GenAI-Based Jamming and Spoofing Attacks on UAVs
Recently, aerial vehicles have been more connected than ever, where there are many types of the vehicles. Uncrewed Aerial Vehicles (UAVs) operate on various environments with different technologies that are subject to many attacks. Creating effective intrusion detection systems against such attacks...
Uloženo v:
| Vydáno v: | IEEE access Ročník 13; s. 107596 - 107620 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, aerial vehicles have been more connected than ever, where there are many types of the vehicles. Uncrewed Aerial Vehicles (UAVs) operate on various environments with different technologies that are subject to many attacks. Creating effective intrusion detection systems against such attacks has been a significant challenge since there is a lack of sufficient attack data that can be used to design an intrusion detection system with advanced computing algorithms. In this research, we propose a novel framework to create attacks data for UAVs by using generative artificial intelligence algorithms. We use Variational Autoencoder, Gaussian Copula, Denoising Diffusion Probabilistic Model (DDPM), and Conditional Tabular Generative Adversarial Network to create synthetic attack data. Specifically, jamming and spoofing attacks on UAVs are generated to fool intrusion detection systems that may be implemented on UAVs. Experimental evaluations show that synthetically generated attack data reduces the accuracy of intrusion detections if the system was trained with inadequate attack data. Additionally, analysis results show that DDPM emerged as the most effective model for generating attack data, leading to F1 score reductions of 21% for jamming and 28% for spoofing attacks. This research highlights the need for more robust and adaptive intrusion detection systems that can be created with synthetic data. Thus, sustainable computing systems on UAVs will be achieved. |
|---|---|
| AbstractList | Recently, aerial vehicles have been more connected than ever, where there are many types of the vehicles. Uncrewed Aerial Vehicles (UAVs) operate on various environments with different technologies that are subject to many attacks. Creating effective intrusion detection systems against such attacks has been a significant challenge since there is a lack of sufficient attack data that can be used to design an intrusion detection system with advanced computing algorithms. In this research, we propose a novel framework to create attacks data for UAVs by using generative artificial intelligence algorithms. We use Variational Autoencoder, Gaussian Copula, Denoising Diffusion Probabilistic Model (DDPM), and Conditional Tabular Generative Adversarial Network to create synthetic attack data. Specifically, jamming and spoofing attacks on UAVs are generated to fool intrusion detection systems that may be implemented on UAVs. Experimental evaluations show that synthetically generated attack data reduces the accuracy of intrusion detections if the system was trained with inadequate attack data. Additionally, analysis results show that DDPM emerged as the most effective model for generating attack data, leading to F1 score reductions of 21% for jamming and 28% for spoofing attacks. This research highlights the need for more robust and adaptive intrusion detection systems that can be created with synthetic data. Thus, sustainable computing systems on UAVs will be achieved. |
| Author | Sonmez Sarikaya, Burcu Bahtiyar, Serif |
| Author_xml | – sequence: 1 givenname: Burcu orcidid: 0000-0002-5385-9949 surname: Sonmez Sarikaya fullname: Sonmez Sarikaya, Burcu email: sonmezb18@itu.edu.tr organization: Department of Computer Engineering, Cyber Security and Privacy Research Laboratory, Istanbul Technical University, Istanbul, Türkiye – sequence: 2 givenname: Serif orcidid: 0000-0003-0314-2621 surname: Bahtiyar fullname: Bahtiyar, Serif organization: Department of Computer Engineering, Cyber Security and Privacy Research Laboratory, Istanbul Technical University, Istanbul, Türkiye |
| BookMark | eNpNUE1PAjEQbQwmIvIL9LCJ58V-t3tcCSKGxAPitWl3W7IIW2yXg__e4hJ1LjPzMu-9ybsGg9a3FoBbBCcIweKhnE5nq9UEQ8wmhAmKJb0AQ4x4kRNG-ODffAXGMW5hKpkgJoYAzm1bLvJHHW2dvej9vmk3mW7rbHXw3p2Wsut09REz32br8j3egEund9GOz30E1k-zt-lzvnydL6blMq8IR11eQYsxRoXBlEnKrTOu1lxi53hVM2iFgI4aKawxssYSYyqk48YZqpGEgpMRWPS6tddbdQjNXocv5XWjfgAfNkqHrql2VmFHTGJYxyij0LqCVY5hXctasIIbmrTue61D8J9HGzu19cfQpvcVSc5cSEJguiL9VRV8jMG6X1cE1Slp1SetTkmrc9KJddezGmvtHwNBxAWj5BuEKHjK |
| CODEN | IAECCG |
| Cites_doi | 10.1109/SSCI.2017.8285168 10.1109/ICC45855.2022.9839249 10.1016/j.compeleceng.2022.107784 10.1109/PST.2018.8514157 10.7717/peerj-cs.2714 10.1016/j.cose.2024.104073 10.1109/NOMS.2016.7502939 10.1109/ACCESS.2019.2924410 10.1007/s11036-023-02222-7 10.1109/IWCMC.2019.8766667 10.1109/BigData59044.2023.10386140 10.1007/978-3-031-05981-0_7 10.3390/electronics13020322 10.1109/DSAA.2016.49 10.1016/j.adhoc.2021.102574 10.1109/CITS.2019.8862148 10.1109/TVT.2017.2785414 10.1177/0049124118799381 10.1109/SURV.2009.090404 10.14722/autosec.2021.23036 10.1109/JIOT.2024.3465528 10.1016/j.jjimei.2023.100177 10.32604/cmc.2023.036111 10.3390/rs9020100 10.1109/LWC.2019.2945022 10.3390/info16020115 10.3390/app9091728 10.1109/ACCESS.2024.3359700 10.1016/j.ifacol.2016.10.412 10.1016/j.adhoc.2024.103642 10.1145/3416013.3426446 10.1109/ACCESS.2021.3089847 10.1109/ACCESS.2018.2863237 10.1109/THS.2013.6699093 10.1109/IRC.2019.00103 10.1145/2939672.2939785 10.1109/SSRR.2017.8088163 10.1109/ACCESS.2021.3066778 10.1002/rob.21513 10.1016/j.adhoc.2021.102600 10.1016/j.comnet.2024.110695 10.1109/SSCI50451.2021.9659972 10.3390/math10152733 10.1109/UBMK63289.2024.10773419 10.32604/cmc.2025.060357 10.1016/j.eswa.2022.117936 10.1109/COMPSAC48688.2020.0-218 10.9734/jerr/2024/v26i101291 10.1109/TNNLS.2022.3229161 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3574284 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 107620 |
| ExternalDocumentID | oai_doaj_org_article_2f3b763ef54540ef95cf52ad8d7596b4 10_1109_ACCESS_2025_3574284 11016754 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Turkcell İletişim Hizmetleri A. Ş. – fundername: Research Fund of Istanbul Technical University grantid: 45654 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-c0e22219b245846efbfda682ff6cd50e770f4b87ebb8d2822478f6bfb4a180763 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001518769800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:35:44 EDT 2025 Sat Nov 01 15:52:27 EDT 2025 Sat Nov 29 07:51:53 EST 2025 Wed Aug 27 01:35:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-c0e22219b245846efbfda682ff6cd50e770f4b87ebb8d2822478f6bfb4a180763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0314-2621 0000-0002-5385-9949 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/11016754 |
| PQID | 3224678330 |
| PQPubID | 4845423 |
| PageCount | 25 |
| ParticipantIDs | ieee_primary_11016754 doaj_primary_oai_doaj_org_article_2f3b763ef54540ef95cf52ad8d7596b4 proquest_journals_3224678330 crossref_primary_10_1109_ACCESS_2025_3574284 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 Glorot (ref57) ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 Ho (ref41) 2020 ref47 ref44 ref43 ref8 ref7 ref4 Xu (ref40) ref3 ref6 ref5 ref35 ref34 ref36 ref31 Ammara (ref37) 2024 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Nichol (ref49) 2021 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Xu (ref56) 2019 ref29 Sohl-Dickstein (ref42) 2015 Hartmann (ref9) |
| References_xml | – ident: ref44 doi: 10.1109/SSCI.2017.8285168 – start-page: 1 volume-title: Proc. 5th Int. Conf. Cyber Conflict (CYCON) ident: ref9 article-title: The vulnerability of UAVs to cyber attacks—An approach to the risk assessment – ident: ref46 doi: 10.1109/ICC45855.2022.9839249 – ident: ref52 doi: 10.1016/j.compeleceng.2022.107784 – ident: ref32 doi: 10.1109/PST.2018.8514157 – ident: ref7 doi: 10.7717/peerj-cs.2714 – ident: ref29 doi: 10.1016/j.cose.2024.104073 – ident: ref2 doi: 10.1109/NOMS.2016.7502939 – ident: ref53 doi: 10.1109/ACCESS.2019.2924410 – ident: ref35 doi: 10.1007/s11036-023-02222-7 – ident: ref55 doi: 10.1109/IWCMC.2019.8766667 – ident: ref27 doi: 10.1109/BigData59044.2023.10386140 – ident: ref31 doi: 10.1007/978-3-031-05981-0_7 – ident: ref34 doi: 10.3390/electronics13020322 – year: 2024 ident: ref37 article-title: Synthetic data generation in cybersecurity: A comparative analysis publication-title: arXiv:2410.16326 – ident: ref39 doi: 10.1109/DSAA.2016.49 – year: 2021 ident: ref49 article-title: Improved denoising diffusion probabilistic models publication-title: arXiv:2102.09672 – ident: ref26 doi: 10.1016/j.adhoc.2021.102574 – ident: ref23 doi: 10.1109/CITS.2019.8862148 – ident: ref16 doi: 10.1109/TVT.2017.2785414 – year: 2015 ident: ref42 article-title: Deep unsupervised learning using nonequilibrium thermodynamics publication-title: arXiv:1503.03585 – ident: ref47 doi: 10.1177/0049124118799381 – ident: ref4 doi: 10.1109/SURV.2009.090404 – ident: ref28 doi: 10.14722/autosec.2021.23036 – ident: ref20 doi: 10.1109/JIOT.2024.3465528 – year: 2020 ident: ref41 article-title: Denoising diffusion probabilistic models publication-title: arXiv:2006.11239 – ident: ref48 doi: 10.1016/j.jjimei.2023.100177 – volume-title: Modeling Tabular Data Using Conditional GAN year: 2019 ident: ref56 – ident: ref19 doi: 10.32604/cmc.2023.036111 – ident: ref24 doi: 10.3390/rs9020100 – ident: ref22 doi: 10.1109/LWC.2019.2945022 – start-page: 7333 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref40 article-title: Modeling tabular data using conditional GAN – start-page: 249 volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist. ident: ref57 article-title: Understanding the difficulty of training deep feedforward neural networks – ident: ref10 doi: 10.3390/info16020115 – ident: ref51 doi: 10.3390/app9091728 – ident: ref21 doi: 10.1109/ACCESS.2024.3359700 – ident: ref5 doi: 10.1016/j.ifacol.2016.10.412 – ident: ref13 doi: 10.1016/j.adhoc.2024.103642 – ident: ref12 doi: 10.1145/3416013.3426446 – ident: ref8 doi: 10.1109/ACCESS.2021.3089847 – ident: ref54 doi: 10.1109/ACCESS.2018.2863237 – ident: ref14 doi: 10.1109/THS.2013.6699093 – ident: ref25 doi: 10.1109/IRC.2019.00103 – ident: ref50 doi: 10.1145/2939672.2939785 – ident: ref3 doi: 10.1109/SSRR.2017.8088163 – ident: ref17 doi: 10.1109/ACCESS.2021.3066778 – ident: ref6 doi: 10.1002/rob.21513 – ident: ref15 doi: 10.1016/j.adhoc.2021.102600 – ident: ref1 doi: 10.1016/j.comnet.2024.110695 – ident: ref11 doi: 10.1109/SSCI50451.2021.9659972 – ident: ref45 doi: 10.3390/math10152733 – ident: ref33 doi: 10.1109/UBMK63289.2024.10773419 – ident: ref36 doi: 10.32604/cmc.2025.060357 – ident: ref38 doi: 10.1016/j.eswa.2022.117936 – ident: ref30 doi: 10.1109/COMPSAC48688.2020.0-218 – ident: ref18 doi: 10.9734/jerr/2024/v26i101291 – ident: ref43 doi: 10.1109/TNNLS.2022.3229161 |
| SSID | ssj0000816957 |
| Score | 2.3343604 |
| Snippet | Recently, aerial vehicles have been more connected than ever, where there are many types of the vehicles. Uncrewed Aerial Vehicles (UAVs) operate on various... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 107596 |
| SubjectTerms | Algorithms Autonomous aerial vehicles Computation Cyber security Data models Drones Generative adversarial networks Generative AI Generative artificial intelligence Global Positioning System Intrusion detection intrusion detection system Intrusion detection systems Jamming Machine learning algorithms Probabilistic models Protocols Security Spoofing Synthetic data uncrewed aerial vehicles Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4lFEoaAMjBic2I7tMa0oD6EKiYe6WfFLYmhatYHfj-2kUMTAwphTJNvf2Xf-HOc7AM6NE1Y4qiGmuYWEaAJV6hDMmHDKUIWZjer6D2w85pOJeFwr9RXuhDXywA1wV5nDyq8B62jQirNOUO1oVhpuGBW5ikqgiIk1MhVjME9zQVkrM5QicVUMh35EnhBm9BJTTwg5-ZGKomJ_W2LlV1yOyWa0C3baXWJSNL3bAxu22gfba9qBBwDd2Kq4gwOfhUxyX06n3pqUlUme5jM_YfxDUdfhB_pkViUvxeuyC15G18_DW9iWP4Aa52kNNbI-eadCZeFbZm6dcqbMeeZcrg1FljHkiOLMKsVNvA3KuMuVU6RMOfKYHYJONavsEUhwhjEjnjr48EawVtxmhJfUlkwJhlLeAxcrJOS8UbmQkR0gIRvgZABOtsD1wCCg9fVqkKiOBu842TpO_uW4HugGrL_bC-cIjHp7fwW-bNfTUuKge8c4xuj4P9o-AVthPM1RSh906sW7PQWb-qN-Wy7O4lT6BK3SyCI priority: 102 providerName: Directory of Open Access Journals |
| Title | GenAI-Based Jamming and Spoofing Attacks on UAVs |
| URI | https://ieeexplore.ieee.org/document/11016754 https://www.proquest.com/docview/3224678330 https://doaj.org/article/2f3b763ef54540ef95cf52ad8d7596b4 |
| Volume | 13 |
| WOSCitedRecordID | wos001518769800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8UgECZqPOjB3fjc0oNHq7RAgWN9cY0aE5d4IwWGxIN9xlc9-tsFiluMBy9NS7pMP5ZhBuYbhHaskyAdMzlhFeSUGprrwuG85NJpyzThENn1z_nlpbi_l1cpWD3GwgBA3HwGe-E0ruXbkXkJrrL9IpianNFJNMl51QdrfTpUQgYJyXhiFiqw3K-HQ_8T3gYs2R5h3gYU9If2iST9KavKr6E46pej-X9KtoDm0kQyq_uaX0QT0C6h2W_0gssIH0Nbn-YHXlHZ7Kx5fPSlWdPa7Ppp5NuUv6i7LsTYZ6M2u63vxivo9ujwZniSpwwJuSFV0eUGg9fvhdRlWO6swGlnm0qUzlXGMgycY0e14KC1sHHDKBeu0k7TphDYDy2raKodtbCGMlISwqm3LvwISInRAkoqGgYN15LjQgzQ7gdy6qknwlDRgMBS9UCrALRKQA_QQUD389bAYh0LPGwqdQpVOqK9EOBY4AEEJ5lxrGyssJzJSvuXrASov76XUB6gzY_KUqnLjRUJ1HhcEILX_3hsA80EEXsHyiaa6p5fYAtNm9fuYfy8Ha1xf7x4O9yOLesdu9rHnA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VikQ59LkVS2nJgWMDTmzH9jGsSqFsV0hAxc2K7bHEgSxiA78f22soVdVDb4mVx-SzPZMZe74B2HVeofLclpQ3WDJmWWkqT8paKG8cN1RgYtefitlMXl6q05ysnnJhEDFtPsO9eJjW8t3c3sVQ2X4VXU3B2Qq8jKWzcrrWU0gl1pBQXGRuoYqo_XYyCZ8RvMCa71EevEDJ_rA_iaY_11X5SxknC3P45j9lewuv869k0S77_h28wP49bDwjGPwA5Dv27XF5EEyVK35019ehteh6V5zdzMOoCiftMMQs-2LeFxftr8UILg6_nU-OylwjobS0qYbSEgwWvlKmjgueDXrjXdfI2vvGOk5QCOKZkQKNkS5tGRXSN8Yb1lWSBOXyEVb7eY-bUNCaUsGCfxF0IKPWSKyZ7Dh2wihBKjmGr4_I6ZslFYZOLgRRegm0jkDrDPQYDiK6T5dGHuvUEGDTeVro2lMThEDPIxMgesWt53XnpBNcNSY8ZBSh_v2-jPIYth87S-dJt9A0kuMJSSnZ-sdtO7B-dP5zqqfHs5NP8CqKuwynbMPqcHuHn2HN3g9Xi9svaWQ9AOavyL8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GenAI-Based+Jamming+and+Spoofing+Attacks+on+UAVs&rft.jtitle=IEEE+access&rft.au=Sonmez+Sarikaya%2C+Burcu&rft.au=Bahtiyar%2C+Serif&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=107596&rft.epage=107620&rft_id=info:doi/10.1109%2FACCESS.2025.3574284&rft.externalDocID=11016754 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |