation
  publication-title: SPE J.
  doi: 10.2118/167753-PA
– volume: 12
  start-page: 402
  year: 2019
  ident: ref_9
  article-title: Analysis of hydraulic fracturing techniques: Hybrid fuzzy approaches
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-019-4567-x
– ident: ref_28
– volume: 14
  start-page: 377
  year: 2011
  ident: ref_16
  article-title: Rate-decline analysis for fracture-dominated shale reservoirs
  publication-title: SPE Reserv. Eval. Eng.
  doi: 10.2118/137748-PA
– volume: 174
  start-page: 1127
  year: 2019
  ident: ref_39
  article-title: On multistage hydraulic fracturing in tight gas reservoirs: Montney Formation, Alberta, Canada
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.12.020
– ident: ref_3
– ident: ref_34
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_43
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_33
  doi: 10.2118/184822-MS
– volume: 5
  start-page: 227
  year: 2019
  ident: ref_40
  article-title: Principal components methodology—A novel approach to forecasting production from liquid-rich shale (LRS) reservoirs
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2018.08.002
– ident: ref_13
  doi: 10.15530/urtec-2018-2892966
– volume: 38
  start-page: 621
  year: 2017
  ident: ref_41
  article-title: New forecasting method for liquid rich shale gas condensate reservoirs with data driven approach using principal component analysis
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.01.014
– ident: ref_37
– volume: 192
  start-page: 107243
  year: 2020
  ident: ref_12
  article-title: Variation in b-sigmoids with flow regime transitions in support of a new 3-segment DCA method: Improved production forecasting for tight oil and gas wells
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107243
– volume: 103
  start-page: 99
  year: 2017
  ident: ref_19
  article-title: Development of a data-driven forecasting tool for hydraulically fractured, horizontal wells in tight-gas sands
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2017.03.009
– ident: ref_29
  doi: 10.2118/173334-MS
– ident: ref_30
  doi: 10.2118/179171-MS
– volume: 145
  start-page: 548
  year: 2016
  ident: ref_48
  article-title: Artificial neural network application for multiphase flow patterns detection: A new approach
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2016.06.029
– ident: ref_2
– ident: ref_4
  doi: 10.2118/187505-MS
– volume: 1
  start-page: 131
  year: 1997
  ident: ref_44
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-1997-1302
– volume: 174
  start-page: 682
  year: 2019
  ident: ref_38
  article-title: Insights to fracture stimulation design in unconventional reservoirs based on machine learning modeling
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.11.076
– volume: 22
  start-page: 238
  year: 2018
  ident: ref_5
  article-title: Production-Performance Analysis of Composite Shale-Gas reservoirs by the Boundary-Element Method
  publication-title: SPE Reserv. Eval. Eng.
  doi: 10.2118/191362-PA
– ident: ref_35
  doi: 10.15530/AP-URTEC-2019-198198
– volume: 27 Pt 2
  start-page: 504
  year: 2015
  ident: ref_22
  article-title: Designing shale-well proxy models for field development and production optimization problems
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.08.005
– ident: ref_45
  doi: 10.2118/152530-MS
SSID ssj0000331333
Score 2.4573464
Snippet Reservoir modeling to predict shale reservoir productivity is considerably uncertain and time consuming. Since we need to simulate the physical phenomenon of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3629
SubjectTerms Artificial intelligence
Data analysis
Data mining
data-driven
Deep learning
deep neural network
Growth models
Hydraulic fracturing
Hydrocarbons
Machine learning
Methods
Neural networks
Neurons
Permeability
principal component analysis
Principal components analysis
Productivity
proxy model
Regression analysis
shale reservoir
Simulation
variable importance analysis
Variables
Visualization
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF1ByoEeKNBWDRS0Elw4rJL1ru31CZWGAodUER-iPVn75TZSZKe26T_gfzOz2SSVqDhxtHdkWZrxmze74zeEvC0M19JmjhmnKyZzLZmGxMOU8i6TDiIkt2HYRH5-ri4uiln8PbqLbZVrTAxAvVJ7xr5tAOGRayzumI9QWAuYsBon75c3DGdI4VlrHKjxkOzg-nhAdmZfprPLzZ7LWAgoycRKpVRAtT_yNZeoPxIY5jYvBfn-v9A5pJyzvf_7sk_Jk0g96ckqVp6RB75-TnbvCBLuk98n2_Ns2lR0GlotPY0qrFd0GgZO49JE95pNWgRLOvF-eccGh-vQvqGzFk-BevrTLxZwEaRl8cFfgd_SeU2Be9Jv15Ch6CfdUewBbG-bedsdkB9nH7-ffmZxUAOzIuM9c8I4nwvHM8htqasy4XIDSADVbwocwqJgjC9SWYlKAyFyziSJ5UZ6kxqVZkockkHd1P6IUKhgCq7TvHCey4QbAxjkK2V1onMF0TMk79ZuKm1UMcdhGosSqhl0abl16ZC82dguV9od91p9QG9vLFBvO9xo2qsyfr6ltAql7qG2U0YWVqEKoK28cY4Ln7tkSI7XgVBGEOjKrd9f_Hv5JXmcYKtM2Nw5JoO-_eVfkUf2tp937esYxX8A-RkDmQ
  priority: 102
  providerName: ProQuest
Title Application of Machine Learning Method of Data-Driven Deep Learning Model to Predict Well Production Rate in the Shale Gas Reservoirs
URI https://www.proquest.com/docview/2544974802
https://doaj.org/article/4c821827538b49c88677cfebdd13e7d2
Volume 14
WOSCitedRecordID wos000666510500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq6IEeELRUXR4rS-2lhwgcO7FzBHa3cNhVREHAKfIr7UqrLMoGjtz438w4gV0JpF56iRRnlESe8cx89ugbQn5khmlhUxcZp8tISC0iDYEnUsq7VDiwEGlDswk5maibmyxfafWFNWEtPXA7cYfCKiQZh6xaGZFZhfxrtvTGOca9dMH7HslsBUwFH8w5gC_e8pFywPWHvmICmUZCLrmMQIGo_40fDsFltEU2u6yQHrd_s00--Ooz-bTCFfiFPB0vj5rpvKTjUAXpaUeQ-oeOQy9ofDTQjY4GNfoxOvD-bkUG-97QZk7zGg9oGnrtZzO4Cayv-OILSD3ptKKQFtLffyF40F96QbE8r36YT-vFDrkaDS9Pz6Kuh0JkecqayHHjvOSOpRB2Elem3EkDixSAaQLh3SKXi88SUfJSQ67inIljy4zwJjEqSRX_StaqeeW_EQrgImM6kZnzTMTMGHAPvlRWx1oqUGyP_HyZ18J2BOPY52JWANBAHRRLHfTI91fZu5ZW412pE1TPqwRSYYcBMJCiM5DiXwbSI_svyi269bkokJgNkJQ6inf_xzf2yEaMtS5hd2afrDX1vT8gH-1DM13UfbJ-MpzkF_1gonAdPw5hLD8f57fPKJDs5A
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRKw4I0aKDASsGBhNfaM7fECoUIojdpEERTRrsy83EaK7GCbIj6A3-Ebudexk0ogdl2wtOdqFuMz9zFzfQ7A80T7SpjIetqqzBOxEp7CwONJ6WwkLCIkNo3YRDyZyOPjZLoBv7p_YaitsvOJjaO2haEz8h2i0sLcVw6C14uvHqlG0e1qJ6GxhMWB-_EdS7bq1WiI3_dFEOy9O3q777WqAp7hkV97lmvrYm79CB1xaLOI21gjbLFUCzHgGWI3cUkoMp4pjN7W6iAwvhZOh1qGkeQ47xXYFAj2QQ82p6Px9GR1qjPgHIs-vuRB5TwZ7LjcF8Rw0uSw68jXCAT84f-boLZ3639bjttws02f2e4S73dgw-V34cYFUsV78HN3fSfPioyNm3ZRx1om2VM2bkSzaWioauUNS3L4bOjc4oINCQSxumDTkm6yavbZzef40NDj0sQfMEdns5xh_sw-nmGUZe9VxaiPsTwvZmV1Hz5dyjo8gF5e5G4LGFZhia_COLHOF4GvNfpRl0mjAhVL3AF9eNkBITUtEzsJgsxTrMgINOkaNH14trJdLPlH_mr1hvC0siDO8OZFUZ6mrQtKhZFE14_1qdQiMZKYDE3mtLU-d7EN-rDdQS1tHVmVrnH28N_DT-Ha_tH4MD0cTQ4ewfWAWn-aw6pt6NXlN_cYrprzelaVT9o9w-DLZePyN8PdU_g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKUKw4I0IFBgJWLCwEnvG9niBUIsbqEqjqIDozszLJVJkB9sU8QH8FF_HvY6dVAKx64KlPVezGJ-5j5nrcwCeJdpXwkTW01blnoiV8BQGHk9KZyNhESGxacUm4ulUnpwksy341f8LQ22VvU9sHbUtDZ2Rj4hKC3NfOQ5GedcWMUsnr5ZfPVKQopvWXk5jBZFD9-M7lm_1y4MUv_XzIJjsf3j91usUBjzDI7_xLNfWxdz6ETrl0OYRt7FGCGPZFmLwM8R04pJQ5DxXGMmt1UFgfC2cDrUMI8lx3kuwHXMsegawvbc_nR2vT3jGnGMByFecqJwn45ErfEFsJ20-u4mCrVjAH7GgDXCTG__z0tyE611azXZX--AWbLniNlw7R7Z4B37ubu7qWZmzo7aN1LGOYfaUHbVi2jSUqkZ5aUWBgKXOLc_ZkHAQa0o2q-iGq2Gf3GKBDy1tLk18jLk7mxcM82r2_gtGX_ZG1Yz6G6uzcl7Vd-HjhazDPRgUZeHuA8PqLPFVGCfW-SLwtUb_6nJpVKBiiTtjCC96UGSmY2gnoZBFhpUaASjbAGgIT9e2yxUvyV-t9ghbawviEm9flNVp1rmmTBhJNP5Yt0otEiOJ4dDkTlvrcxfbYAg7PeyyzsHV2QZzD_49_ASuIBizdwfTw4dwNaCOoPYMawcGTfXNPYLL5qyZ19Xjbvsw-HzRsPwNzkBckg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Machine+Learning+Method+of+Data-Driven+Deep+Learning+Model+to+Predict+Well+Production+Rate+in+the+Shale+Gas+Reservoirs&rft.jtitle=Energies+%28Basel%29&rft.au=Dongkwon+Han&rft.au=Sunil+Kwon&rft.date=2021-06-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=12&rft.spage=3629&rft_id=info:doi/10.3390%2Fen14123629&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4c821827538b49c88677cfebdd13e7d2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon