UWB NLOS/LOS Classification Using Deep Learning Method

Ultra-Wide-Band (UWB) was recognized as its great potential in constructing accurate indoor position system (IPS). However, indoor environments were full of complex objects, the signals might be reflected by the obstacles. Compared with the Line-Of-Sight (LOS) signal, the signal transmitting path de...

Full description

Saved in:
Bibliographic Details
Published in:IEEE communications letters Vol. 24; no. 10; pp. 2226 - 2230
Main Authors: Jiang, Changhui, Shen, Jichun, Chen, Shuai, Chen, Yuwei, Liu, Di, Bo, Yuming
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-7798, 1558-2558
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultra-Wide-Band (UWB) was recognized as its great potential in constructing accurate indoor position system (IPS). However, indoor environments were full of complex objects, the signals might be reflected by the obstacles. Compared with the Line-Of-Sight (LOS) signal, the signal transmitting path delay contained in None-Line-Of-Sight (NLOS) signal would induce positive distance errors and position errors. Before employing ranging information from the channels to calculate the position, LOS/NLOS classification or identification was necessary for selecting the "clean" channels. In conventional method, features extracted from the UWB channel impulse response (CIR) or some other signal properties were employed as the input vector of the machine learning methods, e.g. Support Vector Machine (SVM), Multi-layer Perception (MLP). Deep learning methods represented by Convolutional neural network (CNN) and Long Short-Term Memory (LSTM) had performed superior performance in dealing with time series data classification. In this pap er, deep learning method CNN-LSTM was employed in the UWB NLOS/LOS signal classification. UWB CIR data was directly input to the CNN-LSTM. CNN was employed for exploring and extracting the features automatically, and then, the CNN outputs were fed into the LSTM for classification. Open source datasets collected from seven different sites were employed in the experiments. Classification accuracy of CNN-LSTM with different settings was compared for analyzing the performance. The results showed that CNN-LSTM obtained stat e-of-art classification performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2020.2999904