Solving change of basis from Bernstein to Chebyshev polynomials

We provide two closed-form solutions to the change of basis from Bernstein polynomials to shifted Chebyshev polynomials of the fourth kind and show them to be equivalent by applying Zeilberger’s algorithm. The first solution uses orthogonality properties of the Chebyshev polynomials. The second is “...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Examples and counterexamples Ročník 7; s. 100178
Hlavní autor: Wolfram, D.A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2025
Elsevier
Témata:
ISSN:2666-657X, 2666-657X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We provide two closed-form solutions to the change of basis from Bernstein polynomials to shifted Chebyshev polynomials of the fourth kind and show them to be equivalent by applying Zeilberger’s algorithm. The first solution uses orthogonality properties of the Chebyshev polynomials. The second is “modular” which enables separately verified sub-problems to be composed and re-used in other basis transformations. These results have applications in change of basis of orthogonal, and non-orthogonal polynomials.
ISSN:2666-657X
2666-657X
DOI:10.1016/j.exco.2025.100178