Application of Machine Learning Method of Data-Driven Deep Learning Model to Predict Well Production Rate in the Shale Gas Reservoirs
Reservoir modeling to predict shale reservoir productivity is considerably uncertain and time consuming. Since we need to simulate the physical phenomenon of multi-stage hydraulic fracturing. To overcome these limitations, this paper presents an alternative proxy model based on data-driven deep lear...
Gespeichert in:
| Veröffentlicht in: | Energies (Basel) Jg. 14; H. 12; S. 3629 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2021
|
| Schlagworte: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Reservoir modeling to predict shale reservoir productivity is considerably uncertain and time consuming. Since we need to simulate the physical phenomenon of multi-stage hydraulic fracturing. To overcome these limitations, this paper presents an alternative proxy model based on data-driven deep learning model. Furthermore, this study not only proposes the development process of a proxy model, but also verifies using field data for 1239 horizontal wells from the Montney shale formation in Alberta, Canada. A deep neural network (DNN) based on multi-layer perceptron was applied to predict the cumulative gas production as the dependent variable. The independent variable is largely divided into four types: well information, completion and hydraulic fracturing and production data. It was found that the prediction performance was better when using a principal component with a cumulative contribution of 85% using principal component analysis that extracts important information from multivariate data, and when predicting with a DNN model using 6 variables calculated through variable importance analysis. Hence, to develop a reliable deep learning model, sensitivity analysis of hyperparameters was performed to determine one-hot encoding, dropout, activation function, learning rate, hidden layer number and neuron number. As a result, the best prediction of the mean absolute percentage error of the cumulative gas production improved to at least 0.2% and up to 9.1%. The novel approach of this study can also be applied to other shale formations. Furthermore, a useful guide for economic analysis and future development plans of nearby reservoirs. |
|---|---|
| AbstractList | Reservoir modeling to predict shale reservoir productivity is considerably uncertain and time consuming. Since we need to simulate the physical phenomenon of multi-stage hydraulic fracturing. To overcome these limitations, this paper presents an alternative proxy model based on data-driven deep learning model. Furthermore, this study not only proposes the development process of a proxy model, but also verifies using field data for 1239 horizontal wells from the Montney shale formation in Alberta, Canada. A deep neural network (DNN) based on multi-layer perceptron was applied to predict the cumulative gas production as the dependent variable. The independent variable is largely divided into four types: well information, completion and hydraulic fracturing and production data. It was found that the prediction performance was better when using a principal component with a cumulative contribution of 85% using principal component analysis that extracts important information from multivariate data, and when predicting with a DNN model using 6 variables calculated through variable importance analysis. Hence, to develop a reliable deep learning model, sensitivity analysis of hyperparameters was performed to determine one-hot encoding, dropout, activation function, learning rate, hidden layer number and neuron number. As a result, the best prediction of the mean absolute percentage error of the cumulative gas production improved to at least 0.2% and up to 9.1%. The novel approach of this study can also be applied to other shale formations. Furthermore, a useful guide for economic analysis and future development plans of nearby reservoirs. |
| Author | Han, Dongkwon Kwon, Sunil |
| Author_xml | – sequence: 1 givenname: Dongkwon orcidid: 0000-0002-5325-7841 surname: Han fullname: Han, Dongkwon – sequence: 2 givenname: Sunil orcidid: 0000-0003-1513-5103 surname: Kwon fullname: Kwon, Sunil |
| BookMark | eNptkVFrFDEQx4NUsNa--AkCvgmrSWZ3kzyWnq2FK0pVfAzZZLaXY03WJFfwA_i93bsTLWJeJjPzm_8M_J-Tk5giEvKSszcAmr3FyFsuoBf6CTnlWvcNZxJOHv2fkfNStmx5ABwATsnPi3megrM1pEjTSG-t24SIdI02xxDv6S3WTfL71spW26xyeMBIV4jzIyZ5nGhN9GNGH1ylX3GaliT5nTsI39mKNERaN0g_beyE9NoWeocF80MKubwgT0c7FTz_Hc_Il6t3ny_fN-sP1zeXF-vGQc9r42HwKMHzXmvW-bEHLwepJCjomOBO9rJD3bUjjBa09n4QwvGhxaEbVNcrOCM3R12f7NbMOXyz-YdJNphDIeV7Y3MNbkLTOiW4ErIDNbTaKdVL6UYcvOeA0otF69VRa87p-w5LNdu0y3E534iubbVsFdtTr4-Uy6mUjOOfrZyZvWvmr2sLzP6BXagHa2q2YfrfyC8E5Zps |
| CitedBy_id | crossref_primary_10_3390_en18030657 crossref_primary_10_3390_en16031500 crossref_primary_10_1016_j_apenergy_2024_123293 crossref_primary_10_32604_ee_2025_060489 crossref_primary_10_1155_gfl_9802201 crossref_primary_10_3390_electronics14132655 crossref_primary_10_1016_j_asoc_2024_111885 crossref_primary_10_3390_app14103954 crossref_primary_10_3390_sym16050600 crossref_primary_10_1007_s41872_025_00313_w crossref_primary_10_3390_pr13092820 crossref_primary_10_3390_s22145326 crossref_primary_10_1016_j_flowmeasinst_2024_102601 crossref_primary_10_1007_s13202_025_01939_3 crossref_primary_10_1016_j_gsme_2025_09_003 crossref_primary_10_1144_petgeo2022_071 crossref_primary_10_2118_230283_PA crossref_primary_10_1016_j_chemosphere_2024_142367 crossref_primary_10_1016_j_energy_2023_130184 crossref_primary_10_1007_s11770_022_0932_8 crossref_primary_10_1016_j_cherd_2022_08_016 crossref_primary_10_3390_en17235910 crossref_primary_10_3390_en15176161 crossref_primary_10_3390_en18143881 crossref_primary_10_1016_j_jgsce_2024_205475 crossref_primary_10_3390_jcs9060278 crossref_primary_10_1016_j_petrol_2022_110544 crossref_primary_10_1515_phys_2022_0233 crossref_primary_10_1016_j_petrol_2022_110900 crossref_primary_10_1016_j_petsci_2022_12_003 crossref_primary_10_1016_j_resourpol_2023_103994 |
| Cites_doi | 10.2118/169531-MS 10.1016/j.petrol.2020.107032 10.2118/178653-MS 10.1016/j.petrol.2018.05.001 10.1016/j.coal.2017.06.011 10.15530/urtec-2020-2465 10.1016/j.neuroimage.2018.01.046 10.2118/184064-MS 10.1016/j.petrol.2017.10.079 10.1016/j.petrol.2019.106692 10.15530/urtec-2020-2434 10.3390/sym12071122 10.3390/app10041267 10.2118/119369-MS 10.3390/fluids4030126 10.3390/en12020220 10.2118/116731-MS 10.1016/j.jngse.2013.01.003 10.2118/153072-MS 10.2118/167753-PA 10.1007/s12517-019-4567-x 10.2118/137748-PA 10.1016/j.petrol.2018.12.020 10.1038/nature14539 10.2118/184822-MS 10.1016/j.petlm.2018.08.002 10.15530/urtec-2018-2892966 10.1016/j.jngse.2017.01.014 10.1016/j.petrol.2020.107243 10.1016/j.cageo.2017.03.009 10.2118/173334-MS 10.2118/179171-MS 10.1016/j.petrol.2016.06.029 10.2118/187505-MS 10.3233/IDA-1997-1302 10.1016/j.petrol.2018.11.076 10.2118/191362-PA 10.15530/AP-URTEC-2019-198198 10.1016/j.jngse.2015.08.005 10.2118/152530-MS |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en14123629 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_4c821827538b49c88677cfebdd13e7d2 10_3390_en14123629 |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-d3bde73d169905df63d7b7873835021c7675e954f3fa399ddb22c1b4eb5b85683 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000666510500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:46:17 EDT 2025 Mon Jun 30 07:27:01 EDT 2025 Sat Nov 29 07:11:15 EST 2025 Tue Nov 18 21:52:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-d3bde73d169905df63d7b7873835021c7675e954f3fa399ddb22c1b4eb5b85683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1513-5103 0000-0002-5325-7841 |
| OpenAccessLink | https://doaj.org/article/4c821827538b49c88677cfebdd13e7d2 |
| PQID | 2544974802 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4c821827538b49c88677cfebdd13e7d2 proquest_journals_2544974802 crossref_primary_10_3390_en14123629 crossref_citationtrail_10_3390_en14123629 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Arps (ref_10) 1945; 160 Hu (ref_18) 2018; 162 ref_14 ref_13 Davarpanah (ref_9) 2019; 12 ref_51 Duong (ref_16) 2011; 14 LeCun (ref_43) 2015; 521 ref_17 ref_15 Mahta (ref_39) 2019; 174 ref_24 ref_21 Makinde (ref_40) 2019; 5 ref_20 Weijermars (ref_23) 2020; 190 Kulga (ref_19) 2017; 103 Wang (ref_38) 2019; 174 ref_29 ref_28 ref_27 Tugan (ref_11) 2020; 187 Tugan (ref_25) 2018; 168 Khanal (ref_41) 2017; 38 Mohaghegh (ref_26) 2013; 12 Dash (ref_44) 1997; 1 Shengwei (ref_49) 2018; 172 ref_36 ref_35 Wu (ref_5) 2018; 22 ref_34 ref_33 ref_32 ref_31 ref_30 Tugan (ref_12) 2020; 192 ref_37 Mustafa (ref_48) 2016; 145 ref_47 ref_46 Hongyan (ref_50) 2017; 179 ref_45 ref_42 Knudsen (ref_22) 2015; 27 Pt 2 ref_1 ref_3 ref_2 Sun (ref_7) 2015; 20 ref_8 ref_4 ref_6 |
| References_xml | – ident: ref_46 doi: 10.2118/169531-MS – volume: 190 start-page: 107032 year: 2020 ident: ref_23 article-title: Production rates and EUR forecasts for interfering parent-parent wells and parent-child wells: Fast analytical solutions and validation with numerical reservoir simulators publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107032 – ident: ref_47 doi: 10.2118/178653-MS – ident: ref_51 – volume: 168 start-page: 107 year: 2018 ident: ref_25 article-title: A new fully probabilistic methodology and a software for assessing uncertainties and managing risks in shale gas projects at any maturity stage publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.05.001 – volume: 179 start-page: 269 year: 2017 ident: ref_50 article-title: A new method for TOC estimation in tight shale gas reservoirs publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2017.06.011 – ident: ref_42 – ident: ref_36 doi: 10.15530/urtec-2020-2465 – volume: 172 start-page: 40 year: 2018 ident: ref_49 article-title: Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template characteristics, spatial normalization accuracy, and detection of small inter-group FA differences publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.01.046 – ident: ref_32 doi: 10.2118/184064-MS – volume: 162 start-page: 617 year: 2018 ident: ref_18 article-title: Benchmarking EUR estimates for hydraulically fractured wells with and without fracture hits using various DCA methods publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2017.10.079 – volume: 187 start-page: 106692 year: 2020 ident: ref_11 article-title: Improved EUR prediction for multi-fractured hydrocarbon wells based on 3-segment DCA: Implications for production forecasting of parent and child wells publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.106692 – ident: ref_8 – ident: ref_24 doi: 10.15530/urtec-2020-2434 – ident: ref_6 doi: 10.3390/sym12071122 – ident: ref_27 doi: 10.3390/app10041267 – ident: ref_31 – ident: ref_14 doi: 10.2118/119369-MS – ident: ref_20 doi: 10.3390/fluids4030126 – volume: 160 start-page: 228 year: 1945 ident: ref_10 article-title: Analysis of decline curves publication-title: Trans. Am. Inst. Min. Metall. Eng. – ident: ref_21 doi: 10.3390/en12020220 – ident: ref_15 doi: 10.2118/116731-MS – ident: ref_17 – volume: 12 start-page: 22 year: 2013 ident: ref_26 article-title: Reservoir Modeling of Shale Formations publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2013.01.003 – ident: ref_1 doi: 10.2118/153072-MS – volume: 20 start-page: 142 year: 2015 ident: ref_7 article-title: Understanding Shale Gas Flow Behavior Using Numerical Simulation publication-title: SPE J. doi: 10.2118/167753-PA – volume: 12 start-page: 402 year: 2019 ident: ref_9 article-title: Analysis of hydraulic fracturing techniques: Hybrid fuzzy approaches publication-title: Arab. J. Geosci. doi: 10.1007/s12517-019-4567-x – ident: ref_28 – volume: 14 start-page: 377 year: 2011 ident: ref_16 article-title: Rate-decline analysis for fracture-dominated shale reservoirs publication-title: SPE Reserv. Eval. Eng. doi: 10.2118/137748-PA – volume: 174 start-page: 1127 year: 2019 ident: ref_39 article-title: On multistage hydraulic fracturing in tight gas reservoirs: Montney Formation, Alberta, Canada publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.12.020 – ident: ref_3 – ident: ref_34 – volume: 521 start-page: 436 year: 2015 ident: ref_43 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_33 doi: 10.2118/184822-MS – volume: 5 start-page: 227 year: 2019 ident: ref_40 article-title: Principal components methodology—A novel approach to forecasting production from liquid-rich shale (LRS) reservoirs publication-title: Petroleum doi: 10.1016/j.petlm.2018.08.002 – ident: ref_13 doi: 10.15530/urtec-2018-2892966 – volume: 38 start-page: 621 year: 2017 ident: ref_41 article-title: New forecasting method for liquid rich shale gas condensate reservoirs with data driven approach using principal component analysis publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.01.014 – ident: ref_37 – volume: 192 start-page: 107243 year: 2020 ident: ref_12 article-title: Variation in b-sigmoids with flow regime transitions in support of a new 3-segment DCA method: Improved production forecasting for tight oil and gas wells publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107243 – volume: 103 start-page: 99 year: 2017 ident: ref_19 article-title: Development of a data-driven forecasting tool for hydraulically fractured, horizontal wells in tight-gas sands publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2017.03.009 – ident: ref_29 doi: 10.2118/173334-MS – ident: ref_30 doi: 10.2118/179171-MS – volume: 145 start-page: 548 year: 2016 ident: ref_48 article-title: Artificial neural network application for multiphase flow patterns detection: A new approach publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2016.06.029 – ident: ref_2 – ident: ref_4 doi: 10.2118/187505-MS – volume: 1 start-page: 131 year: 1997 ident: ref_44 article-title: Feature selection for classification publication-title: Intell. Data Anal. doi: 10.3233/IDA-1997-1302 – volume: 174 start-page: 682 year: 2019 ident: ref_38 article-title: Insights to fracture stimulation design in unconventional reservoirs based on machine learning modeling publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.11.076 – volume: 22 start-page: 238 year: 2018 ident: ref_5 article-title: Production-Performance Analysis of Composite Shale-Gas reservoirs by the Boundary-Element Method publication-title: SPE Reserv. Eval. Eng. doi: 10.2118/191362-PA – ident: ref_35 doi: 10.15530/AP-URTEC-2019-198198 – volume: 27 Pt 2 start-page: 504 year: 2015 ident: ref_22 article-title: Designing shale-well proxy models for field development and production optimization problems publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.08.005 – ident: ref_45 doi: 10.2118/152530-MS |
| SSID | ssj0000331333 |
| Score | 2.4573464 |
| Snippet | Reservoir modeling to predict shale reservoir productivity is considerably uncertain and time consuming. Since we need to simulate the physical phenomenon of... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3629 |
| SubjectTerms | Artificial intelligence Data analysis Data mining data-driven Deep learning deep neural network Growth models Hydraulic fracturing Hydrocarbons Machine learning Methods Neural networks Neurons Permeability principal component analysis Principal components analysis Productivity proxy model Regression analysis shale reservoir Simulation variable importance analysis Variables Visualization |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF1ByoEeKNBWDRS0Elw4rJL1ru31CZWGAodUER-iPVn75TZSZKe26T_gfzOz2SSVqDhxtHdkWZrxmze74zeEvC0M19JmjhmnKyZzLZmGxMOU8i6TDiIkt2HYRH5-ri4uiln8PbqLbZVrTAxAvVJ7xr5tAOGRayzumI9QWAuYsBon75c3DGdI4VlrHKjxkOzg-nhAdmZfprPLzZ7LWAgoycRKpVRAtT_yNZeoPxIY5jYvBfn-v9A5pJyzvf_7sk_Jk0g96ckqVp6RB75-TnbvCBLuk98n2_Ns2lR0GlotPY0qrFd0GgZO49JE95pNWgRLOvF-eccGh-vQvqGzFk-BevrTLxZwEaRl8cFfgd_SeU2Be9Jv15Ch6CfdUewBbG-bedsdkB9nH7-ffmZxUAOzIuM9c8I4nwvHM8htqasy4XIDSADVbwocwqJgjC9SWYlKAyFyziSJ5UZ6kxqVZkockkHd1P6IUKhgCq7TvHCey4QbAxjkK2V1onMF0TMk79ZuKm1UMcdhGosSqhl0abl16ZC82dguV9od91p9QG9vLFBvO9xo2qsyfr6ltAql7qG2U0YWVqEKoK28cY4Ln7tkSI7XgVBGEOjKrd9f_Hv5JXmcYKtM2Nw5JoO-_eVfkUf2tp937esYxX8A-RkDmQ priority: 102 providerName: ProQuest |
| Title | Application of Machine Learning Method of Data-Driven Deep Learning Model to Predict Well Production Rate in the Shale Gas Reservoirs |
| URI | https://www.proquest.com/docview/2544974802 https://doaj.org/article/4c821827538b49c88677cfebdd13e7d2 |
| Volume | 14 |
| WOSCitedRecordID | wos000666510500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq6IEeELRUXR4rS-2lhwgcO7FzBHa3cNhVREHAKfIr7UqrLMoGjtz438w4gV0JpF56iRRnlESe8cx89ugbQn5khmlhUxcZp8tISC0iDYEnUsq7VDiwEGlDswk5maibmyxfafWFNWEtPXA7cYfCKiQZh6xaGZFZhfxrtvTGOca9dMH7HslsBUwFH8w5gC_e8pFywPWHvmICmUZCLrmMQIGo_40fDsFltEU2u6yQHrd_s00--Ooz-bTCFfiFPB0vj5rpvKTjUAXpaUeQ-oeOQy9ofDTQjY4GNfoxOvD-bkUG-97QZk7zGg9oGnrtZzO4Cayv-OILSD3ptKKQFtLffyF40F96QbE8r36YT-vFDrkaDS9Pz6Kuh0JkecqayHHjvOSOpRB2Elem3EkDixSAaQLh3SKXi88SUfJSQ67inIljy4zwJjEqSRX_StaqeeW_EQrgImM6kZnzTMTMGHAPvlRWx1oqUGyP_HyZ18J2BOPY52JWANBAHRRLHfTI91fZu5ZW412pE1TPqwRSYYcBMJCiM5DiXwbSI_svyi269bkokJgNkJQ6inf_xzf2yEaMtS5hd2afrDX1vT8gH-1DM13UfbJ-MpzkF_1gonAdPw5hLD8f57fPKJDs5A |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRKw4I0aKDASsGBhNfaM7fECoUIojdpEERTRrsy83EaK7GCbIj6A3-Ebudexk0ogdl2wtOdqFuMz9zFzfQ7A80T7SpjIetqqzBOxEp7CwONJ6WwkLCIkNo3YRDyZyOPjZLoBv7p_YaitsvOJjaO2haEz8h2i0sLcVw6C14uvHqlG0e1qJ6GxhMWB-_EdS7bq1WiI3_dFEOy9O3q777WqAp7hkV97lmvrYm79CB1xaLOI21gjbLFUCzHgGWI3cUkoMp4pjN7W6iAwvhZOh1qGkeQ47xXYFAj2QQ82p6Px9GR1qjPgHIs-vuRB5TwZ7LjcF8Rw0uSw68jXCAT84f-boLZ3639bjttws02f2e4S73dgw-V34cYFUsV78HN3fSfPioyNm3ZRx1om2VM2bkSzaWioauUNS3L4bOjc4oINCQSxumDTkm6yavbZzef40NDj0sQfMEdns5xh_sw-nmGUZe9VxaiPsTwvZmV1Hz5dyjo8gF5e5G4LGFZhia_COLHOF4GvNfpRl0mjAhVL3AF9eNkBITUtEzsJgsxTrMgINOkaNH14trJdLPlH_mr1hvC0siDO8OZFUZ6mrQtKhZFE14_1qdQiMZKYDE3mtLU-d7EN-rDdQS1tHVmVrnH28N_DT-Ha_tH4MD0cTQ4ewfWAWn-aw6pt6NXlN_cYrprzelaVT9o9w-DLZePyN8PdU_g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKUKw4I0IFBgJWLCwEnvG9niBUIsbqEqjqIDozszLJVJkB9sU8QH8FF_HvY6dVAKx64KlPVezGJ-5j5nrcwCeJdpXwkTW01blnoiV8BQGHk9KZyNhESGxacUm4ulUnpwksy341f8LQ22VvU9sHbUtDZ2Rj4hKC3NfOQ5GedcWMUsnr5ZfPVKQopvWXk5jBZFD9-M7lm_1y4MUv_XzIJjsf3j91usUBjzDI7_xLNfWxdz6ETrl0OYRt7FGCGPZFmLwM8R04pJQ5DxXGMmt1UFgfC2cDrUMI8lx3kuwHXMsegawvbc_nR2vT3jGnGMByFecqJwn45ErfEFsJ20-u4mCrVjAH7GgDXCTG__z0tyE611azXZX--AWbLniNlw7R7Z4B37ubu7qWZmzo7aN1LGOYfaUHbVi2jSUqkZ5aUWBgKXOLc_ZkHAQa0o2q-iGq2Gf3GKBDy1tLk18jLk7mxcM82r2_gtGX_ZG1Yz6G6uzcl7Vd-HjhazDPRgUZeHuA8PqLPFVGCfW-SLwtUb_6nJpVKBiiTtjCC96UGSmY2gnoZBFhpUaASjbAGgIT9e2yxUvyV-t9ghbawviEm9flNVp1rmmTBhJNP5Yt0otEiOJ4dDkTlvrcxfbYAg7PeyyzsHV2QZzD_49_ASuIBizdwfTw4dwNaCOoPYMawcGTfXNPYLL5qyZ19Xjbvsw-HzRsPwNzkBckg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Machine+Learning+Method+of+Data-Driven+Deep+Learning+Model+to+Predict+Well+Production+Rate+in+the+Shale+Gas+Reservoirs&rft.jtitle=Energies+%28Basel%29&rft.au=Dongkwon+Han&rft.au=Sunil+Kwon&rft.date=2021-06-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=12&rft.spage=3629&rft_id=info:doi/10.3390%2Fen14123629&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4c821827538b49c88677cfebdd13e7d2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |