UWB NLOS/LOS Classification Using Deep Learning Method

Ultra-Wide-Band (UWB) was recognized as its great potential in constructing accurate indoor position system (IPS). However, indoor environments were full of complex objects, the signals might be reflected by the obstacles. Compared with the Line-Of-Sight (LOS) signal, the signal transmitting path de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters Jg. 24; H. 10; S. 2226 - 2230
Hauptverfasser: Jiang, Changhui, Shen, Jichun, Chen, Shuai, Chen, Yuwei, Liu, Di, Bo, Yuming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-7798, 1558-2558
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Ultra-Wide-Band (UWB) was recognized as its great potential in constructing accurate indoor position system (IPS). However, indoor environments were full of complex objects, the signals might be reflected by the obstacles. Compared with the Line-Of-Sight (LOS) signal, the signal transmitting path delay contained in None-Line-Of-Sight (NLOS) signal would induce positive distance errors and position errors. Before employing ranging information from the channels to calculate the position, LOS/NLOS classification or identification was necessary for selecting the "clean" channels. In conventional method, features extracted from the UWB channel impulse response (CIR) or some other signal properties were employed as the input vector of the machine learning methods, e.g. Support Vector Machine (SVM), Multi-layer Perception (MLP). Deep learning methods represented by Convolutional neural network (CNN) and Long Short-Term Memory (LSTM) had performed superior performance in dealing with time series data classification. In this pap er, deep learning method CNN-LSTM was employed in the UWB NLOS/LOS signal classification. UWB CIR data was directly input to the CNN-LSTM. CNN was employed for exploring and extracting the features automatically, and then, the CNN outputs were fed into the LSTM for classification. Open source datasets collected from seven different sites were employed in the experiments. Classification accuracy of CNN-LSTM with different settings was compared for analyzing the performance. The results showed that CNN-LSTM obtained stat e-of-art classification performance.
AbstractList Ultra-Wide-Band (UWB) was recognized as its great potential in constructing accurate indoor position system (IPS). However, indoor environments were full of complex objects, the signals might be reflected by the obstacles. Compared with the Line-Of-Sight (LOS) signal, the signal transmitting path delay contained in None-Line-Of-Sight (NLOS) signal would induce positive distance errors and position errors. Before employing ranging information from the channels to calculate the position, LOS/NLOS classification or identification was necessary for selecting the “clean” channels. In conventional method, features extracted from the UWB channel impulse response (CIR) or some other signal properties were employed as the input vector of the machine learning methods, e.g. Support Vector Machine (SVM), Multi-layer Perception (MLP). Deep learning methods represented by Convolutional neural network (CNN) and Long Short-Term Memory (LSTM) had performed superior performance in dealing with time series data classification. In this pap er, deep learning method CNN-LSTM was employed in the UWB NLOS/LOS signal classification. UWB CIR data was directly input to the CNN-LSTM. CNN was employed for exploring and extracting the features automatically, and then, the CNN outputs were fed into the LSTM for classification. Open source datasets collected from seven different sites were employed in the experiments. Classification accuracy of CNN-LSTM with different settings was compared for analyzing the performance. The results showed that CNN-LSTM obtained stat e-of-art classification performance.
Author Chen, Yuwei
Liu, Di
Bo, Yuming
Shen, Jichun
Jiang, Changhui
Chen, Shuai
Author_xml – sequence: 1
  givenname: Changhui
  orcidid: 0000-0002-4788-2464
  surname: Jiang
  fullname: Jiang, Changhui
  email: chagnhui.jiang1992@gmail.com
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Jichun
  surname: Shen
  fullname: Shen, Jichun
  email: s365445689@hotmail.com
  organization: Hesai Technology, Building L2-B, Hongqiao World Centre, Shanghai, China
– sequence: 3
  givenname: Shuai
  surname: Chen
  fullname: Chen, Shuai
  email: chenshuai@njust.edu.cn
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 4
  givenname: Yuwei
  orcidid: 0000-0003-0148-3609
  surname: Chen
  fullname: Chen, Yuwei
  email: yuwei.chen@nls.fi
  organization: Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute, Finland
– sequence: 5
  givenname: Di
  orcidid: 0000-0003-4528-9605
  surname: Liu
  fullname: Liu, Di
  email: liudinust@163.com
  organization: School of Automation, Nanjing Institute of Technology, Nanjing, China
– sequence: 6
  givenname: Yuming
  surname: Bo
  fullname: Bo, Yuming
  email: byming@njust.edu.cn
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
BookMark eNp9kDtPwzAQgC1UJNrCH4AlEnPasxMn9gihPKSUDlAxWrZjg6uSFDsd-Pe4DzEwcJLvbOm-O_kboUHbtQahSwwTjIFP62oxn08IEJgQHgPyEzTElLKUxDSId2A8LUvOztAohBUAMELxEBXLt9vkuV68TONJqrUMwVmnZe-6NlkG174nd8ZsktpI3-5ec9N_dM05OrVyHczFsY7R8n72Wj2m9eLhqbqpU50VuE-1AiyJxZo1lFEJsigVzlRDQaqMA8NMlTnDlqimyBugMi8tszinGpRRlGRjdH2Yu_Hd19aEXqy6rW_jSkHynPOCkJLGLnbo0r4LwRsrtOv3X-i9dGuBQewsib0lsbMkjpYiSv6gG-8-pf_-H7o6QM4Y8wvw6BjzLPsBaRlyzA
CODEN ICLEF6
CitedBy_id crossref_primary_10_1109_JSEN_2024_3461155
crossref_primary_10_1109_JIOT_2024_3349462
crossref_primary_10_1109_LCOMM_2023_3249834
crossref_primary_10_1371_journal_pone_0293618
crossref_primary_10_1016_j_adhoc_2023_103132
crossref_primary_10_1109_JIOT_2025_3525722
crossref_primary_10_1109_ACCESS_2020_3044812
crossref_primary_10_1109_JIOT_2024_3421577
crossref_primary_10_3390_s24051703
crossref_primary_10_1109_TIM_2022_3150582
crossref_primary_10_1109_TSP_2024_3468467
crossref_primary_10_3390_electronics13081518
crossref_primary_10_1016_j_compag_2025_110482
crossref_primary_10_1109_JIOT_2022_3150764
crossref_primary_10_1002_dac_70044
crossref_primary_10_1109_JSEN_2024_3434329
crossref_primary_10_3390_s22239148
crossref_primary_10_1109_ACCESS_2024_3470589
crossref_primary_10_3390_rs16020398
crossref_primary_10_1109_TIM_2023_3276521
crossref_primary_10_3390_app13137458
crossref_primary_10_3390_electronics14030483
crossref_primary_10_1016_j_measurement_2022_112276
crossref_primary_10_1109_JSEN_2021_3101933
crossref_primary_10_1109_TIM_2024_3522421
crossref_primary_10_1145_3663473
crossref_primary_10_1109_LCOMM_2024_3374398
crossref_primary_10_1016_j_phycom_2023_102118
crossref_primary_10_1109_TIM_2022_3205664
crossref_primary_10_1016_j_iot_2024_101194
crossref_primary_10_1109_ACCESS_2024_3358274
crossref_primary_10_1109_LWC_2024_3366916
crossref_primary_10_1109_ACCESS_2025_3568830
crossref_primary_10_1109_JSEN_2025_3547673
crossref_primary_10_1109_TAI_2023_3262763
crossref_primary_10_1016_j_measurement_2022_111191
crossref_primary_10_1038_s41598_025_05501_3
crossref_primary_10_3390_wevj14040109
crossref_primary_10_1016_j_phycom_2025_102702
crossref_primary_10_1109_COMST_2024_3449031
crossref_primary_10_1109_ACCESS_2020_3043503
crossref_primary_10_1109_JISPIN_2025_3589958
crossref_primary_10_1109_LCOMM_2021_3070311
crossref_primary_10_1109_JSAC_2023_3322803
crossref_primary_10_1109_JIOT_2023_3299319
crossref_primary_10_1016_j_phycom_2022_101695
crossref_primary_10_1109_JIOT_2025_3575562
crossref_primary_10_1109_LSP_2025_3590322
crossref_primary_10_1109_LGRS_2024_3392426
crossref_primary_10_1109_TITS_2022_3233563
crossref_primary_10_1016_j_comnet_2023_109663
crossref_primary_10_1109_LWC_2023_3240846
crossref_primary_10_3390_s24072060
crossref_primary_10_1109_ACCESS_2024_3369920
crossref_primary_10_1109_JSAC_2022_3157397
crossref_primary_10_1080_10589759_2023_2253493
crossref_primary_10_1109_JIOT_2022_3209735
crossref_primary_10_1109_JIOT_2024_3523438
crossref_primary_10_1109_OJCOMS_2025_3555620
crossref_primary_10_1016_j_sna_2024_115904
crossref_primary_10_3390_electronics9101714
crossref_primary_10_3390_s20205824
crossref_primary_10_3390_app12136484
crossref_primary_10_1109_TWC_2025_3560688
crossref_primary_10_1016_j_measurement_2024_114835
crossref_primary_10_1016_j_sigpro_2024_109447
crossref_primary_10_1109_TITS_2023_3309288
crossref_primary_10_1109_JSEN_2022_3217335
crossref_primary_10_1016_j_aei_2025_103724
crossref_primary_10_1016_j_bspc_2022_104218
crossref_primary_10_1109_ACCESS_2024_3509516
crossref_primary_10_3390_electronics13244987
crossref_primary_10_1109_ACCESS_2023_3250180
crossref_primary_10_1109_ACCESS_2025_3537976
crossref_primary_10_1109_LCOMM_2020_3009659
crossref_primary_10_1109_TVT_2024_3422893
crossref_primary_10_1109_ACCESS_2024_3399476
crossref_primary_10_1088_1742_6596_2813_1_012003
crossref_primary_10_1109_LSP_2025_3577127
crossref_primary_10_1109_JSEN_2023_3281729
crossref_primary_10_1109_JIOT_2025_3555582
crossref_primary_10_1109_JSEN_2021_3061468
crossref_primary_10_1109_TIM_2025_3554900
crossref_primary_10_3390_rs15061481
crossref_primary_10_1109_TIM_2022_3205690
crossref_primary_10_1364_AO_532337
crossref_primary_10_1109_JSEN_2023_3323564
crossref_primary_10_3390_app14125123
crossref_primary_10_1016_j_comnet_2023_110042
crossref_primary_10_1109_LCOMM_2022_3220506
crossref_primary_10_1109_JIOT_2023_3300018
crossref_primary_10_1109_TAP_2021_3111308
crossref_primary_10_1109_LCOMM_2024_3429388
crossref_primary_10_1109_JIOT_2024_3432798
crossref_primary_10_1016_j_engappai_2021_104278
crossref_primary_10_1080_10095020_2023_2178334
crossref_primary_10_1109_TAP_2023_3345423
crossref_primary_10_1109_ACCESS_2025_3561842
crossref_primary_10_1109_ACCESS_2025_3593578
crossref_primary_10_1109_COMST_2022_3178209
crossref_primary_10_3390_s24154917
crossref_primary_10_1016_j_phycom_2025_102714
crossref_primary_10_3390_app13106187
crossref_primary_10_1109_ACCESS_2024_3480236
crossref_primary_10_1109_JSYST_2022_3176678
crossref_primary_10_1109_ACCESS_2024_3507752
crossref_primary_10_3390_s25020304
crossref_primary_10_1109_ACCESS_2023_3323019
crossref_primary_10_1109_JIOT_2024_3450319
crossref_primary_10_1109_JSAC_2023_3273769
crossref_primary_10_3390_fi17020060
crossref_primary_10_1049_cmu2_12418
crossref_primary_10_1038_s41598_024_68998_0
crossref_primary_10_3390_s23125710
crossref_primary_10_1016_j_dt_2023_03_019
crossref_primary_10_1016_j_sciaf_2025_e02564
crossref_primary_10_3390_s25072082
crossref_primary_10_1049_rsn2_12137
crossref_primary_10_1109_TSP_2022_3217921
crossref_primary_10_1002_sat_1482
crossref_primary_10_1109_ACCESS_2023_3344640
crossref_primary_10_1109_JSEN_2021_3119234
crossref_primary_10_1109_JSEN_2024_3496086
crossref_primary_10_1016_j_jai_2025_02_001
crossref_primary_10_1145_3735558
crossref_primary_10_3390_app122211572
crossref_primary_10_3390_math12233866
crossref_primary_10_3390_s25154538
crossref_primary_10_1109_JSEN_2023_3328715
crossref_primary_10_1007_s13369_024_09785_x
crossref_primary_10_1109_MCAS_2022_3142689
crossref_primary_10_1109_JIOT_2024_3419796
crossref_primary_10_1109_LCOMM_2020_3039251
crossref_primary_10_1109_LSENS_2021_3083480
crossref_primary_10_1016_j_dt_2023_05_013
crossref_primary_10_1109_JSEN_2021_3124275
crossref_primary_10_1109_JIOT_2023_3245144
crossref_primary_10_1109_LCOMM_2023_3265272
crossref_primary_10_1016_j_jestch_2025_101979
crossref_primary_10_1080_00207721_2021_1919337
crossref_primary_10_3390_agriculture14091479
crossref_primary_10_3390_rs14061380
crossref_primary_10_3390_s23208552
crossref_primary_10_1109_JSEN_2024_3491178
crossref_primary_10_1109_TETC_2025_3563944
crossref_primary_10_1109_ACCESS_2023_3308696
crossref_primary_10_1109_TIM_2025_3548180
crossref_primary_10_3390_ijgi10100634
crossref_primary_10_1038_s41598_025_09899_8
crossref_primary_10_1109_ACCESS_2020_3039271
crossref_primary_10_3390_s23198289
crossref_primary_10_1002_dac_70034
crossref_primary_10_1016_j_dt_2022_12_013
crossref_primary_10_1109_JSEN_2023_3266433
crossref_primary_10_3390_app122412735
Cites_doi 10.1109/LCOMM.2018.2882829
10.1007/s12243-009-0124-z
10.1109/TCOMM.2012.042712.110035
10.3390/s18103470
10.1109/TSP.2018.2795537
10.1109/JSAC.2010.100907
10.1109/ISC2.2018.8656958
10.1109/LCOMM.2017.2725274
10.1109/JSEN.2018.2818158
10.1109/ICCSPA.2013.6487304
10.3390/s19163464
10.1109/WCNC.2007.295
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LCOMM.2020.2999904
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2558
EndPage 2230
ExternalDocumentID 10_1109_LCOMM_2020_2999904
9108193
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61601225
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c361t-cb01a2f1c8d585a0a67b13bd50ab390818b7481f2bd64d05a47f8f145c0beb523
IEDL.DBID RIE
ISICitedReferencesCount 193
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000577695400030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-7798
IngestDate Mon Jun 30 10:11:59 EDT 2025
Sat Nov 29 03:56:03 EST 2025
Tue Nov 18 21:33:22 EST 2025
Wed Aug 27 02:30:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-cb01a2f1c8d585a0a67b13bd50ab390818b7481f2bd64d05a47f8f145c0beb523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0148-3609
0000-0002-4788-2464
0000-0003-4528-9605
PQID 2449962275
PQPubID 85419
PageCount 5
ParticipantIDs proquest_journals_2449962275
crossref_citationtrail_10_1109_LCOMM_2020_2999904
crossref_primary_10_1109_LCOMM_2020_2999904
ieee_primary_9108193
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE communications letters
PublicationTitleAbbrev COML
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref11
ref10
ref2
ref1
ref7
ref9
ref4
ref3
ref6
ref5
bregar (ref8) 2016; 31
References_xml – ident: ref12
  doi: 10.1109/LCOMM.2018.2882829
– ident: ref6
  doi: 10.1007/s12243-009-0124-z
– ident: ref10
  doi: 10.1109/TCOMM.2012.042712.110035
– ident: ref13
  doi: 10.3390/s18103470
– ident: ref2
  doi: 10.1109/TSP.2018.2795537
– ident: ref11
  doi: 10.1109/JSAC.2010.100907
– ident: ref3
  doi: 10.1109/ISC2.2018.8656958
– ident: ref1
  doi: 10.1109/LCOMM.2017.2725274
– ident: ref4
  doi: 10.1109/JSEN.2018.2818158
– volume: 31
  start-page: 1
  year: 2016
  ident: ref8
  article-title: NLOS channel detection with multilayer perceptron in low-rate personal area networks for indoor localization accuracy improvement
  publication-title: Proc 8th Jožef Stefan Int Postgraduate School Students Conf
– ident: ref7
  doi: 10.1109/ICCSPA.2013.6487304
– ident: ref9
  doi: 10.3390/s19163464
– ident: ref5
  doi: 10.1109/WCNC.2007.295
SSID ssj0008251
Score 2.677024
Snippet Ultra-Wide-Band (UWB) was recognized as its great potential in constructing accurate indoor position system (IPS). However, indoor environments were full of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2226
SubjectTerms Artificial neural networks
Channels
Classification
CNN
Convolution
Deep learning
Feature extraction
Impulse response
Indoor environments
IP networks
Kernel
Line of sight
Logic gates
LSTM
Machine learning
Multilayers
NLOS
Position errors
Signal classification
Support vector machines
Ultrawideband
UWB
Title UWB NLOS/LOS Classification Using Deep Learning Method
URI https://ieeexplore.ieee.org/document/9108193
https://www.proquest.com/docview/2449962275
Volume 24
WOSCitedRecordID wos000577695400030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2558
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008251
  issn: 1089-7798
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH60xYMe3KpYrTIHb5p2Mlkmc9Rq8dBF0GJvYbaIIGnp4u93ZpIGRRE8BHKYCeF7yVuS930P4FKGnNGAx14QSkvJ0dpLMhl4JlMw6YSyEmyOKDygo1EynbLHGlxXXBittWs-0x176v7lq5lc209lXRPaTAAL6lCnlBZcrcrrWgpm0UzPTMbIkg1BBrPuoDceDk0pSHDHOF_jfsNvQchNVfnhil186e_97872YbfMI9FNYfgDqOn8EHa-qAs2IZ683KLRYPzUNQdy0y9tX5AzBXKtAuhO6zkqJVZf0dBNkz6CSf_-uffglWMSPBnE_sqTAvucZL5MlMn9OeYxFX4gVIS5CJiVrBM0TPyMCBWHCkc8pFmS-WEksdDCFKLH0MhnuT4BFDNJNLVDwkzdKIjkigkcZSTJRMyxUi3wN7ilstQQt6Ms3lNXS2CWOqxTi3VaYt2Cq2rPvFDQ-HN106JbrSyBbUF7Y560fMmWqclMTLVGCI1Of991Btv22kXvXRsaq8Van8OW_Fi9LRcX7vn5BCntv8Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH7UKqgHtypWq-bgTdNOJpNljlotFdNWsMXewmwRQdrSxd_vzCQtiiJ4COQwQ8L3krck7_sewKUgjEY-C12fCEPJUcqNM-G7OlPQ6YQ0EmyWKJxE3W48HNKnElyvuDBKKdt8purm1P7Ll2OxMJ_KGjq06QDmr8F6QAj2crbWyu8aEmbeTk91zkjjJUUG0UbS7HU6uhjEqK7dr3bA5FsYsnNVfjhjG2Fau_-7tz3YKTJJ5yY3_T6U1OgAtr_oC1YgHLzcOt2k99zQh2PnX5rOIGsMxzYLOHdKTZxCZPXV6dh50ocwaN33m223GJTgCj_05q7gyGM480QsdfbPEAsj7vlcBohxnxrROh6R2MswlyGRKGAkyuLMI4FAXHFdih5BeTQeqWNwQiqwisyYMF05ciyYpBwFGY4zHjIkZRW8JW6pKFTEzTCL99RWE4imFuvUYJ0WWFfharVnkmto_Lm6YtBdrSyArUJtaZ60eM1mqc5NdL2GcRSc_L7rAjbb_U6SJg_dx1PYMtfJO_FqUJ5PF-oMNsTH_G02PbfP0idS2cML
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UWB+NLOS%2FLOS+Classification+Using+Deep+Learning+Method&rft.jtitle=IEEE+communications+letters&rft.au=Jiang%2C+Changhui&rft.au=Shen%2C+Jichun&rft.au=Chen%2C+Shuai&rft.au=Chen%2C+Yuwei&rft.date=2020-10-01&rft.pub=IEEE&rft.issn=1089-7798&rft.volume=24&rft.issue=10&rft.spage=2226&rft.epage=2230&rft_id=info:doi/10.1109%2FLCOMM.2020.2999904&rft.externalDocID=9108193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon