Image-To-Image Translation Using a Cross-Domain Auto-Encoder and Decoder

Recently, several studies have focused on image-to-image translation. However, the quality of the translation results is lacking in certain respects. We propose a new image-to-image translation method to minimize such shortcomings using an auto-encoder and an auto-decoder. This method includes pre-t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 9; číslo 22; s. 4780
Hlavní autori: Yoo, Jaechang, Eom, Heesong, Choi, Yong Suk
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.11.2019
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Recently, several studies have focused on image-to-image translation. However, the quality of the translation results is lacking in certain respects. We propose a new image-to-image translation method to minimize such shortcomings using an auto-encoder and an auto-decoder. This method includes pre-training two auto-encoders and decoder pairs for each source and target image domain, cross-connecting two pairs and adding a feature mapping layer. Our method is quite simple and straightforward to adopt but very effective in practice, and we experimentally demonstrated that our method can significantly enhance the quality of image-to-image translation. We used the well-known cityscapes, horse2zebra, cat2dog, maps, summer2winter, and night2day datasets. Our method shows qualitative and quantitative improvements over existing models.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app9224780