GenAI-Based Jamming and Spoofing Attacks on UAVs

Recently, aerial vehicles have been more connected than ever, where there are many types of the vehicles. Uncrewed Aerial Vehicles (UAVs) operate on various environments with different technologies that are subject to many attacks. Creating effective intrusion detection systems against such attacks...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 107596 - 107620
Hlavní autoři: Sonmez Sarikaya, Burcu, Bahtiyar, Serif
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, aerial vehicles have been more connected than ever, where there are many types of the vehicles. Uncrewed Aerial Vehicles (UAVs) operate on various environments with different technologies that are subject to many attacks. Creating effective intrusion detection systems against such attacks has been a significant challenge since there is a lack of sufficient attack data that can be used to design an intrusion detection system with advanced computing algorithms. In this research, we propose a novel framework to create attacks data for UAVs by using generative artificial intelligence algorithms. We use Variational Autoencoder, Gaussian Copula, Denoising Diffusion Probabilistic Model (DDPM), and Conditional Tabular Generative Adversarial Network to create synthetic attack data. Specifically, jamming and spoofing attacks on UAVs are generated to fool intrusion detection systems that may be implemented on UAVs. Experimental evaluations show that synthetically generated attack data reduces the accuracy of intrusion detections if the system was trained with inadequate attack data. Additionally, analysis results show that DDPM emerged as the most effective model for generating attack data, leading to F1 score reductions of 21% for jamming and 28% for spoofing attacks. This research highlights the need for more robust and adaptive intrusion detection systems that can be created with synthetic data. Thus, sustainable computing systems on UAVs will be achieved.
AbstractList Recently, aerial vehicles have been more connected than ever, where there are many types of the vehicles. Uncrewed Aerial Vehicles (UAVs) operate on various environments with different technologies that are subject to many attacks. Creating effective intrusion detection systems against such attacks has been a significant challenge since there is a lack of sufficient attack data that can be used to design an intrusion detection system with advanced computing algorithms. In this research, we propose a novel framework to create attacks data for UAVs by using generative artificial intelligence algorithms. We use Variational Autoencoder, Gaussian Copula, Denoising Diffusion Probabilistic Model (DDPM), and Conditional Tabular Generative Adversarial Network to create synthetic attack data. Specifically, jamming and spoofing attacks on UAVs are generated to fool intrusion detection systems that may be implemented on UAVs. Experimental evaluations show that synthetically generated attack data reduces the accuracy of intrusion detections if the system was trained with inadequate attack data. Additionally, analysis results show that DDPM emerged as the most effective model for generating attack data, leading to F1 score reductions of 21% for jamming and 28% for spoofing attacks. This research highlights the need for more robust and adaptive intrusion detection systems that can be created with synthetic data. Thus, sustainable computing systems on UAVs will be achieved.
Author Sonmez Sarikaya, Burcu
Bahtiyar, Serif
Author_xml – sequence: 1
  givenname: Burcu
  orcidid: 0000-0002-5385-9949
  surname: Sonmez Sarikaya
  fullname: Sonmez Sarikaya, Burcu
  email: sonmezb18@itu.edu.tr
  organization: Department of Computer Engineering, Cyber Security and Privacy Research Laboratory, Istanbul Technical University, Istanbul, Türkiye
– sequence: 2
  givenname: Serif
  orcidid: 0000-0003-0314-2621
  surname: Bahtiyar
  fullname: Bahtiyar, Serif
  organization: Department of Computer Engineering, Cyber Security and Privacy Research Laboratory, Istanbul Technical University, Istanbul, Türkiye
BookMark eNpNUE1PAjEQbQwmIvIL9LCJ58V-t3tcCSKGxAPitWl3W7IIW2yXg__e4hJ1LjPzMu-9ybsGg9a3FoBbBCcIweKhnE5nq9UEQ8wmhAmKJb0AQ4x4kRNG-ODffAXGMW5hKpkgJoYAzm1bLvJHHW2dvej9vmk3mW7rbHXw3p2Wsut09REz32br8j3egEund9GOz30E1k-zt-lzvnydL6blMq8IR11eQYsxRoXBlEnKrTOu1lxi53hVM2iFgI4aKawxssYSYyqk48YZqpGEgpMRWPS6tddbdQjNXocv5XWjfgAfNkqHrql2VmFHTGJYxyij0LqCVY5hXctasIIbmrTue61D8J9HGzu19cfQpvcVSc5cSEJguiL9VRV8jMG6X1cE1Slp1SetTkmrc9KJddezGmvtHwNBxAWj5BuEKHjK
CODEN IAECCG
Cites_doi 10.1109/SSCI.2017.8285168
10.1109/ICC45855.2022.9839249
10.1016/j.compeleceng.2022.107784
10.1109/PST.2018.8514157
10.7717/peerj-cs.2714
10.1016/j.cose.2024.104073
10.1109/NOMS.2016.7502939
10.1109/ACCESS.2019.2924410
10.1007/s11036-023-02222-7
10.1109/IWCMC.2019.8766667
10.1109/BigData59044.2023.10386140
10.1007/978-3-031-05981-0_7
10.3390/electronics13020322
10.1109/DSAA.2016.49
10.1016/j.adhoc.2021.102574
10.1109/CITS.2019.8862148
10.1109/TVT.2017.2785414
10.1177/0049124118799381
10.1109/SURV.2009.090404
10.14722/autosec.2021.23036
10.1109/JIOT.2024.3465528
10.1016/j.jjimei.2023.100177
10.32604/cmc.2023.036111
10.3390/rs9020100
10.1109/LWC.2019.2945022
10.3390/info16020115
10.3390/app9091728
10.1109/ACCESS.2024.3359700
10.1016/j.ifacol.2016.10.412
10.1016/j.adhoc.2024.103642
10.1145/3416013.3426446
10.1109/ACCESS.2021.3089847
10.1109/ACCESS.2018.2863237
10.1109/THS.2013.6699093
10.1109/IRC.2019.00103
10.1145/2939672.2939785
10.1109/SSRR.2017.8088163
10.1109/ACCESS.2021.3066778
10.1002/rob.21513
10.1016/j.adhoc.2021.102600
10.1016/j.comnet.2024.110695
10.1109/SSCI50451.2021.9659972
10.3390/math10152733
10.1109/UBMK63289.2024.10773419
10.32604/cmc.2025.060357
10.1016/j.eswa.2022.117936
10.1109/COMPSAC48688.2020.0-218
10.9734/jerr/2024/v26i101291
10.1109/TNNLS.2022.3229161
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3574284
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 107620
ExternalDocumentID oai_doaj_org_article_2f3b763ef54540ef95cf52ad8d7596b4
10_1109_ACCESS_2025_3574284
11016754
Genre orig-research
GrantInformation_xml – fundername: Turkcell İletişim Hizmetleri A. Ş.
– fundername: Research Fund of Istanbul Technical University
  grantid: 45654
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-c0e22219b245846efbfda682ff6cd50e770f4b87ebb8d2822478f6bfb4a180763
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001518769800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:35:44 EDT 2025
Sat Nov 01 15:52:27 EDT 2025
Sat Nov 29 07:51:53 EST 2025
Wed Aug 27 01:35:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-c0e22219b245846efbfda682ff6cd50e770f4b87ebb8d2822478f6bfb4a180763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0314-2621
0000-0002-5385-9949
OpenAccessLink https://ieeexplore.ieee.org/document/11016754
PQID 3224678330
PQPubID 4845423
PageCount 25
ParticipantIDs ieee_primary_11016754
doaj_primary_oai_doaj_org_article_2f3b763ef54540ef95cf52ad8d7596b4
proquest_journals_3224678330
crossref_primary_10_1109_ACCESS_2025_3574284
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Glorot (ref57)
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
Ho (ref41) 2020
ref47
ref44
ref43
ref8
ref7
ref4
Xu (ref40)
ref3
ref6
ref5
ref35
ref34
ref36
ref31
Ammara (ref37) 2024
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Nichol (ref49) 2021
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Xu (ref56) 2019
ref29
Sohl-Dickstein (ref42) 2015
Hartmann (ref9)
References_xml – ident: ref44
  doi: 10.1109/SSCI.2017.8285168
– start-page: 1
  volume-title: Proc. 5th Int. Conf. Cyber Conflict (CYCON)
  ident: ref9
  article-title: The vulnerability of UAVs to cyber attacks—An approach to the risk assessment
– ident: ref46
  doi: 10.1109/ICC45855.2022.9839249
– ident: ref52
  doi: 10.1016/j.compeleceng.2022.107784
– ident: ref32
  doi: 10.1109/PST.2018.8514157
– ident: ref7
  doi: 10.7717/peerj-cs.2714
– ident: ref29
  doi: 10.1016/j.cose.2024.104073
– ident: ref2
  doi: 10.1109/NOMS.2016.7502939
– ident: ref53
  doi: 10.1109/ACCESS.2019.2924410
– ident: ref35
  doi: 10.1007/s11036-023-02222-7
– ident: ref55
  doi: 10.1109/IWCMC.2019.8766667
– ident: ref27
  doi: 10.1109/BigData59044.2023.10386140
– ident: ref31
  doi: 10.1007/978-3-031-05981-0_7
– ident: ref34
  doi: 10.3390/electronics13020322
– year: 2024
  ident: ref37
  article-title: Synthetic data generation in cybersecurity: A comparative analysis
  publication-title: arXiv:2410.16326
– ident: ref39
  doi: 10.1109/DSAA.2016.49
– year: 2021
  ident: ref49
  article-title: Improved denoising diffusion probabilistic models
  publication-title: arXiv:2102.09672
– ident: ref26
  doi: 10.1016/j.adhoc.2021.102574
– ident: ref23
  doi: 10.1109/CITS.2019.8862148
– ident: ref16
  doi: 10.1109/TVT.2017.2785414
– year: 2015
  ident: ref42
  article-title: Deep unsupervised learning using nonequilibrium thermodynamics
  publication-title: arXiv:1503.03585
– ident: ref47
  doi: 10.1177/0049124118799381
– ident: ref4
  doi: 10.1109/SURV.2009.090404
– ident: ref28
  doi: 10.14722/autosec.2021.23036
– ident: ref20
  doi: 10.1109/JIOT.2024.3465528
– year: 2020
  ident: ref41
  article-title: Denoising diffusion probabilistic models
  publication-title: arXiv:2006.11239
– ident: ref48
  doi: 10.1016/j.jjimei.2023.100177
– volume-title: Modeling Tabular Data Using Conditional GAN
  year: 2019
  ident: ref56
– ident: ref19
  doi: 10.32604/cmc.2023.036111
– ident: ref24
  doi: 10.3390/rs9020100
– ident: ref22
  doi: 10.1109/LWC.2019.2945022
– start-page: 7333
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref40
  article-title: Modeling tabular data using conditional GAN
– start-page: 249
  volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist.
  ident: ref57
  article-title: Understanding the difficulty of training deep feedforward neural networks
– ident: ref10
  doi: 10.3390/info16020115
– ident: ref51
  doi: 10.3390/app9091728
– ident: ref21
  doi: 10.1109/ACCESS.2024.3359700
– ident: ref5
  doi: 10.1016/j.ifacol.2016.10.412
– ident: ref13
  doi: 10.1016/j.adhoc.2024.103642
– ident: ref12
  doi: 10.1145/3416013.3426446
– ident: ref8
  doi: 10.1109/ACCESS.2021.3089847
– ident: ref54
  doi: 10.1109/ACCESS.2018.2863237
– ident: ref14
  doi: 10.1109/THS.2013.6699093
– ident: ref25
  doi: 10.1109/IRC.2019.00103
– ident: ref50
  doi: 10.1145/2939672.2939785
– ident: ref3
  doi: 10.1109/SSRR.2017.8088163
– ident: ref17
  doi: 10.1109/ACCESS.2021.3066778
– ident: ref6
  doi: 10.1002/rob.21513
– ident: ref15
  doi: 10.1016/j.adhoc.2021.102600
– ident: ref1
  doi: 10.1016/j.comnet.2024.110695
– ident: ref11
  doi: 10.1109/SSCI50451.2021.9659972
– ident: ref45
  doi: 10.3390/math10152733
– ident: ref33
  doi: 10.1109/UBMK63289.2024.10773419
– ident: ref36
  doi: 10.32604/cmc.2025.060357
– ident: ref38
  doi: 10.1016/j.eswa.2022.117936
– ident: ref30
  doi: 10.1109/COMPSAC48688.2020.0-218
– ident: ref18
  doi: 10.9734/jerr/2024/v26i101291
– ident: ref43
  doi: 10.1109/TNNLS.2022.3229161
SSID ssj0000816957
Score 2.3343604
Snippet Recently, aerial vehicles have been more connected than ever, where there are many types of the vehicles. Uncrewed Aerial Vehicles (UAVs) operate on various...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 107596
SubjectTerms Algorithms
Autonomous aerial vehicles
Computation
Cyber security
Data models
Drones
Generative adversarial networks
Generative AI
Generative artificial intelligence
Global Positioning System
Intrusion detection
intrusion detection system
Intrusion detection systems
Jamming
Machine learning algorithms
Probabilistic models
Protocols
Security
Spoofing
Synthetic data
uncrewed aerial vehicles
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4lFEoaAMjBic2I7tMa0oD6EKiYe6WfFLYmhatYHfj-2kUMTAwphTJNvf2Xf-HOc7AM6NE1Y4qiGmuYWEaAJV6hDMmHDKUIWZjer6D2w85pOJeFwr9RXuhDXywA1wV5nDyq8B62jQirNOUO1oVhpuGBW5ikqgiIk1MhVjME9zQVkrM5QicVUMh35EnhBm9BJTTwg5-ZGKomJ_W2LlV1yOyWa0C3baXWJSNL3bAxu22gfba9qBBwDd2Kq4gwOfhUxyX06n3pqUlUme5jM_YfxDUdfhB_pkViUvxeuyC15G18_DW9iWP4Aa52kNNbI-eadCZeFbZm6dcqbMeeZcrg1FljHkiOLMKsVNvA3KuMuVU6RMOfKYHYJONavsEUhwhjEjnjr48EawVtxmhJfUlkwJhlLeAxcrJOS8UbmQkR0gIRvgZABOtsD1wCCg9fVqkKiOBu842TpO_uW4HugGrL_bC-cIjHp7fwW-bNfTUuKge8c4xuj4P9o-AVthPM1RSh906sW7PQWb-qN-Wy7O4lT6BK3SyCI
  priority: 102
  providerName: Directory of Open Access Journals
Title GenAI-Based Jamming and Spoofing Attacks on UAVs
URI https://ieeexplore.ieee.org/document/11016754
https://www.proquest.com/docview/3224678330
https://doaj.org/article/2f3b763ef54540ef95cf52ad8d7596b4
Volume 13
WOSCitedRecordID wos001518769800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8UgECZqPOjB3fjc0oNHq7RAgWN9cY0aE5d4IwWGxIN9xlc9-tsFiluMBy9NS7pMP5ZhBuYbhHaskyAdMzlhFeSUGprrwuG85NJpyzThENn1z_nlpbi_l1cpWD3GwgBA3HwGe-E0ruXbkXkJrrL9IpianNFJNMl51QdrfTpUQgYJyXhiFiqw3K-HQ_8T3gYs2R5h3gYU9If2iST9KavKr6E46pej-X9KtoDm0kQyq_uaX0QT0C6h2W_0gssIH0Nbn-YHXlHZ7Kx5fPSlWdPa7Ppp5NuUv6i7LsTYZ6M2u63vxivo9ujwZniSpwwJuSFV0eUGg9fvhdRlWO6swGlnm0qUzlXGMgycY0e14KC1sHHDKBeu0k7TphDYDy2raKodtbCGMlISwqm3LvwISInRAkoqGgYN15LjQgzQ7gdy6qknwlDRgMBS9UCrALRKQA_QQUD389bAYh0LPGwqdQpVOqK9EOBY4AEEJ5lxrGyssJzJSvuXrASov76XUB6gzY_KUqnLjRUJ1HhcEILX_3hsA80EEXsHyiaa6p5fYAtNm9fuYfy8Ha1xf7x4O9yOLesdu9rHnA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VikQ59LkVS2nJgWMDTmzH9jGsSqFsV0hAxc2K7bHEgSxiA78f22soVdVDb4mVx-SzPZMZe74B2HVeofLclpQ3WDJmWWkqT8paKG8cN1RgYtefitlMXl6q05ysnnJhEDFtPsO9eJjW8t3c3sVQ2X4VXU3B2Qq8jKWzcrrWU0gl1pBQXGRuoYqo_XYyCZ8RvMCa71EevEDJ_rA_iaY_11X5SxknC3P45j9lewuv869k0S77_h28wP49bDwjGPwA5Dv27XF5EEyVK35019ehteh6V5zdzMOoCiftMMQs-2LeFxftr8UILg6_nU-OylwjobS0qYbSEgwWvlKmjgueDXrjXdfI2vvGOk5QCOKZkQKNkS5tGRXSN8Yb1lWSBOXyEVb7eY-bUNCaUsGCfxF0IKPWSKyZ7Dh2wihBKjmGr4_I6ZslFYZOLgRRegm0jkDrDPQYDiK6T5dGHuvUEGDTeVro2lMThEDPIxMgesWt53XnpBNcNSY8ZBSh_v2-jPIYth87S-dJt9A0kuMJSSnZ-sdtO7B-dP5zqqfHs5NP8CqKuwynbMPqcHuHn2HN3g9Xi9svaWQ9AOavyL8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GenAI-Based+Jamming+and+Spoofing+Attacks+on+UAVs&rft.jtitle=IEEE+access&rft.au=Sonmez+Sarikaya%2C+Burcu&rft.au=Bahtiyar%2C+Serif&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=107596&rft.epage=107620&rft_id=info:doi/10.1109%2FACCESS.2025.3574284&rft.externalDocID=11016754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon