Solving change of basis from Bernstein to Chebyshev polynomials
We provide two closed-form solutions to the change of basis from Bernstein polynomials to shifted Chebyshev polynomials of the fourth kind and show them to be equivalent by applying Zeilberger’s algorithm. The first solution uses orthogonality properties of the Chebyshev polynomials. The second is “...
Uloženo v:
| Vydáno v: | Examples and counterexamples Ročník 7; s. 100178 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2025
Elsevier |
| Témata: | |
| ISSN: | 2666-657X, 2666-657X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We provide two closed-form solutions to the change of basis from Bernstein polynomials to shifted Chebyshev polynomials of the fourth kind and show them to be equivalent by applying Zeilberger’s algorithm. The first solution uses orthogonality properties of the Chebyshev polynomials. The second is “modular” which enables separately verified sub-problems to be composed and re-used in other basis transformations. These results have applications in change of basis of orthogonal, and non-orthogonal polynomials. |
|---|---|
| ISSN: | 2666-657X 2666-657X |
| DOI: | 10.1016/j.exco.2025.100178 |