A Frequency Decomposition-Based Hybrid Forecasting Algorithm for Short-Term Reactive Power

This paper proposes a new frequency decomposition-based hybrid reactive power forecasting algorithm, EEMD-LSTM-RFR (ELR), which adopts a strategy of frequency decomposition prediction after ensemble empirical mode decomposition and then data reconstruction to improve the prediction ability of reacti...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 14; no. 20; p. 6606
Main Authors: Du, Jiabao, Yue, Changxi, Shi, Ying, Yu, Jicheng, Sun, Fan, Xie, Changjun, Su, Tao
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2021
Subjects:
ISSN:1996-1073, 1996-1073
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a new frequency decomposition-based hybrid reactive power forecasting algorithm, EEMD-LSTM-RFR (ELR), which adopts a strategy of frequency decomposition prediction after ensemble empirical mode decomposition and then data reconstruction to improve the prediction ability of reactive power. This decomposition process can compress the high frequency of reactive power and benefits the following separate forecasting. Long short-term memory is proposed for the high-frequency feature of reactive power to deal with the forecasting difficulty caused by strong signal disturbance and randomness. In contrast, random forest regression is applied to the low-frequency part in order to speed up the forecasting. Four classical algorithms and four hybrid algorithms based on different signal decompositions are compared with the proposed algorithm, and the results show that the proposed algorithm outperforms those algorithms. The predicting index RMSE decreases to 0.687, while the fitting degree R2 gradually approaches 1 with a step-by-step superposition of high-frequency signals, indicating that the proposed decomposition-predicting reconstruction strategy is effective.
AbstractList This paper proposes a new frequency decomposition-based hybrid reactive power forecasting algorithm, EEMD-LSTM-RFR (ELR), which adopts a strategy of frequency decomposition prediction after ensemble empirical mode decomposition and then data reconstruction to improve the prediction ability of reactive power. This decomposition process can compress the high frequency of reactive power and benefits the following separate forecasting. Long short-term memory is proposed for the high-frequency feature of reactive power to deal with the forecasting difficulty caused by strong signal disturbance and randomness. In contrast, random forest regression is applied to the low-frequency part in order to speed up the forecasting. Four classical algorithms and four hybrid algorithms based on different signal decompositions are compared with the proposed algorithm, and the results show that the proposed algorithm outperforms those algorithms. The predicting index RMSE decreases to 0.687, while the fitting degree R2 gradually approaches 1 with a step-by-step superposition of high-frequency signals, indicating that the proposed decomposition-predicting reconstruction strategy is effective.
Author Yu, Jicheng
Su, Tao
Yue, Changxi
Sun, Fan
Shi, Ying
Du, Jiabao
Xie, Changjun
Author_xml – sequence: 1
  givenname: Jiabao
  surname: Du
  fullname: Du, Jiabao
– sequence: 2
  givenname: Changxi
  surname: Yue
  fullname: Yue, Changxi
– sequence: 3
  givenname: Ying
  surname: Shi
  fullname: Shi, Ying
– sequence: 4
  givenname: Jicheng
  orcidid: 0000-0002-4525-2987
  surname: Yu
  fullname: Yu, Jicheng
– sequence: 5
  givenname: Fan
  surname: Sun
  fullname: Sun, Fan
– sequence: 6
  givenname: Changjun
  orcidid: 0000-0002-9626-0813
  surname: Xie
  fullname: Xie, Changjun
– sequence: 7
  givenname: Tao
  surname: Su
  fullname: Su, Tao
BookMark eNptUU1rGzEUFCGFJm4u_QWC3ALbSCutdnV0kzgJBFra5JKL0MeTI2Ov3Celxf--m7qlofRd3uMxMwwzx-RwzCMQ8p6zD0Jodg4jly1TiqkDcsS1Vg1nvTh8db8lJ6Ws2DRCcCHEEXmc0wXCt2cY_Y5egs-bbS6ppjw2H22BQG92DlOgi4zgbalpXNL5epkx1acNjRnp16eMtbkH3NAvYH1N34F-zj8A35E30a4LnPzeM_KwuLq_uGnuPl3fXszvGi8Ur42LUWqrfPRO6r7TXLvYdkEyCxYit65TYFsfYmgB3HQKxYJjXnsVgpVBzMjtXjdkuzJbTBuLO5NtMr8eGZfGYk1-DcZBgL5jkg--k66Pw8CGXvqh0-B7abtJ63SvtcU8hVKqWeVnHCf7pu0GKTQfpuxmhO1RHnMpCNH4VO1LaBVtWhvOzEsh5m8hE-XsH8ofo_8B_wTmf451
CitedBy_id crossref_primary_10_1016_j_prime_2025_101019
crossref_primary_10_3390_en15051613
crossref_primary_10_1109_ACCESS_2023_3292587
Cites_doi 10.23919/ACC.2018.8431220
10.1098/rspa.1998.0193
10.1103/PhysRevE.70.046217
10.1109/TSP.2017.2752720
10.3390/en13236241
10.1142/S1793536909000047
10.1109/TPWRS.2017.2669343
10.1016/j.ijepes.2017.07.007
10.1109/ITNEC48623.2020.9084912
10.1109/SSCI47803.2020.9308368
10.1016/j.apenergy.2019.01.055
10.1088/1755-1315/453/1/012056
10.1016/j.ijepes.2018.11.022
10.1109/TPWRS.2013.2283273
10.3390/en9100767
10.1016/j.powtec.2018.07.055
10.1109/ICIEA.2019.8833755
10.1134/S0005117911070083
10.1109/PTC.2015.7232530
10.1109/ACCESS.2020.2983588
10.1162/neco.1997.9.8.1735
10.1109/TSG.2012.2231441
10.1016/j.physa.2018.09.120
10.1080/01621459.1963.10500845
10.1098/rspa.2003.1221
10.1007/s40565-013-0016-0
10.1109/72.788646
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en14206606
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_bede750418c54b7f880874c859ec74a5
10_3390_en14206606
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-bff49a6cfcb4975919bf25d40aeaef1ab56ea2cdfd2eebea2360db0c9c6dda4d3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000806968200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:44:21 EDT 2025
Mon Jun 30 11:23:11 EDT 2025
Sat Nov 29 07:17:54 EST 2025
Tue Nov 18 21:24:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-bff49a6cfcb4975919bf25d40aeaef1ab56ea2cdfd2eebea2360db0c9c6dda4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4525-2987
0000-0002-9626-0813
OpenAccessLink https://doaj.org/article/bede750418c54b7f880874c859ec74a5
PQID 2584391800
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_bede750418c54b7f880874c859ec74a5
proquest_journals_2584391800
crossref_citationtrail_10_3390_en14206606
crossref_primary_10_3390_en14206606
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Huang (ref_20) 1998; 454
Bracale (ref_5) 2013; 4
Peyman (ref_31) 2018; 338
Wang (ref_36) 2020; 453
ref_14
ref_35
ref_34
ref_33
ref_32
Wu (ref_24) 2019; 516
Tao (ref_9) 2018; 39
Wu (ref_22) 2009; 1
ref_19
Bracale (ref_6) 2019; 107
ref_17
Kim (ref_3) 2015; 8
Ward (ref_29) 1963; 58
ref_15
Wu (ref_12) 2015; 39
Cao (ref_30) 2004; 70
Xu (ref_2) 2017; 32
Qin (ref_7) 2013; 1
Nie (ref_11) 2017; 55
Peng (ref_10) 2018; 39
He (ref_23) 2019; 237
Kurbatskii (ref_21) 2011; 72
Hochreiter (ref_16) 1997; 9
Shen (ref_4) 2018; 94
Ren (ref_8) 2020; 44
Wu (ref_27) 2004; 460
ref_1
Chapelle (ref_13) 1999; 10
Wen (ref_18) 2014; 29
ref_26
Harmouche (ref_28) 2018; 66
Yang (ref_25) 2020; 8
References_xml – ident: ref_26
  doi: 10.23919/ACC.2018.8431220
– volume: 454
  start-page: 903
  year: 1998
  ident: ref_20
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 70
  start-page: 046217
  year: 2004
  ident: ref_30
  article-title: Detecting dynamical changes in time series using the permutation entropy
  publication-title: Phys. Rev. E Stat. Nonlin Soft Matter Phys.
  doi: 10.1103/PhysRevE.70.046217
– volume: 66
  start-page: 251
  year: 2018
  ident: ref_28
  article-title: The Sliding Singular Spectrum Analysis: A Data-Driven Nonstationary Signal Decomposition Tool
  publication-title: IEEE Trans. Signal. Process.
  doi: 10.1109/TSP.2017.2752720
– ident: ref_35
  doi: 10.3390/en13236241
– volume: 55
  start-page: 390
  year: 2017
  ident: ref_11
  article-title: Power load prediction based on multiple linear regression model
  publication-title: Bol. Tec. Tech. Bull.
– volume: 1
  start-page: 1
  year: 2009
  ident: ref_22
  article-title: Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 32
  start-page: 4398
  year: 2017
  ident: ref_2
  article-title: Multi-Timescale Coordinated Voltage/Var Control of High Renewable-Penetrated Distribution Systems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2669343
– volume: 94
  start-page: 287
  year: 2018
  ident: ref_4
  article-title: Three-stage power system restoration methodology considering renewable energies
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.07.007
– ident: ref_14
  doi: 10.1109/ITNEC48623.2020.9084912
– ident: ref_34
  doi: 10.1109/SSCI47803.2020.9308368
– volume: 237
  start-page: 103
  year: 2019
  ident: ref_23
  article-title: A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with bayesian optimization algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.055
– volume: 453
  start-page: 012056
  year: 2020
  ident: ref_36
  article-title: The Power of Short-term Load Algorithm Based on LSTM
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/453/1/012056
– volume: 107
  start-page: 177
  year: 2019
  ident: ref_6
  article-title: Short-term industrial reactive power forecasting
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.11.022
– volume: 29
  start-page: 765
  year: 2014
  ident: ref_18
  article-title: Frequency estimation of distorted and noisy signals in power systems by fft-based approach
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2283273
– ident: ref_33
  doi: 10.3390/en9100767
– volume: 338
  start-page: 983
  year: 2018
  ident: ref_31
  article-title: Random Forest regression prediction of solid particle Erosion in elbows
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.07.055
– ident: ref_17
  doi: 10.1109/ICIEA.2019.8833755
– volume: 8
  start-page: 515
  year: 2015
  ident: ref_3
  article-title: Reactive Power Ancillary Service of Synchronous DGs in Coordination with Voltage Control Devices
  publication-title: IEEE Trans. Smart Grid
– volume: 72
  start-page: 1405
  year: 2011
  ident: ref_21
  article-title: On the neural network approach for forecasting of nonstationary time series on the basis of the hilbert-huang transform
  publication-title: Autom. Remote Control
  doi: 10.1134/S0005117911070083
– ident: ref_32
  doi: 10.1109/PTC.2015.7232530
– volume: 8
  start-page: 61915
  year: 2020
  ident: ref_25
  article-title: Hybrid Method for Short-Term Time Series Forecasting Based on EEMD
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983588
– volume: 39
  start-page: 116
  year: 2018
  ident: ref_9
  article-title: Selecting and Optimization Method of Reactive Power Compensation Node in Power System
  publication-title: Power Capacit. React. Power Compens.
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_16
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 44
  start-page: 1463
  year: 2020
  ident: ref_8
  article-title: Reactive power optimization planning of high-voltage distribution networks with technical standards being considered
  publication-title: Power Syst. Technol.
– volume: 4
  start-page: 1760
  year: 2013
  ident: ref_5
  article-title: A Bayesian-Based Approach for a Short-Term Steady-State Forecast of a Smart Grid
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2012.2231441
– volume: 39
  start-page: 1
  year: 2018
  ident: ref_10
  article-title: Practical and Simplified Calculation Method and Case Analysis on Reactive Power Balance Allocation for 500 kV Substation
  publication-title: Power Capacit. React. Power Compens.
– ident: ref_1
  doi: 10.23919/ACC.2018.8431220
– ident: ref_15
– volume: 516
  start-page: 114
  year: 2019
  ident: ref_24
  article-title: Improved eemd-based crude oil price forecasting using lstm networks
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2018.09.120
– volume: 58
  start-page: 236
  year: 1963
  ident: ref_29
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1963.10500845
– ident: ref_19
– volume: 460
  start-page: 1597
  year: 2004
  ident: ref_27
  article-title: A study of the characteristics of white noise using the empirical mode decomposition method
  publication-title: Proc. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2003.1221
– volume: 39
  start-page: 50
  year: 2015
  ident: ref_12
  article-title: Power System Short-term Load Forecasting Based on Improved Random Forest with Grey Relation Projection
  publication-title: Autom. Electr. Power Syst.
– volume: 1
  start-page: 150
  year: 2013
  ident: ref_7
  article-title: Risk analysis of power systems for both real and reactive power
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.1007/s40565-013-0016-0
– volume: 10
  start-page: 1055
  year: 1999
  ident: ref_13
  article-title: Support vector machines for histogram-based image classification
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.788646
SSID ssj0000331333
Score 2.2933834
Snippet This paper proposes a new frequency decomposition-based hybrid reactive power forecasting algorithm, EEMD-LSTM-RFR (ELR), which adopts a strategy of frequency...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6606
SubjectTerms Accuracy
Algorithms
Decomposition
Energy resources
ensemble empirical mode decomposition
Forecasting
forecasting algorithm
long short-term memory
Machine learning
Neural networks
Noise
random forest regression
reactive power
Signal processing
Time series
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB1BygEO5VukFGQJLhysxl571z6hhDbqKYpKkSouK3tst5VKUpKA1H-PZ-OklUBcet21tKsdz-c-vwfwMQjlk9GOCxUMV1Ja7gy5e2Oi9sYGK7ATm2gmE3N2Zqdl4LYssMpNTOwCdZgjzcgPZM6UlRW5vvl8_ZOTahT9XS0SGg9hh5jKVA92RkeT6cl2yjKoqtyEVWte0ir39wdxJhRRmJPE0Z1M1BH2_xWPuyQzfnrf13sGu6W8ZMP1fngOD-LsBTy5Qzr4Er4P2XixBlDfsMNImPIC3OKjnNICO76hU1yMRDvRLQkWzYZX5_lhq4sfLNe47OtFrtn5aY7p7CS6LmCyKamtvYJv46PTL8e8KCxwrGqx4j4lZV2NCb2yjbbC-iR1UAMXXUzCeV1HJzGkIGO2tpNVPQh-gBbrEJwK1Wvozeaz-AZYnUuBRoigk89ZP5cBxklp0OWODLGxsQ-fNl-7xUI_TioYV21uQ8gy7a1l-vBhu_Z6Tbrxz1UjMtp2BRFldxfmi_O2-F3rY4jEYC8MauWblMOVaRQabSM2yuk-7G_s2RbvXba3xtz7_-238FgSxqUD9-1Db7X4Fd_BI_y9ulwu3pfN-AeuYOrG
  priority: 102
  providerName: ProQuest
Title A Frequency Decomposition-Based Hybrid Forecasting Algorithm for Short-Term Reactive Power
URI https://www.proquest.com/docview/2584391800
https://doaj.org/article/bede750418c54b7f880874c859ec74a5
Volume 14
WOSCitedRecordID wos000806968200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA2iHvQgfmK1SkAvHpY22exucmy1pR4sS1VQL0s-VdAqbRW8-NudZLe1oODFyx5CYJeZZOYNvH0PoWNDmHI8kRFhhkeMUhFJ7q97xm2iuDCC6GA2kfX7_OZG5HNWX54TVsoDl4FrKGuslyAnXCdMZQ7OG8-Y5omwOmMyqJcC6pkbpkINjmMYvuJSjzSGub5hh4R56XJvbTTXgYJQ_486HJpLdx2tVagQt8qv2UALdriJVue0ArfQXQt3RyXv-QOfWU8Fr_hWURs6kcG9D__zFfZem1qOPZsZt57uX2D4f3jGAE3x5QNA7egKSjEeWBnqHM69Sdo2uu52rk57UWWMEOk4JZNIOceETLXTioksEUQoRxPDmtJK64hUSWol1cYZaiFJksZp06imFjo1RjIT76DF4cvQ7iKcQgfPCDGJU9CsoXtzSSnXEgYprTNha-hkGqxCV6rh3rziqYDpwQe2-A5sDR3N9r6WWhm_7mr7mM92eH3rsABZL6qsF39lvYbq04wV1aUbFxTAVCwIQOC9_3jHPlqhnsASmHt1tDgZvdkDtKzfJ4_j0SFaanf6-eAwnDt4Xnx2YC0_v8hvvwCG29_H
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL0qKRKw4I0IFLAELFiMOvbYM_YCoZQSJWobRRCk0s3gZ4tUkpIEUH6Kb-R6HmklELsu2M5YI3nm-D48x-cAvHCUmyCFTih3MuGMqUTLuNwL6YWRyilqK7OJYjSSh4dqvAG_2rMwkVbZxsQqULuZjXvk2wwzZaYo1jdvzr4l0TUq_l1tLTRqWOz51U9s2Ravh7v4fV8y1n83eTtIGleBxGY5XSYmBK50boM1XBVCUWUCE46n2msfqDYi95pZFxzzOEPNsjx1JrXK5s5p7jJ87hXY5Ah22YHN8fBg_Gm9q5NmGTZ9Wa2DmmUq3fZTyqNkerRUupD5KoOAP-J_ldT6t_6313EbbjblM-nVeL8DG356F25cEFW8B0c90p_XBPEV2fWRM98Q05IdTNmODFbxlBqJpqRWLyLtm_ROj3Fyy5OvBGt48uEEe5JkgjmLvPe6SghkHN3k7sPHS5ncA-hMZ1P_EEiOpU5BqRPBYFWDZY7UjEmrseO0tlC-C6_ar1vaRl49unyclthmRSSU50jowvP12LNaVOSvo3YiSNYjohB4dWE2Py6buFIa73xU6KfSCm6KgOFYFtxKobwtuBZd2GrxUzbRaVGeg-fRv28_g2uDycF-uT8c7T2G6yzyeSoi4xZ0lvPv_glctT-WXxbzp81CIPD5ssH2G89DTsc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL0qLUKw4I0IFLAELFhYGXs8M_YCoZQQNSpEIyhS6Wbws0UqSUkCKL_G13E9j7QSiF0XbGcsSx6f-_Ic3wPwzDFhgsw0ZcJJKjhXVMto7oX0mZHKKWZrsYliMpEHB6rcgF_dXZhIq-x8Yu2o3czGM_I-x0iZKob5TT-0tIhyOHp1-o1GBan4p7WT02ggsudXP7F8W7wcD3Gvn3M-erP_epe2CgPUpjlbUhOCUDq3wRqhikwxZQLPnEi01z4wbbLca25dcNzjajVP88SZxCqbO6eFS3HeS7CFKblAG9sqx-_KT-sTniRNsQBMm56oaaqSvp8yEdunR3mlc1GwFgv4IxbUAW5043_-NDfheptWk0FjB7dgw09vw7VzzRbvwOGAjOYNcXxFhj5y6VvCGt3BUO7I7ireXiNRrNTqRaSDk8HJES5uefyVYG5PPhxjrUL3MZaR917XgYKUUWXuLny8kMXdg83pbOrvA8kxBSoYc1kwmO1g-iM159JqrEStLZTvwYtupyvbtl2P6h8nFZZfERXVGSp68HQ99rRpNvLXUTsRMOsRsUF4_WA2P6paf1MZ73zs3M-kzYQpArppWQgrM-VtIXTWg-0OS1XrtRbVGZAe_Pv1E7iCCKvejid7D-EqjzSfmt-4DZvL-Xf_CC7bH8svi_nj1iYIfL5orP0GozBXhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Frequency+Decomposition-Based+Hybrid+Forecasting+Algorithm+for+Short-Term+Reactive+Power&rft.jtitle=Energies+%28Basel%29&rft.au=Du%2C+Jiabao&rft.au=Yue%2C+Changxi&rft.au=Shi%2C+Ying&rft.au=Yu%2C+Jicheng&rft.date=2021-10-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=20&rft.spage=6606&rft_id=info:doi/10.3390%2Fen14206606&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14206606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon