Burning a graph is hard
Graph burning is a model for the spread of social contagion. The burning number is a graph parameter associated with graph burning that measures the speed of the spread of contagion in a graph; the lower the burning number, the faster the contagion spreads. We prove that the corresponding graph deci...
Uloženo v:
| Vydáno v: | Discrete Applied Mathematics Ročník 232; s. 73 - 87 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
11.12.2017
Elsevier BV Elsevier |
| Témata: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Graph burning is a model for the spread of social contagion. The burning number is a graph parameter associated with graph burning that measures the speed of the spread of contagion in a graph; the lower the burning number, the faster the contagion spreads. We prove that the corresponding graph decision problem is NP-complete when restricted to acyclic graphs with maximum degree three, spider graphs and path-forests. We provide polynomial time algorithms for finding the burning number of spider graphs and path-forests if the number of arms and components, respectively, are fixed. Finally, we describe a polynomial time approximation algorithm with approximation factor 3 for general graphs. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/j.dam.2017.07.016 |