Edge-Enhanced Dual-Stream Perception Network for Monocular Depth Estimation

Estimating depth from a single RGB image has a wide range of applications, such as in robot navigation and autonomous driving. Currently, Convolutional Neural Networks based on encoder–decoder architecture are the most popular methods to estimate depth maps. However, convolutional operators have lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) Jg. 13; H. 9; S. 1652
Hauptverfasser: Liu, Zihang, Wang, Quande
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.05.2024
Schlagworte:
ISSN:2079-9292, 2079-9292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Estimating depth from a single RGB image has a wide range of applications, such as in robot navigation and autonomous driving. Currently, Convolutional Neural Networks based on encoder–decoder architecture are the most popular methods to estimate depth maps. However, convolutional operators have limitations in modeling large-scale dependence, often leading to inaccurate depth predictions at object edges. To address these issues, a new edge-enhanced dual-stream monocular depth estimation method is introduced in this paper. ResNet and Swin Transformer are combined to better extract global and local features, which benefits the estimation of the depth map. To better integrate the information from the two branches of the encoder and the shallow branch of the decoder, we designed a lightweight decoder based on the multi-head Cross-Attention Module. Furthermore, in order to improve the boundary clarity of objects in the depth map, a loss function with an additional penalty for depth estimation error on the edges of objects is presented. The results on three datasets, NYU Depth V2, KITTI, and SUN RGB-D, show that the method presented in this paper achieves better performance for monocular depth estimation. Additionally, it has good generalization capabilities for various scenarios and real-world images.
AbstractList Estimating depth from a single RGB image has a wide range of applications, such as in robot navigation and autonomous driving. Currently, Convolutional Neural Networks based on encoder–decoder architecture are the most popular methods to estimate depth maps. However, convolutional operators have limitations in modeling large-scale dependence, often leading to inaccurate depth predictions at object edges. To address these issues, a new edge-enhanced dual-stream monocular depth estimation method is introduced in this paper. ResNet and Swin Transformer are combined to better extract global and local features, which benefits the estimation of the depth map. To better integrate the information from the two branches of the encoder and the shallow branch of the decoder, we designed a lightweight decoder based on the multi-head Cross-Attention Module. Furthermore, in order to improve the boundary clarity of objects in the depth map, a loss function with an additional penalty for depth estimation error on the edges of objects is presented. The results on three datasets, NYU Depth V2, KITTI, and SUN RGB-D, show that the method presented in this paper achieves better performance for monocular depth estimation. Additionally, it has good generalization capabilities for various scenarios and real-world images.
Audience Academic
Author Wang, Quande
Liu, Zihang
Author_xml – sequence: 1
  givenname: Zihang
  surname: Liu
  fullname: Liu, Zihang
– sequence: 2
  givenname: Quande
  surname: Wang
  fullname: Wang, Quande
BookMark eNp9kMtOwzAQRS1UJErpF7CJxDrgR53Ey6oND1EeErCOJrbTuqR2cRwh_h6XskAI4Vl4NHPPjOYeo4F1ViN0SvA5YwJf6FbL4J01siMMC5JxeoCGFOciFVTQwY_8CI27bo3jE4QVDA_RbamWOi3tCqzUKpn30KZPwWvYJI_aS70NxtnkXod351-Txvnkzlkn-xZ8Mo_dVVJ2wWxgJztBhw20nR5__yP0clk-z67TxcPVzWy6SCXLSEhlDtmEY6WUlBMhMK051CBErYFgTiEWRFPkBRY5zWQxoaqWtaoJA4Zr0MBG6Gw_d-vdW6-7UK1d721cWTHMGeEFLnBUne9VS2h1ZWzjggcZQ-mNkdHCxsT6NBeMZznjeQTEHpDedZ3XTSVN-DosgqatCK52fld_-B1Z9ovd-uiK__iX-gS_2on8
CitedBy_id crossref_primary_10_1016_j_optlastec_2025_113892
crossref_primary_10_1109_ACCESS_2025_3579429
crossref_primary_10_3390_electronics13204020
crossref_primary_10_3390_s24237752
Cites_doi 10.3390/electronics12020350
10.1109/TCYB.2013.2265378
10.1109/ICCV48922.2021.01196
10.1364/JOSAA.8.000377
10.1109/TPAMI.2015.2505283
10.3390/electronics12061450
10.1109/CVPR.2017.243
10.1109/CVPR.2017.634
10.1007/978-3-642-33715-4_54
10.1049/ell2.13019
10.1109/CVPR.2015.7298655
10.1109/TCSVT.2021.3049869
10.1007/s11263-007-0071-y
10.1007/978-3-030-01267-0_4
10.1109/ICVR55215.2022.9847988
10.1109/ICCV48922.2021.01596
10.1109/CVPR.2018.00037
10.1007/s00521-021-06462-0
10.1007/978-3-030-58574-7_35
10.3390/electronics12224669
10.1109/CVPR.2012.6248074
10.1109/3DV.2016.32
10.1007/978-3-030-01219-9_14
10.1109/JSEN.2021.3120753
10.3390/app13179940
10.1109/TCCN.2024.3360527
10.1109/TNNLS.2011.2180025
10.1109/CVPR.2018.00214
10.24963/ijcai.2019/98
10.1007/978-3-319-46484-8_45
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics13091652
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A793567357
10_3390_electronics13091652
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-c7a6450dddcc49902b5aba99bea1052a02b9f87809726c842dbcbdb13a30baea3
IEDL.DBID PIMPY
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001219977500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sat Jul 26 00:07:43 EDT 2025
Tue Nov 04 18:24:16 EST 2025
Sat Nov 29 07:19:57 EST 2025
Tue Nov 18 21:56:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-c7a6450dddcc49902b5aba99bea1052a02b9f87809726c842dbcbdb13a30baea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/publiccontent/docview/3053158080?pq-origsite=%requestingapplication%
PQID 3053158080
PQPubID 2032404
ParticipantIDs proquest_journals_3053158080
gale_infotracacademiconefile_A793567357
crossref_citationtrail_10_3390_electronics13091652
crossref_primary_10_3390_electronics13091652
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Han (ref_1) 2013; 43
Liu (ref_12) 2015; 38
ref_14
ref_36
Rogister (ref_5) 2011; 23
ref_13
ref_35
ref_34
ref_11
ref_10
ref_32
ref_30
Chan (ref_3) 2024; 60
Chan (ref_29) 2022; 34
ref_19
Saxena (ref_31) 2008; 76
ref_17
ref_39
ref_16
ref_38
ref_15
ref_37
Cheng (ref_26) 2021; 21
Chakrabarti (ref_33) 2016; 29
Eigen (ref_7) 2014; 27
ref_25
Song (ref_18) 2021; 31
ref_23
ref_22
Vaswani (ref_24) 2017; 30
ref_21
ref_20
ref_41
ref_40
ref_2
ref_28
ref_27
Koenderink (ref_6) 1991; 8
ref_9
ref_8
ref_4
References_xml – ident: ref_15
  doi: 10.3390/electronics12020350
– ident: ref_30
– volume: 43
  start-page: 1318
  year: 2013
  ident: ref_1
  article-title: Enhanced computer vision with microsoft kinect sensor: A review
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2265378
– ident: ref_41
  doi: 10.1109/ICCV48922.2021.01196
– ident: ref_34
– volume: 8
  start-page: 377
  year: 1991
  ident: ref_6
  article-title: Affine structure from motion
  publication-title: JOSA A
  doi: 10.1364/JOSAA.8.000377
– volume: 38
  start-page: 2024
  year: 2015
  ident: ref_12
  article-title: Learning depth from single monocular images using deep convolutional neural fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2505283
– ident: ref_14
  doi: 10.3390/electronics12061450
– ident: ref_17
  doi: 10.1109/CVPR.2017.243
– ident: ref_16
– ident: ref_19
  doi: 10.1109/CVPR.2017.634
– ident: ref_39
– ident: ref_9
  doi: 10.1007/978-3-642-33715-4_54
– ident: ref_35
– ident: ref_23
– volume: 60
  start-page: e13019
  year: 2024
  ident: ref_3
  article-title: Light-field image super-resolution with depth feature by multiple-decouple and fusion module
  publication-title: Electron. Lett.
  doi: 10.1049/ell2.13019
– ident: ref_11
  doi: 10.1109/CVPR.2015.7298655
– volume: 31
  start-page: 4381
  year: 2021
  ident: ref_18
  article-title: Monocular depth estimation using laplacian pyramid-based depth residuals
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3049869
– volume: 27
  start-page: 1
  year: 2014
  ident: ref_7
  article-title: Depth map prediction from a single image using a multi-scale deep network
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 76
  start-page: 53
  year: 2008
  ident: ref_31
  article-title: 3-d depth reconstruction from a single still image
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0071-y
– ident: ref_21
  doi: 10.1007/978-3-030-01267-0_4
– ident: ref_27
  doi: 10.1109/ICVR55215.2022.9847988
– volume: 29
  start-page: 1
  year: 2016
  ident: ref_33
  article-title: Depth from a single image by harmonizing overcomplete local network predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_37
  doi: 10.1109/ICCV48922.2021.01596
– ident: ref_20
  doi: 10.1109/CVPR.2018.00037
– volume: 34
  start-page: 1359
  year: 2022
  ident: ref_29
  article-title: Multiple classifier for concatenate-designed neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06462-0
– ident: ref_36
  doi: 10.1007/978-3-030-58574-7_35
– ident: ref_2
– volume: 30
  start-page: 1
  year: 2017
  ident: ref_24
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_25
  doi: 10.3390/electronics12224669
– ident: ref_10
  doi: 10.1109/CVPR.2012.6248074
– ident: ref_32
  doi: 10.1109/3DV.2016.32
– ident: ref_40
  doi: 10.1007/978-3-030-01219-9_14
– ident: ref_13
– volume: 21
  start-page: 26912
  year: 2021
  ident: ref_26
  article-title: Swin-Depth: Using Transformers and Multi-Scale Fusion for Monocular-Based Depth Estimation
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3120753
– ident: ref_8
  doi: 10.3390/app13179940
– ident: ref_4
  doi: 10.1109/TCCN.2024.3360527
– volume: 23
  start-page: 347
  year: 2011
  ident: ref_5
  article-title: Asynchronous event-based binocular stereo matching
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2011.2180025
– ident: ref_22
  doi: 10.1109/CVPR.2018.00214
– ident: ref_28
  doi: 10.24963/ijcai.2019/98
– ident: ref_38
  doi: 10.1007/978-3-319-46484-8_45
SSID ssj0000913830
Score 2.3221502
Snippet Estimating depth from a single RGB image has a wide range of applications, such as in robot navigation and autonomous driving. Currently, Convolutional Neural...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1652
SubjectTerms Accuracy
Algorithms
Analysis
Artificial neural networks
Autonomous navigation
Coders
Datasets
Deep learning
Estimation
Neural networks
Robots
Title Edge-Enhanced Dual-Stream Perception Network for Monocular Depth Estimation
URI https://www.proquest.com/docview/3053158080
Volume 13
WOSCitedRecordID wos001219977500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BywADb0R5VB6QWLCa2HlOCGgqEGoVIZCAJbIdhyJBC7Qw8ts5J24LEmJiyRAnkZU7fz7b330HcODqSKFpGVWsKKinGacicguqMXwIERuC2FNlsYmw14tub-PUpkePLK1ygoklUFdqz4a3jSDcyofK7Ji3uPEd32giHr-8UlNDypy12oIa81A3wltODerpRTe9m-65GA3MiDuV-BDH1X5rVmtmhGCOoZLPfkxQv8N0Ofd0Vv6316uwbGNQclI5zRrM6cE6LH1TJtyAyyR_0DQZ9EuCAGm_iydqDrDFM0mnVBjSqzjkBANfguAwLDmtpI2tfZIgdlRpkZtw00muz86prbtAFQ_cMVWhCDzfyfNcKVwQOUz6Qoo4llpgNMYE3oiLKIyM8k-gIo_lUslculxwRwot-BbUBsOB3gYiFWcGb4UbRJ7w_NgVAUPnKELHyYWSDWCTn50pK0puamM8Zbg4MRbKfrFQA46mL71Umhx_P35orJiZEYvfVsImHmAPjfZVdoIQ5Qch98MG7E2smNmhPMpmRtv5u3kXFhlGPBUbcg9q47d3vQ8L6mP8OHprQv006aVXTZjvfiZ4Tf37pvXPLw239js
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BiwQc2BFl9QHEBauJnfWAEKJFVIWqB5DgFGzHoUilBVpA_BTfyDhLCxLixoFrnFhJ_PTm2R6_Adi1daBwaBlVLEmooxmnIrATqlE--MgNXuiotNiE32oF19dhewI-irMwJq2y4MSUqOO-MmvkVW7Q4hoXxKPHJ2qqRpnd1aKERgaLpn5_wynb4LBRw_HdY-y0fnlyRvOqAlRxzx5S5QvPca04jpVCuW8x6QopwlBqgVqDCbwQJoEfGF8bTwUOi6WSsbS54JYUWnDsdxLKDoLdKkG53bho34xWdYzLZsCtzN6I89CqjqvZDDBcoBhz2bcQ-HMgSKPb6fx_-y8LMJfraHKcAX8RJnRvCWa_uCsuQ7Me32la73XSJAdSexFdajbhxQNpj9J5SCvLgyco3gkSXD_NyyU1bO2QOvJfdrRzBa7-5GtWodTr9_QaEKk4MzFD2F7gCMcNbeExBHjiW1YslKwAK4YzUrmxuqnv0Y1wgmUwEP2AgQocjB56zHxFfr993-AkMqyDfSuRH57ANzT-XdEx0qzr-dz1K7BZ4CTK6WgQjUGy_nvzDkyfXV6cR-eNVnMDZhgquCy7cxNKw-cXvQVT6nV4P3jezpFP4PavQfUJWL5GGg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB50FdGDb3F95qB4MWyb9HkQUbeLslIWUfBWkzRVQXfVXRX_mr_OSR-rgnjz4LVpQ9v58s0kmXwDsGXrQKFpGVUsy6ijGacisDOqMXzwkRu80FF5sQk_joPLy7AzAu_VWRiTVllxYk7UaU-ZNfIGN2hxcxXErEyL6DRb-w-P1FSQMjutVTmNAiJt_faK07f-3kkTbb3NWCs6PzqmZYUBqrhnD6jyhee4VpqmSmHobzHpCinCUGqBcQcTeCHMAj8wGjeeChyWSiVTaXPBLSm04NjvKIz5HCc9NRg7jOLO2XCFxyhuBtwqpI44D63GZ2WbProODMxc9s0d_uwUck_XmvnP_2gWpsv4mhwUA2IORnR3Hqa-qC4uQDtKrzWNujd58gNpPos7ajbnxT3pDNN8SFzkxxMM6gkSXy_P1yVNbL0hEfJiceRzES7-5GuWoNbtdfUyEKk4M75E2F7gCMcNbeExBH7mW1YqlKwDq0ybqFJw3dT9uEtw4mXwkPyAhzrsDh96KPRGfr99x2AmMWyEfStRHqrANzS6XskB0q_r-dz167BWYSYpaaqffAJm5ffmTZhAJCWnJ3F7FSYZBnZF0uca1AZPz3odxtXL4Lb_tFEOAgJXf42pD2p6TrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge-Enhanced+Dual-Stream+Perception+Network+for+Monocular+Depth+Estimation&rft.jtitle=Electronics+%28Basel%29&rft.au=Liu%2C+Zihang&rft.au=Wang%2C+Quande&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=9&rft_id=info:doi/10.3390%2Felectronics13091652&rft.externalDocID=A793567357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon