Deep Convolutional Neural Network for Inverse Problems in Imaging

In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 26; no. 9; pp. 4509 - 4522
Main Authors: Jin, Kyong Hwan, McCann, Michael T., Froustey, Emmanuel, Unser, Michael
Format: Journal Article
Language:English
Published: United States IEEE 01.09.2017
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise nonlinearity) when the normal operator (H*H, where H* is the adjoint of the forward imaging operator, H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 × 512 image on the GPU.
AbstractList In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise nonlinearity) when the normal operator (H*H, where H* is the adjoint of the forward imaging operator, H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 × 512 image on the GPU.
In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise nonlinearity) when the normal operator (H*H, where H* is the adjoint of the forward imaging operator, H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 × 512 image on the GPU.In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise nonlinearity) when the normal operator (H*H, where H* is the adjoint of the forward imaging operator, H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 × 512 image on the GPU.
Author Jin, Kyong Hwan
Froustey, Emmanuel
Unser, Michael
McCann, Michael T.
Author_xml – sequence: 1
  givenname: Kyong Hwan
  orcidid: 0000-0001-7885-4792
  surname: Jin
  fullname: Jin, Kyong Hwan
  email: kyonghwan.jin@gmail.com
  organization: Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
– sequence: 2
  givenname: Michael T.
  orcidid: 0000-0001-7645-252X
  surname: McCann
  fullname: McCann, Michael T.
  email: michael.mccann@epfl.ch
  organization: Center for Biomedical Imaging, Signal Processing Core and the Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
– sequence: 3
  givenname: Emmanuel
  surname: Froustey
  fullname: Froustey, Emmanuel
  organization: Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
– sequence: 4
  givenname: Michael
  surname: Unser
  fullname: Unser, Michael
  email: michael.unser@epfl.ch
  organization: Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28641250$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQhi0E4qOwIyGhjCwpPtuN4xGVr0gVdIA5ss2lMiRxsZMi_j0pLQwMTO8Nz3une47IbutbJOQU6BiAqsunYj5mFOSYSeBUqR1yCEpASqlgu8NMJzKVINQBOYrxlVIQE8j2yQHLMwFsQg_J1TXiMpn6duXrvnO-1XXygH34ju7Dh7ek8iEp2hWGiMk8eFNjExPXJkWjF65dHJO9StcRT7Y5Is-3N0_T-3T2eFdMr2ap5Rl0qalsbrPKGp0ZNDmXueJ5xQyVE8UVMIMqN8xaCojyRRkNWIGyBiQoEFzyEbnY7F0G_95j7MrGRYt1rVv0fSwHjHOVC0EH9HyL9qbBl3IZXKPDZ_nz9gDQDWCDjzFg9YsALddmy8FsuTZbbs0OlexPxbpOr411Qbv6v-LZpugQ8feOVEJRlvMvu-qEgQ
CODEN IIPRE4
CitedBy_id crossref_primary_10_1002_mp_15183
crossref_primary_10_1016_j_ndteint_2020_102344
crossref_primary_10_1109_TMI_2020_3000341
crossref_primary_10_1016_j_ndteint_2020_102347
crossref_primary_10_1016_j_ins_2020_11_002
crossref_primary_10_1055_a_1248_2556
crossref_primary_10_1007_s11432_020_3077_5
crossref_primary_10_1016_j_asoc_2024_112457
crossref_primary_10_1109_TRPMS_2024_3420742
crossref_primary_10_1016_j_mri_2025_110334
crossref_primary_10_1109_TAP_2022_3177533
crossref_primary_10_3390_app15137198
crossref_primary_10_1088_2399_6528_ac26aa
crossref_primary_10_1016_j_compbiomed_2023_107161
crossref_primary_10_1109_TIM_2020_3047922
crossref_primary_10_1109_JBHI_2020_2999731
crossref_primary_10_1002_mp_15176
crossref_primary_10_1364_PRJ_415960
crossref_primary_10_1016_j_compbiomed_2025_109900
crossref_primary_10_1039_D1NR03932F
crossref_primary_10_1109_TMM_2020_2985541
crossref_primary_10_1002_jbio_202300127
crossref_primary_10_1088_1361_6560_ac6560
crossref_primary_10_1109_TUFFC_2020_2977202
crossref_primary_10_3390_s19112597
crossref_primary_10_1016_j_bspc_2023_105746
crossref_primary_10_1137_22M1506547
crossref_primary_10_1007_s13139_017_0504_7
crossref_primary_10_1007_s10444_024_10106_x
crossref_primary_10_1109_TGRS_2024_3365818
crossref_primary_10_1080_1206212X_2024_2420870
crossref_primary_10_1109_ACCESS_2020_2975572
crossref_primary_10_1007_s42979_023_02059_7
crossref_primary_10_1137_22M148793X
crossref_primary_10_1049_rsn2_12176
crossref_primary_10_1016_j_mri_2023_02_004
crossref_primary_10_1016_j_compmedimag_2025_102530
crossref_primary_10_1109_ACCESS_2021_3137656
crossref_primary_10_1002_mrm_29057
crossref_primary_10_1016_j_engfracmech_2025_111036
crossref_primary_10_1109_TMI_2024_3475516
crossref_primary_10_1016_j_compmedimag_2024_102491
crossref_primary_10_1109_JIOT_2024_3516696
crossref_primary_10_1109_TPAMI_2022_3148324
crossref_primary_10_1109_TCI_2020_2996751
crossref_primary_10_1088_1361_6560_adf939
crossref_primary_10_1109_OJSP_2025_3593189
crossref_primary_10_1109_TCI_2025_3594983
crossref_primary_10_3390_app10228089
crossref_primary_10_1109_TAP_2022_3177556
crossref_primary_10_3390_s23094485
crossref_primary_10_1109_TMI_2022_3214475
crossref_primary_10_1371_journal_pone_0224426
crossref_primary_10_1016_j_joen_2020_12_020
crossref_primary_10_1080_17415977_2018_1490279
crossref_primary_10_3390_s24144496
crossref_primary_10_1109_TCI_2024_3369394
crossref_primary_10_1177_08953996251322078
crossref_primary_10_1002_mrm_29047
crossref_primary_10_1109_TMI_2024_3413085
crossref_primary_10_1109_TMI_2019_2922026
crossref_primary_10_1109_TNNLS_2020_3037923
crossref_primary_10_3390_en11082149
crossref_primary_10_1016_j_cmpb_2022_107199
crossref_primary_10_1002_ima_22625
crossref_primary_10_1109_TGRS_2020_3047112
crossref_primary_10_1109_TRPMS_2020_2996566
crossref_primary_10_1016_j_media_2025_103579
crossref_primary_10_1109_TIP_2021_3099956
crossref_primary_10_1137_23M1616716
crossref_primary_10_3748_wjg_v29_i9_1427
crossref_primary_10_1016_j_patcog_2025_111786
crossref_primary_10_1038_s41377_020_0267_2
crossref_primary_10_32604_cmc_2022_030420
crossref_primary_10_1088_1742_6596_2651_1_012058
crossref_primary_10_1016_j_neunet_2020_07_025
crossref_primary_10_1016_j_neuroimage_2020_116579
crossref_primary_10_1109_TGRS_2019_2934154
crossref_primary_10_1109_JBHI_2022_3193299
crossref_primary_10_3390_sym15010119
crossref_primary_10_1109_TCI_2021_3085534
crossref_primary_10_3390_electronics7110302
crossref_primary_10_1088_1361_6560_ad31c7
crossref_primary_10_1007_s11760_023_02853_z
crossref_primary_10_1007_s00779_019_01271_8
crossref_primary_10_1109_JSEN_2023_3293205
crossref_primary_10_1016_j_ijleo_2021_168043
crossref_primary_10_1038_s41377_022_00768_x
crossref_primary_10_1088_2057_1976_ac87b4
crossref_primary_10_1016_j_displa_2022_102166
crossref_primary_10_1016_j_neucom_2021_12_096
crossref_primary_10_1137_18M1174027
crossref_primary_10_3233_JIFS_189013
crossref_primary_10_1016_j_nucengdes_2025_113975
crossref_primary_10_1109_TCI_2024_3463485
crossref_primary_10_1016_j_jvcir_2019_102654
crossref_primary_10_1109_TMI_2019_2896085
crossref_primary_10_1016_j_optlastec_2025_113916
crossref_primary_10_1088_1361_6501_ac4a19
crossref_primary_10_1364_AO_377810
crossref_primary_10_1109_LGRS_2020_2967456
crossref_primary_10_1063_5_0226457
crossref_primary_10_1007_s13244_018_0639_9
crossref_primary_10_3390_s20061608
crossref_primary_10_1088_1361_6560_ac0afd
crossref_primary_10_1088_1361_6560_ad00fb
crossref_primary_10_1186_s13663_021_00706_3
crossref_primary_10_3390_app12178841
crossref_primary_10_1051_0004_6361_201937039
crossref_primary_10_1016_j_ejmp_2020_11_021
crossref_primary_10_3390_s23021023
crossref_primary_10_1007_s11517_019_01965_4
crossref_primary_10_7717_peerj_cs_1849
crossref_primary_10_3390_rs15133284
crossref_primary_10_1088_1742_6596_2651_1_012028
crossref_primary_10_1016_j_jappgeo_2021_104507
crossref_primary_10_1007_s10278_025_01639_8
crossref_primary_10_1002_acm2_13121
crossref_primary_10_1038_s42005_025_02249_0
crossref_primary_10_1088_1361_6420_ad2b99
crossref_primary_10_1109_TIM_2024_3366281
crossref_primary_10_1109_TIP_2023_3274967
crossref_primary_10_1109_TMI_2021_3077857
crossref_primary_10_1109_TCI_2024_3394770
crossref_primary_10_1145_3643509
crossref_primary_10_1007_s00034_024_02875_z
crossref_primary_10_1109_TCI_2025_3540706
crossref_primary_10_1016_j_radmeas_2024_107167
crossref_primary_10_1016_j_ejmp_2020_11_012
crossref_primary_10_1088_1674_1056_ad62e1
crossref_primary_10_1016_j_neucom_2020_09_086
crossref_primary_10_1364_AO_58_003748
crossref_primary_10_1109_JSTSP_2022_3172592
crossref_primary_10_1109_TGRS_2023_3337893
crossref_primary_10_1109_TGRS_2023_3337413
crossref_primary_10_1038_lsa_2017_141
crossref_primary_10_1109_TSP_2023_3282062
crossref_primary_10_1007_s00034_024_02631_3
crossref_primary_10_1016_j_cma_2024_117109
crossref_primary_10_1016_j_compmedimag_2025_102508
crossref_primary_10_1103_PhysRevX_10_031029
crossref_primary_10_1088_1361_6420_ad0660
crossref_primary_10_1109_TAP_2024_3369683
crossref_primary_10_1109_TCI_2024_3380319
crossref_primary_10_1121_10_0021171
crossref_primary_10_1002_mp_15101
crossref_primary_10_1117_1_APN_1_1_014001
crossref_primary_10_1002_mrm_28344
crossref_primary_10_1109_TGRS_2020_2984951
crossref_primary_10_1109_TCAD_2020_3046572
crossref_primary_10_1177_08953996251339368
crossref_primary_10_1016_j_bspc_2023_104821
crossref_primary_10_1073_pnas_1821378116
crossref_primary_10_1109_TGRS_2025_3556448
crossref_primary_10_3390_en12163043
crossref_primary_10_1016_j_neunet_2025_107740
crossref_primary_10_1080_15376494_2019_1681037
crossref_primary_10_1109_TAP_2022_3225532
crossref_primary_10_1109_TGRS_2018_2865197
crossref_primary_10_1109_TMI_2023_3332614
crossref_primary_10_1108_COMPEL_10_2021_0383
crossref_primary_10_1016_j_patcog_2025_111734
crossref_primary_10_1177_1748302620973528
crossref_primary_10_1016_j_ndteint_2022_102755
crossref_primary_10_1016_j_patcog_2024_111233
crossref_primary_10_1109_TMI_2019_2927101
crossref_primary_10_1145_3453657
crossref_primary_10_1080_10589759_2024_2305329
crossref_primary_10_1109_TMI_2018_2820120
crossref_primary_10_1002_mrm_27480
crossref_primary_10_1063_5_0265254
crossref_primary_10_1002_mp_15577
crossref_primary_10_1088_1361_6420_acce5e
crossref_primary_10_1109_TIM_2019_2925881
crossref_primary_10_1002_mp_14006
crossref_primary_10_1002_mrm_28338
crossref_primary_10_1088_2632_2153_ad370e
crossref_primary_10_1109_TIM_2021_3092061
crossref_primary_10_1109_TCI_2021_3049648
crossref_primary_10_1109_TIP_2019_2893530
crossref_primary_10_1109_TAP_2024_3387689
crossref_primary_10_1177_0142331219845037
crossref_primary_10_1016_j_apenergy_2019_113596
crossref_primary_10_1186_s41747_024_00450_4
crossref_primary_10_1109_TMI_2024_3473970
crossref_primary_10_1088_1742_6596_1769_1_012015
crossref_primary_10_1137_19M1283914
crossref_primary_10_1038_s41377_022_00844_2
crossref_primary_10_1039_D1NR03232A
crossref_primary_10_1109_TIM_2022_3209751
crossref_primary_10_1098_rsta_2020_0203
crossref_primary_10_1148_ryai_210114
crossref_primary_10_1007_s11701_020_01149_5
crossref_primary_10_3390_jimaging9010001
crossref_primary_10_1109_TMI_2018_2887072
crossref_primary_10_1109_TIM_2022_3147877
crossref_primary_10_1016_j_compmedimag_2021_101968
crossref_primary_10_1109_JSTSP_2020_2998402
crossref_primary_10_3390_app10051680
crossref_primary_10_1007_s00381_025_06862_w
crossref_primary_10_1016_j_measurement_2021_109437
crossref_primary_10_1088_1361_6560_ab831a
crossref_primary_10_1109_ACCESS_2020_2991183
crossref_primary_10_1109_TBME_2019_2891676
crossref_primary_10_1088_1361_6560_ac195c
crossref_primary_10_1016_j_optcom_2017_12_041
crossref_primary_10_1109_TIP_2018_2884076
crossref_primary_10_1016_j_ejmp_2022_07_001
crossref_primary_10_1029_2020JB020549
crossref_primary_10_1109_TGRS_2021_3051303
crossref_primary_10_1109_TGRS_2021_3110606
crossref_primary_10_1007_s11220_025_00584_8
crossref_primary_10_1109_TNNLS_2023_3323131
crossref_primary_10_1109_TIP_2024_3351382
crossref_primary_10_3390_s21051873
crossref_primary_10_1016_j_bspc_2024_107182
crossref_primary_10_1109_TCI_2023_3328278
crossref_primary_10_1109_TRPMS_2020_2989634
crossref_primary_10_1007_s40747_021_00426_6
crossref_primary_10_1016_j_compstruc_2019_106171
crossref_primary_10_1016_j_bspc_2023_104632
crossref_primary_10_1038_s41598_020_69187_5
crossref_primary_10_1109_ACCESS_2024_3448612
crossref_primary_10_1155_2022_9565062
crossref_primary_10_1109_TBME_2018_2821699
crossref_primary_10_1088_1361_6560_ad4845
crossref_primary_10_3389_fnins_2022_837721
crossref_primary_10_1109_TAP_2022_3196496
crossref_primary_10_1109_TMI_2024_3376414
crossref_primary_10_3934_ipi_2025031
crossref_primary_10_3390_s19184050
crossref_primary_10_1016_j_jsv_2022_117418
crossref_primary_10_1364_AO_405120
crossref_primary_10_1364_AO_404276
crossref_primary_10_1016_j_bspc_2024_107195
crossref_primary_10_1016_j_jcp_2021_110194
crossref_primary_10_1109_TPAMI_2020_3012955
crossref_primary_10_1109_ACCESS_2020_3004174
crossref_primary_10_1016_j_compbiomed_2023_107819
crossref_primary_10_1016_j_knosys_2022_109295
crossref_primary_10_1364_AO_544395
crossref_primary_10_1109_TCI_2020_2996385
crossref_primary_10_1109_TMI_2021_3066318
crossref_primary_10_1002_mp_17946
crossref_primary_10_1007_s11227_021_04298_y
crossref_primary_10_1016_j_sigpro_2019_107444
crossref_primary_10_1109_TCI_2024_3377101
crossref_primary_10_1016_j_neuroimage_2020_117012
crossref_primary_10_1109_TMI_2020_3046700
crossref_primary_10_1109_TMTT_2022_3228945
crossref_primary_10_1109_LMWC_2020_2986156
crossref_primary_10_1177_1475921720942958
crossref_primary_10_1109_ACCESS_2024_3417928
crossref_primary_10_1177_08953996241308759
crossref_primary_10_1137_23M1545628
crossref_primary_10_1007_s00779_020_01419_x
crossref_primary_10_1109_TMI_2025_3541491
crossref_primary_10_1038_s41377_024_01453_x
crossref_primary_10_1016_j_cmpb_2022_107168
crossref_primary_10_1002_jmri_28944
crossref_primary_10_1088_1361_6501_addc06
crossref_primary_10_3390_math10224210
crossref_primary_10_1002_mrm_28164
crossref_primary_10_1016_j_cmpb_2022_107167
crossref_primary_10_1016_j_optlaseng_2022_107410
crossref_primary_10_1016_j_cmpb_2023_107440
crossref_primary_10_3390_photonics9030186
crossref_primary_10_1137_20M1338460
crossref_primary_10_1109_TCSVT_2019_2959815
crossref_primary_10_1177_08953996241308760
crossref_primary_10_1109_TCI_2023_3273423
crossref_primary_10_1007_s10278_022_00685_w
crossref_primary_10_1016_j_eswa_2023_120001
crossref_primary_10_1038_s41524_025_01724_0
crossref_primary_10_1007_s10462_020_09861_2
crossref_primary_10_1109_TIM_2022_3166177
crossref_primary_10_1109_TIP_2021_3090531
crossref_primary_10_3390_a17020071
crossref_primary_10_1016_j_jmr_2019_07_020
crossref_primary_10_1109_TMI_2018_2820382
crossref_primary_10_1371_journal_pone_0278668
crossref_primary_10_1002_mp_16645
crossref_primary_10_1016_j_patcog_2025_111956
crossref_primary_10_1109_TIP_2021_3125489
crossref_primary_10_1002_mp_16405
crossref_primary_10_1029_2023WR036514
crossref_primary_10_1016_j_compbiomed_2022_106204
crossref_primary_10_1109_TGRS_2021_3093100
crossref_primary_10_1016_j_sigpro_2024_109883
crossref_primary_10_1109_ACCESS_2020_2994252
crossref_primary_10_1109_TMI_2021_3088344
crossref_primary_10_1109_TRPMS_2024_3471677
crossref_primary_10_1016_j_compbiomed_2023_107830
crossref_primary_10_3390_math12010078
crossref_primary_10_1038_s41377_019_0209_z
crossref_primary_10_1007_s13369_020_04758_2
crossref_primary_10_1007_s12530_023_09510_3
crossref_primary_10_3348_jksr_2022_0156
crossref_primary_10_1016_j_knosys_2024_111866
crossref_primary_10_1002_mp_16830
crossref_primary_10_1016_j_neuroimage_2019_03_060
crossref_primary_10_1109_ACCESS_2022_3177277
crossref_primary_10_1002_mp_15502
crossref_primary_10_1080_01431161_2021_1995074
crossref_primary_10_1016_j_optlastec_2025_113055
crossref_primary_10_1073_pnas_1916634117
crossref_primary_10_1016_j_procs_2019_12_113
crossref_primary_10_1109_TMI_2018_2823338
crossref_primary_10_1007_s00530_021_00835_0
crossref_primary_10_1007_s11548_021_02482_2
crossref_primary_10_1088_1361_6420_ab32f7
crossref_primary_10_1088_2516_1091_acd973
crossref_primary_10_1515_jiip_2020_0056
crossref_primary_10_1088_1361_6560_ad3797
crossref_primary_10_1109_ACCESS_2024_3357355
crossref_primary_10_1088_1361_6560_ab4aa9
crossref_primary_10_1007_s00330_020_07006_1
crossref_primary_10_1007_s11001_020_09409_7
crossref_primary_10_1016_j_optlastec_2023_109349
crossref_primary_10_1109_TCI_2021_3114542
crossref_primary_10_1016_j_radi_2024_10_009
crossref_primary_10_1038_s41598_023_43698_3
crossref_primary_10_3390_s19235302
crossref_primary_10_1007_s00340_022_07764_4
crossref_primary_10_1109_TSP_2021_3125601
crossref_primary_10_1088_1674_1056_ac0dab
crossref_primary_10_1109_TRPMS_2023_3316349
crossref_primary_10_1615_JMachLearnModelComput_2025056536
crossref_primary_10_1016_j_enganabound_2023_06_005
crossref_primary_10_1088_1361_6560_ad9dac
crossref_primary_10_1016_j_compscitech_2021_108875
crossref_primary_10_1109_TCI_2021_3132190
crossref_primary_10_1109_TCI_2023_3346294
crossref_primary_10_1109_TMI_2021_3054167
crossref_primary_10_3390_app9173617
crossref_primary_10_1002_mp_13583
crossref_primary_10_1109_MSP_2023_3242833
crossref_primary_10_1109_TGRS_2018_2859203
crossref_primary_10_3390_tomography11030023
crossref_primary_10_1016_j_optlaseng_2024_108469
crossref_primary_10_1137_23M1571150
crossref_primary_10_3390_math11153336
crossref_primary_10_1109_TCI_2020_3039385
crossref_primary_10_1002_hyp_70118
crossref_primary_10_1098_rsos_231374
crossref_primary_10_1016_j_petrol_2020_107271
crossref_primary_10_1088_1742_6596_2650_1_012024
crossref_primary_10_1109_TMI_2019_2930318
crossref_primary_10_1109_TMTT_2022_3205650
crossref_primary_10_1364_OE_561684
crossref_primary_10_1016_j_optcom_2021_126813
crossref_primary_10_1016_j_addma_2020_101183
crossref_primary_10_1186_s43593_022_00013_3
crossref_primary_10_1016_j_nimb_2025_165804
crossref_primary_10_1109_JSTARS_2021_3111404
crossref_primary_10_1109_TAP_2022_3216999
crossref_primary_10_1109_TCI_2020_2964202
crossref_primary_10_1109_TRPMS_2024_3512172
crossref_primary_10_1088_2632_2153_abde8e
crossref_primary_10_1002_mp_17933
crossref_primary_10_1137_24M1654051
crossref_primary_10_7717_peerj_cs_934
crossref_primary_10_1063_5_0281578
crossref_primary_10_1109_TRPMS_2023_3281148
crossref_primary_10_1109_JSTARS_2020_3014696
crossref_primary_10_1007_s00432_018_02834_7
crossref_primary_10_1109_LAWP_2023_3299224
crossref_primary_10_3390_app14083397
crossref_primary_10_1109_LSP_2019_2926828
crossref_primary_10_1109_TPAMI_2021_3070382
crossref_primary_10_1109_JERM_2021_3127110
crossref_primary_10_1007_s13755_022_00204_9
crossref_primary_10_1109_JSEN_2020_3021280
crossref_primary_10_1038_s41551_024_01283_7
crossref_primary_10_1109_TMI_2019_2948909
crossref_primary_10_1038_s41598_020_62484_z
crossref_primary_10_1002_mrm_29759
crossref_primary_10_1063_5_0073209
crossref_primary_10_1109_TPS_2020_2990459
crossref_primary_10_1109_JSTSP_2020_2999820
crossref_primary_10_1134_S1061830922060067
crossref_primary_10_1016_j_matpr_2021_12_345
crossref_primary_10_1109_TIM_2023_3346510
crossref_primary_10_1038_s42256_020_00273_z
crossref_primary_10_1109_TMI_2019_2910760
crossref_primary_10_1038_s41598_023_37523_0
crossref_primary_10_1109_TNNLS_2018_2890018
crossref_primary_10_1088_1361_6420_ab10ca
crossref_primary_10_1029_2020RS007248
crossref_primary_10_1016_j_jhydrol_2022_127762
crossref_primary_10_1080_01431161_2020_1799449
crossref_primary_10_1007_s11340_024_01081_x
crossref_primary_10_1002_mp_13753
crossref_primary_10_1007_s11071_019_05318_6
crossref_primary_10_1002_mp_13986
crossref_primary_10_1088_1361_6501_ac9c21
crossref_primary_10_1364_AO_506951
crossref_primary_10_1109_JPROC_2019_2936204
crossref_primary_10_1109_TCI_2020_3012928
crossref_primary_10_1109_JBHI_2019_2912935
crossref_primary_10_1016_j_bspc_2024_106593
crossref_primary_10_1088_1748_3190_aca7a8
crossref_primary_10_1109_TMI_2019_2963248
crossref_primary_10_1016_j_neucom_2025_130481
crossref_primary_10_1109_ACCESS_2021_3087424
crossref_primary_10_1109_ACCESS_2020_3031286
crossref_primary_10_32604_cmc_2024_051147
crossref_primary_10_1007_s13748_020_00224_0
crossref_primary_10_1088_1361_6560_ac7bce
crossref_primary_10_1109_JIOT_2020_3012452
crossref_primary_10_1177_08953996251329214
crossref_primary_10_1088_1361_6560_ab9066
crossref_primary_10_1016_j_bspc_2024_106119
crossref_primary_10_1109_ACCESS_2019_2917723
crossref_primary_10_1109_TMI_2019_2927199
crossref_primary_10_3390_s23083832
crossref_primary_10_1364_PRJ_415590
crossref_primary_10_1016_j_compmedimag_2021_101920
crossref_primary_10_1088_1361_6560_ad29ba
crossref_primary_10_1109_TWC_2021_3054977
crossref_primary_10_1002_mp_16807
crossref_primary_10_1109_TMI_2024_3355455
crossref_primary_10_1002_nbm_4239
crossref_primary_10_1007_s10589_022_00392_w
crossref_primary_10_3390_photonics10010025
crossref_primary_10_1088_1361_6560_adaf06
crossref_primary_10_3934_ammc_2023006
crossref_primary_10_1016_j_cma_2024_116820
crossref_primary_10_1109_TCI_2025_3562059
crossref_primary_10_3934_ammc_2023008
crossref_primary_10_1002_nbm_4225
crossref_primary_10_3390_bioengineering6040111
crossref_primary_10_1109_LAWP_2024_3372437
crossref_primary_10_1109_TMI_2021_3090257
crossref_primary_10_1002_nbm_4461
crossref_primary_10_1137_17M1141771
crossref_primary_10_1186_s12911_023_02114_6
crossref_primary_10_1002_mrm_27106
crossref_primary_10_1109_TIP_2024_3372469
crossref_primary_10_3390_electronics10182206
crossref_primary_10_1109_ACCESS_2021_3076763
crossref_primary_10_1016_j_neucom_2025_131317
crossref_primary_10_1038_s41377_023_01337_6
crossref_primary_10_1109_LSP_2024_3438118
crossref_primary_10_1109_TMM_2021_3076298
crossref_primary_10_3390_app9122445
crossref_primary_10_23919_JSEE_2023_000109
crossref_primary_10_1016_j_imu_2021_100727
crossref_primary_10_1049_mia2_12273
crossref_primary_10_1002_mp_13713
crossref_primary_10_1088_1361_6560_aba939
crossref_primary_10_1109_TCI_2025_3572699
crossref_primary_10_1145_3514228
crossref_primary_10_1002_mp_14809
crossref_primary_10_1016_j_media_2021_102098
crossref_primary_10_1109_TAP_2025_3553972
crossref_primary_10_1109_ACCESS_2020_2978435
crossref_primary_10_1016_j_media_2017_07_006
crossref_primary_10_1016_j_ymeth_2021_05_005
crossref_primary_10_1097_RMR_0000000000000249
crossref_primary_10_1007_s11709_024_1078_y
crossref_primary_10_1190_geo2019_0382_1
crossref_primary_10_1109_TMI_2017_2753138
crossref_primary_10_1088_1361_6560_aca517
crossref_primary_10_1088_1361_6560_ad5d47
crossref_primary_10_1103_kn3z_rmm8
crossref_primary_10_3934_ammc_2025001
crossref_primary_10_1088_1361_6560_aca513
crossref_primary_10_1109_TGRS_2023_3335128
crossref_primary_10_1016_j_cmpb_2024_108010
crossref_primary_10_1007_s11042_025_20956_2
crossref_primary_10_1007_s11227_022_04629_7
crossref_primary_10_1109_LAWP_2024_3424940
crossref_primary_10_1115_1_4066102
crossref_primary_10_1016_j_sigpro_2021_108239
crossref_primary_10_3390_s22114122
crossref_primary_10_1109_TRPMS_2018_2827239
crossref_primary_10_1109_JMMCT_2023_3304709
crossref_primary_10_1016_j_mri_2020_06_002
crossref_primary_10_1002_mp_13946
crossref_primary_10_1137_20M1343075
crossref_primary_10_3390_electronics12081815
crossref_primary_10_1088_1361_6560_abc09c
crossref_primary_10_1109_TPAMI_2018_2889096
crossref_primary_10_1126_science_ade1220
crossref_primary_10_1002_aenm_202300103
crossref_primary_10_1007_s10278_025_01390_0
crossref_primary_10_3390_electronics10162029
crossref_primary_10_1049_iet_ipr_2018_6582
crossref_primary_10_1016_j_compbiomed_2025_109853
crossref_primary_10_1080_10589759_2024_2334431
crossref_primary_10_1109_TIP_2019_2902794
crossref_primary_10_1093_imamat_hxae005
crossref_primary_10_1109_JSTARS_2025_3569410
crossref_primary_10_1016_j_neucom_2018_01_015
crossref_primary_10_1109_JSTARS_2022_3140211
crossref_primary_10_1016_j_nucengdes_2025_114236
crossref_primary_10_1007_s00500_020_05013_4
crossref_primary_10_1080_09205071_2022_2113444
crossref_primary_10_1109_LMWT_2025_3575160
crossref_primary_10_1016_j_ipm_2022_102901
crossref_primary_10_1038_s41597_021_00893_z
crossref_primary_10_1016_j_dsp_2023_104277
crossref_primary_10_3390_app112110180
crossref_primary_10_1016_j_dsp_2023_104274
crossref_primary_10_1007_s11042_023_14328_x
crossref_primary_10_1109_TAP_2018_2885437
crossref_primary_10_1038_s42256_022_00530_3
crossref_primary_10_1007_s00261_025_05031_6
crossref_primary_10_1109_TCI_2023_3304475
crossref_primary_10_1007_s10554_024_03234_4
crossref_primary_10_1088_1361_6579_ab21b2
crossref_primary_10_1016_j_patcog_2024_110801
crossref_primary_10_1016_j_optcom_2020_126341
crossref_primary_10_1364_OE_557102
crossref_primary_10_1109_TCI_2019_2905434
crossref_primary_10_1038_s41598_019_45484_6
crossref_primary_10_1109_JPHOT_2022_3155250
crossref_primary_10_1016_j_media_2022_102387
crossref_primary_10_1002_mrm_27706
crossref_primary_10_1111_1754_9485_13276
crossref_primary_10_1109_TSP_2020_3014611
crossref_primary_10_1109_TMI_2022_3154011
crossref_primary_10_1364_AO_58_009230
crossref_primary_10_1088_1402_4896_ad852c
crossref_primary_10_1038_nature25988
crossref_primary_10_1109_TSP_2023_3330267
crossref_primary_10_1109_TMI_2025_3568157
crossref_primary_10_3389_fnins_2022_919186
crossref_primary_10_1109_TUFFC_2024_3459391
crossref_primary_10_1007_s11263_023_01812_y
crossref_primary_10_1109_ACCESS_2021_3072551
crossref_primary_10_1109_TII_2019_2960837
crossref_primary_10_1016_j_patcog_2022_108776
crossref_primary_10_1109_TCI_2022_3183405
crossref_primary_10_3938_jkps_75_73
crossref_primary_10_1109_TMI_2018_2799231
crossref_primary_10_1088_1361_6560_ab18db
crossref_primary_10_1063_5_0215063
crossref_primary_10_3390_a16060270
crossref_primary_10_1109_TCI_2023_3248949
crossref_primary_10_1016_j_knosys_2020_106182
crossref_primary_10_1016_j_mri_2020_05_004
crossref_primary_10_1007_s00170_023_11466_2
crossref_primary_10_1016_j_sigpro_2022_108776
crossref_primary_10_1109_TIM_2022_3221136
crossref_primary_10_1109_ACCESS_2019_2961810
crossref_primary_10_1109_JSTQE_2018_2859234
crossref_primary_10_1007_s10483_022_2912_6
crossref_primary_10_1016_j_applthermaleng_2018_12_048
crossref_primary_10_1016_j_dsp_2020_102856
crossref_primary_10_1109_TGRS_2021_3100393
crossref_primary_10_1002_nbm_4405
crossref_primary_10_1016_j_media_2021_102061
crossref_primary_10_1109_JSTSP_2020_2982777
crossref_primary_10_1109_TNNLS_2023_3238511
crossref_primary_10_1016_j_media_2021_102065
crossref_primary_10_1002_mrm_27727
crossref_primary_10_1007_s12145_023_01018_3
crossref_primary_10_1109_TCI_2019_2937221
crossref_primary_10_1007_s12204_024_2701_8
crossref_primary_10_1016_j_neunet_2024_106740
crossref_primary_10_1109_TMI_2019_2936522
crossref_primary_10_1177_2515841419827172
crossref_primary_10_1109_JIOT_2023_3332867
crossref_primary_10_3390_jimaging6120135
crossref_primary_10_1109_TMI_2021_3095310
crossref_primary_10_1088_1361_6560_ad4a1b
crossref_primary_10_1016_j_optcom_2024_130521
crossref_primary_10_1109_MSP_2020_3016905
crossref_primary_10_3389_frai_2023_1289669
crossref_primary_10_1109_TMI_2020_2998179
crossref_primary_10_1109_TAP_2023_3239185
crossref_primary_10_3390_electronics12234742
crossref_primary_10_1016_j_ssci_2019_05_039
crossref_primary_10_1109_ACCESS_2023_3276864
crossref_primary_10_1007_s11760_019_01559_5
crossref_primary_10_1117_1_JMI_10_6_066003
crossref_primary_10_3390_electronics10060752
crossref_primary_10_1016_j_ijsolstr_2024_112692
crossref_primary_10_1109_TMI_2025_3557243
crossref_primary_10_1016_j_neuroimage_2024_120921
crossref_primary_10_1109_TAP_2019_2948565
crossref_primary_10_1109_TUFFC_2020_2986166
crossref_primary_10_1109_TCI_2021_3096491
crossref_primary_10_1088_1361_6560_ac556e
crossref_primary_10_1088_1361_6560_ac7999
crossref_primary_10_1109_TIM_2025_3529044
crossref_primary_10_1109_TMI_2024_3522242
crossref_primary_10_3390_jimaging6080080
crossref_primary_10_3390_aerospace8040112
crossref_primary_10_1038_s41598_025_02133_5
crossref_primary_10_1109_TCI_2025_3531729
crossref_primary_10_1002_gamm_202470004
crossref_primary_10_1016_j_apm_2024_02_026
crossref_primary_10_1016_j_jvcir_2022_103588
crossref_primary_10_1073_pnas_1907377117
crossref_primary_10_1007_s42967_023_00333_2
crossref_primary_10_1109_JSTSP_2021_3054506
crossref_primary_10_1109_TGRS_2020_3032743
crossref_primary_10_1016_j_media_2021_102289
crossref_primary_10_1016_j_neucom_2020_04_105
crossref_primary_10_1088_1361_6420_ad4f0b
crossref_primary_10_1109_JSEN_2020_2973337
crossref_primary_10_1007_s12553_022_00688_1
crossref_primary_10_1107_S1600577520000831
crossref_primary_10_1177_15330338221085358
crossref_primary_10_1109_TMM_2019_2938340
crossref_primary_10_1109_TMI_2022_3180228
crossref_primary_10_3390_s20216353
crossref_primary_10_1109_TUFFC_2022_3221682
crossref_primary_10_1109_TPAMI_2018_2883941
crossref_primary_10_1109_TRPMS_2022_3217517
crossref_primary_10_3233_XST_230184
crossref_primary_10_1109_TGRS_2022_3214495
crossref_primary_10_1016_j_neunet_2021_08_026
crossref_primary_10_1088_1361_6560_ab990e
crossref_primary_10_1109_TRPMS_2023_3309474
crossref_primary_10_3389_fnins_2023_1165446
crossref_primary_10_1002_wics_1646
crossref_primary_10_1016_j_optlaseng_2023_107873
crossref_primary_10_1107_S1600577523008032
crossref_primary_10_1109_LGRS_2025_3557521
crossref_primary_10_1109_TMI_2022_3148728
crossref_primary_10_1088_1361_6560_ad69f7
crossref_primary_10_1186_s13014_024_02532_4
crossref_primary_10_1016_j_compmedimag_2024_102345
crossref_primary_10_1016_j_eswa_2025_127703
crossref_primary_10_1016_j_optlastec_2024_112016
crossref_primary_10_1109_TCI_2020_2990299
crossref_primary_10_1109_TIM_2020_3029383
crossref_primary_10_1007_s11263_025_02426_2
crossref_primary_10_1073_pnas_2305890120
crossref_primary_10_1109_TIM_2025_3554318
crossref_primary_10_1109_TMI_2021_3065948
crossref_primary_10_1109_TMI_2021_3117246
crossref_primary_10_3390_jimaging8120312
crossref_primary_10_1109_TGRS_2020_2969040
crossref_primary_10_1016_j_mri_2025_110465
crossref_primary_10_3390_electronics12081777
crossref_primary_10_1016_j_cmpb_2022_107090
crossref_primary_10_3390_jimaging4110128
crossref_primary_10_1088_1361_6420_ad7d30
crossref_primary_10_1007_s10489_021_02604_y
crossref_primary_10_1109_JSTSP_2020_3007326
crossref_primary_10_3390_s22207925
crossref_primary_10_1137_21M1455000
crossref_primary_10_1016_j_cam_2023_115557
crossref_primary_10_1109_TIM_2025_3568935
crossref_primary_10_3389_fonc_2020_01715
crossref_primary_10_1109_TAP_2019_2922779
crossref_primary_10_1109_ACCESS_2021_3079323
crossref_primary_10_1007_s11071_023_09127_w
crossref_primary_10_1038_s41598_021_87482_7
crossref_primary_10_1007_s13369_022_07009_8
crossref_primary_10_1016_j_mattod_2024_08_016
crossref_primary_10_1002_mrm_29176
crossref_primary_10_1109_TMI_2023_3325824
crossref_primary_10_1007_s42979_023_02210_4
crossref_primary_10_1227_neu_0000000000003260
crossref_primary_10_1109_LGRS_2019_2943069
crossref_primary_10_1186_s12911_025_02989_7
crossref_primary_10_1109_ACCESS_2023_3260405
crossref_primary_10_1016_j_fuel_2020_119011
crossref_primary_10_1371_journal_pone_0226963
crossref_primary_10_1109_LAWP_2021_3100135
crossref_primary_10_1109_TRPMS_2025_3528953
crossref_primary_10_3390_s23094369
crossref_primary_10_3390_s23010061
crossref_primary_10_1109_ACCESS_2020_3002090
crossref_primary_10_3390_jimaging7080139
crossref_primary_10_1007_s10489_020_02061_z
crossref_primary_10_1016_j_mri_2024_04_028
crossref_primary_10_1109_TMI_2024_3418652
crossref_primary_10_2528_PIER19080610
crossref_primary_10_1016_j_media_2024_103398
crossref_primary_10_1016_j_optlastec_2024_112271
crossref_primary_10_1109_LAWP_2022_3224983
crossref_primary_10_1038_s42256_020_0165_6
crossref_primary_10_1088_1361_6420_aaf14a
crossref_primary_10_3390_math13172903
crossref_primary_10_1007_s10845_020_01715_6
crossref_primary_10_1109_TMI_2019_2934125
crossref_primary_10_1109_TMI_2024_3402079
crossref_primary_10_1126_science_aat8084
crossref_primary_10_1109_TIP_2019_2947790
crossref_primary_10_1109_ACCESS_2019_2918593
crossref_primary_10_1002_mp_14170
crossref_primary_10_1002_mp_16591
crossref_primary_10_1016_j_radmeas_2021_106565
crossref_primary_10_1017_S0962492919000059
crossref_primary_10_1049_iet_rsn_2019_0625
crossref_primary_10_1093_rasti_rzaf025
crossref_primary_10_1007_s12517_021_07577_3
crossref_primary_10_1109_TMI_2018_2832656
crossref_primary_10_1016_j_media_2021_102217
crossref_primary_10_1002_mp_17685
crossref_primary_10_1038_s41598_019_51779_5
crossref_primary_10_1053_j_ro_2023_02_003
crossref_primary_10_1002_adom_202200619
crossref_primary_10_1007_s10334_024_01173_8
crossref_primary_10_1007_s11831_022_09785_w
crossref_primary_10_1038_s41377_023_01340_x
crossref_primary_10_3103_S1060992X20010038
crossref_primary_10_3390_jmse12111913
crossref_primary_10_1109_JSTARS_2025_3576179
crossref_primary_10_1016_j_net_2025_103897
crossref_primary_10_1088_1361_6560_ac950c
crossref_primary_10_1088_2057_1976_ac31cb
crossref_primary_10_1002_mp_17431
crossref_primary_10_1109_LSENS_2023_3303046
crossref_primary_10_3233_JIFS_179575
crossref_primary_10_1109_TCI_2022_3158865
crossref_primary_10_3390_s20123494
crossref_primary_10_1002_adom_202300215
crossref_primary_10_1016_j_cmpb_2024_108575
crossref_primary_10_1016_j_optcom_2023_130156
crossref_primary_10_1016_j_irbm_2020_08_004
crossref_primary_10_1109_TMI_2021_3084288
crossref_primary_10_3390_rs15051394
crossref_primary_10_1088_1361_6560_acbe8e
crossref_primary_10_1088_1748_0221_20_05_P05004
crossref_primary_10_1097_MD_0000000000019114
crossref_primary_10_1002_appl_202300016
crossref_primary_10_1109_TPAMI_2024_3359087
crossref_primary_10_1177_1475921719844039
crossref_primary_10_1371_journal_pone_0304738
crossref_primary_10_1109_TCI_2024_3507645
crossref_primary_10_1109_TRPMS_2018_2867611
crossref_primary_10_1016_j_future_2020_08_022
crossref_primary_10_1088_1361_6560_ac3eae
crossref_primary_10_1364_AO_399715
crossref_primary_10_1016_j_cma_2020_113603
crossref_primary_10_1364_AO_443330
crossref_primary_10_1002_mp_16371
crossref_primary_10_1190_geo2021_0744_1
crossref_primary_10_1109_TCI_2024_3402335
crossref_primary_10_1109_JSEN_2024_3443468
crossref_primary_10_1109_TMI_2024_3418838
crossref_primary_10_1016_j_camwa_2023_11_038
crossref_primary_10_1109_TCI_2021_3098937
crossref_primary_10_1016_j_neucom_2021_09_035
crossref_primary_10_1109_TCI_2023_3306100
crossref_primary_10_1107_S1600577521011322
crossref_primary_10_1109_TCI_2022_3216207
crossref_primary_10_1016_j_nima_2024_169338
crossref_primary_10_1002_jbio_201900128
crossref_primary_10_1017_S1431927622007917
crossref_primary_10_1016_j_clinimag_2020_09_005
crossref_primary_10_1038_s41592_019_0458_z
crossref_primary_10_1016_j_media_2023_102802
crossref_primary_10_3233_XST_200777
crossref_primary_10_1088_1361_6560_ab23a6
crossref_primary_10_1109_TRPMS_2022_3150322
crossref_primary_10_1109_JSTSP_2017_2784181
crossref_primary_10_1109_TIP_2025_3534559
crossref_primary_10_1109_TMI_2019_2948320
crossref_primary_10_3390_s18051342
crossref_primary_10_1016_j_nimb_2025_165682
crossref_primary_10_1109_TGRS_2021_3052793
crossref_primary_10_1016_j_jcp_2023_112427
crossref_primary_10_1109_JSTSP_2020_3039393
crossref_primary_10_1007_s10915_024_02638_7
crossref_primary_10_3389_fnins_2021_569918
crossref_primary_10_1016_j_inffus_2025_103323
crossref_primary_10_1002_nbm_4292
crossref_primary_10_1109_TMI_2018_2832217
crossref_primary_10_1016_j_ymssp_2020_106625
crossref_primary_10_1049_iet_rsn_2019_0422
crossref_primary_10_1002_mp_13284
crossref_primary_10_1002_mp_16552
crossref_primary_10_1109_TMI_2020_3033541
crossref_primary_10_1109_TRPMS_2024_3515036
crossref_primary_10_1109_TCI_2021_3098922
crossref_primary_10_3390_photonics10020204
crossref_primary_10_1038_s41598_020_65235_2
crossref_primary_10_1016_j_ins_2022_03_080
crossref_primary_10_1109_TMTT_2024_3369420
crossref_primary_10_1088_1742_6596_2651_1_012128
crossref_primary_10_1109_TRPMS_2020_3000789
crossref_primary_10_1002_mrm_29317
crossref_primary_10_1038_s41598_025_03900_0
crossref_primary_10_1016_j_compbiomed_2022_106513
crossref_primary_10_1002_acm2_14113
crossref_primary_10_1007_s11548_025_03402_4
crossref_primary_10_1007_s10851_025_01263_9
crossref_primary_10_1007_s10851_019_00923_x
crossref_primary_10_1088_1361_6420_ad0f3b
crossref_primary_10_1109_TIP_2019_2907461
crossref_primary_10_3390_math12060859
crossref_primary_10_3390_e26020101
crossref_primary_10_1109_TIM_2020_3038014
crossref_primary_10_1364_AO_565597
crossref_primary_10_1109_TVLSI_2018_2858014
crossref_primary_10_1117_1_JBO_29_1_016010
crossref_primary_10_1109_TIM_2023_3260280
crossref_primary_10_1088_1748_0221_18_05_P05038
crossref_primary_10_1016_j_compbiomed_2023_106809
crossref_primary_10_1002_mp_15213
crossref_primary_10_1002_mp_16543
crossref_primary_10_1088_2632_2153_aba8e7
crossref_primary_10_3390_s19112636
crossref_primary_10_1002_mp_17636
crossref_primary_10_1016_j_bspc_2022_103598
crossref_primary_10_1002_mrm_30537
crossref_primary_10_1109_TCI_2021_3093003
crossref_primary_10_1016_j_media_2024_103334
crossref_primary_10_1186_s42492_022_00127_y
crossref_primary_10_1109_TMECH_2021_3065522
crossref_primary_10_1016_j_bspc_2025_107564
crossref_primary_10_1007_s11227_021_04157_w
crossref_primary_10_1109_TAP_2022_3216920
crossref_primary_10_1109_TCI_2021_3062986
crossref_primary_10_1002_mp_16331
crossref_primary_10_1007_s00500_024_09918_2
crossref_primary_10_1016_j_neucom_2019_09_092
crossref_primary_10_3390_electronics14101959
crossref_primary_10_4018_JCIT_326131
crossref_primary_10_1016_j_media_2025_103605
crossref_primary_10_1002_mp_16576
crossref_primary_10_1038_s41377_023_01248_6
crossref_primary_10_1109_TMI_2022_3148110
crossref_primary_10_1002_mp_15489
crossref_primary_10_1109_JSYST_2023_3238678
crossref_primary_10_1109_TCI_2025_3553039
crossref_primary_10_1109_TGRS_2023_3273149
crossref_primary_10_1109_TCCN_2021_3061464
crossref_primary_10_1117_1_JMM_18_2_024001
crossref_primary_10_1007_s11277_023_10678_9
crossref_primary_10_1016_j_eswa_2024_125099
crossref_primary_10_3390_rs14112614
crossref_primary_10_1007_s13246_023_01320_w
crossref_primary_10_1016_j_engappai_2021_104252
crossref_primary_10_1007_s10278_025_01462_1
crossref_primary_10_3389_fninf_2020_00015
crossref_primary_10_1109_TCI_2023_3281196
crossref_primary_10_1007_s10278_024_01314_4
crossref_primary_10_59277_RomRepPhys_2025_77_102
crossref_primary_10_1364_AO_545150
crossref_primary_10_1088_1361_6560_ab1aba
crossref_primary_10_1371_journal_pone_0313226
crossref_primary_10_1109_TIT_2023_3326879
crossref_primary_10_1109_TGRS_2018_2869221
crossref_primary_10_1038_s41598_024_54124_7
crossref_primary_10_3390_jimaging7030044
crossref_primary_10_1007_s10851_019_00901_3
crossref_primary_10_1109_LSP_2023_3323248
crossref_primary_10_1016_j_dsp_2022_103797
crossref_primary_10_1016_j_radphyschem_2022_110718
crossref_primary_10_1364_OE_551221
crossref_primary_10_7717_peerj_cs_951
crossref_primary_10_3233_XST_221260
crossref_primary_10_3938_jkps_75_160
crossref_primary_10_1109_TAP_2024_3388205
crossref_primary_10_1109_TSMC_2024_3449332
crossref_primary_10_1109_TPAMI_2021_3099035
crossref_primary_10_1038_s41598_023_36249_3
crossref_primary_10_1007_s11042_020_09543_9
crossref_primary_10_1049_ccs_2019_0004
crossref_primary_10_1088_1361_6501_ad11cd
crossref_primary_10_1109_TCI_2023_3236161
crossref_primary_10_1016_j_apenergy_2021_117379
crossref_primary_10_1016_j_cageo_2024_105663
crossref_primary_10_1109_TUFFC_2024_3417905
crossref_primary_10_1016_j_sigpro_2024_109746
crossref_primary_10_1016_j_neucom_2022_04_040
crossref_primary_10_1109_TGRS_2023_3243927
crossref_primary_10_3389_fonc_2021_760689
crossref_primary_10_1109_TMI_2022_3175529
crossref_primary_10_3390_s22249771
crossref_primary_10_1109_TCYB_2019_2933257
crossref_primary_10_1016_j_segan_2023_101248
crossref_primary_10_1109_TIP_2022_3167915
crossref_primary_10_1109_TCI_2023_3279053
crossref_primary_10_1007_s10278_021_00467_w
crossref_primary_10_1364_AO_58_005422
crossref_primary_10_1109_ACCESS_2020_3019307
crossref_primary_10_1016_j_neunet_2023_08_004
crossref_primary_10_1049_joe_2019_0571
crossref_primary_10_1016_j_ndteint_2023_102923
crossref_primary_10_1109_TIP_2021_3122089
crossref_primary_10_1109_TWC_2025_3563243
crossref_primary_10_1080_10589759_2023_2170374
crossref_primary_10_1002_mrm_30121
crossref_primary_10_3390_app10134446
crossref_primary_10_1137_21M1445697
crossref_primary_10_1002_mp_13264
crossref_primary_10_3390_en18040918
crossref_primary_10_1049_ipr2_12270
crossref_primary_10_3389_fnbot_2021_651432
crossref_primary_10_1109_TMI_2018_2865356
crossref_primary_10_1038_s41584_021_00719_7
crossref_primary_10_1002_mp_16779
crossref_primary_10_1109_TIM_2024_3522391
crossref_primary_10_1109_TIP_2019_2913092
crossref_primary_10_1186_s12911_021_01736_y
crossref_primary_10_1002_mp_15205
crossref_primary_10_3390_photonics10020224
crossref_primary_10_1186_s12880_025_01910_y
crossref_primary_10_1109_ACCESS_2019_2959037
crossref_primary_10_1088_1361_6560_abc12c
crossref_primary_10_1109_TCI_2019_2956877
crossref_primary_10_1016_j_neuroimage_2020_117366
crossref_primary_10_1109_TCI_2022_3149088
crossref_primary_10_3390_jmse12091609
crossref_primary_10_1038_s41598_025_16978_3
crossref_primary_10_1137_23M1581807
crossref_primary_10_1109_TIP_2023_3293768
crossref_primary_10_3390_cancers17010130
crossref_primary_10_1016_j_neucom_2019_09_057
crossref_primary_10_1109_TCI_2022_3233188
crossref_primary_10_1109_TCI_2023_3236155
crossref_primary_10_32604_cmes_2023_029562
crossref_primary_10_3390_s22093228
crossref_primary_10_1364_AO_425099
crossref_primary_10_1016_j_compag_2021_106014
crossref_primary_10_1088_1361_6560_ad360a
crossref_primary_10_1038_s41598_022_14039_7
crossref_primary_10_1016_j_eswa_2024_123704
crossref_primary_10_1002_mrm_30359
crossref_primary_10_1088_1361_6528_abd508
crossref_primary_10_1016_j_jrras_2022_03_003
crossref_primary_10_1016_j_bspc_2024_107058
crossref_primary_10_1016_j_eswa_2020_114285
crossref_primary_10_1137_23M162750X
crossref_primary_10_1088_1361_6560_aae511
crossref_primary_10_1109_TMI_2018_2823768
crossref_primary_10_3390_bios10120193
crossref_primary_10_1109_TCI_2019_2956866
crossref_primary_10_1002_mrm_28038
crossref_primary_10_1109_TIE_2023_3273272
crossref_primary_10_1109_TMECH_2022_3195524
crossref_primary_10_1038_s41598_022_12914_x
crossref_primary_10_1109_TIP_2021_3053398
crossref_primary_10_1148_ryai_230275
crossref_primary_10_1109_ACCESS_2020_3044981
crossref_primary_10_1016_j_ejmp_2023_102535
crossref_primary_10_23919_JSEE_2024_000042
crossref_primary_10_1038_s42256_020_00289_5
crossref_primary_10_1109_TUFFC_2021_3126530
crossref_primary_10_1016_j_media_2021_101967
crossref_primary_10_1109_TCI_2025_3536078
crossref_primary_10_1016_j_eswa_2025_128109
crossref_primary_10_1109_ACCESS_2024_3516380
crossref_primary_10_1109_TCI_2022_3207351
crossref_primary_10_1016_j_jcp_2021_110414
crossref_primary_10_1109_TIP_2021_3097187
crossref_primary_10_1002_mp_15617
crossref_primary_10_1038_s41598_019_38903_1
crossref_primary_10_1109_LAWP_2019_2925578
crossref_primary_10_1002_mrm_29833
crossref_primary_10_1007_s11263_025_02378_7
crossref_primary_10_1109_MGRS_2022_3218801
crossref_primary_10_1039_D2NH00377E
crossref_primary_10_1109_TIP_2018_2865280
crossref_primary_10_1109_TMI_2022_3167809
crossref_primary_10_1109_TMI_2020_2998480
crossref_primary_10_3390_s21134278
crossref_primary_10_1016_j_isatra_2019_08_054
crossref_primary_10_1109_TIP_2021_3120053
crossref_primary_10_3934_ipi_2025001
crossref_primary_10_1109_TIM_2024_3476543
crossref_primary_10_1109_TMI_2020_2979940
crossref_primary_10_1002_mp_14523
crossref_primary_10_1016_j_compbiomed_2023_106888
crossref_primary_10_1088_2632_2153_ad95dd
crossref_primary_10_1002_mrm_27889
crossref_primary_10_1088_1361_6560_ac5ce7
crossref_primary_10_1016_j_sigpro_2024_109660
crossref_primary_10_1166_jmihi_2021_3915
crossref_primary_10_1016_j_media_2019_01_005
crossref_primary_10_1109_LSP_2018_2829766
crossref_primary_10_1109_ACCESS_2021_3127393
crossref_primary_10_1016_j_optlaseng_2021_106533
crossref_primary_10_1016_j_ejmp_2021_07_005
crossref_primary_10_1109_TMI_2021_3136461
crossref_primary_10_1109_TRPMS_2018_2860788
crossref_primary_10_1109_TIM_2024_3369160
crossref_primary_10_1117_1_JMI_11_2_026002
crossref_primary_10_1016_j_acha_2022_04_003
crossref_primary_10_1109_TMI_2023_3347258
crossref_primary_10_1186_s40658_021_00426_y
crossref_primary_10_1007_s13246_023_01290_z
crossref_primary_10_1002_mp_15884
crossref_primary_10_1002_mp_15886
crossref_primary_10_1002_mp_15885
crossref_primary_10_1088_2632_2153_ac1d35
crossref_primary_10_1097_RCT_0000000000001734
crossref_primary_10_1186_s12968_020_00651_x
crossref_primary_10_1080_10106049_2021_1912194
crossref_primary_10_3390_diagnostics11050840
crossref_primary_10_1002_mp_16734
crossref_primary_10_1038_s42256_023_00724_3
crossref_primary_10_1016_j_compmedimag_2020_101720
crossref_primary_10_1016_j_bspc_2021_103117
crossref_primary_10_1109_TIP_2024_3388970
crossref_primary_10_1364_AO_525144
crossref_primary_10_3390_app10061902
crossref_primary_10_1109_MAP_2020_3043469
crossref_primary_10_1016_j_optlastec_2023_110241
crossref_primary_10_1109_TIV_2023_3331533
crossref_primary_10_1016_j_rse_2024_114575
crossref_primary_10_15446_esrj_v28n4_117639
crossref_primary_10_1016_j_neuroimage_2022_119410
crossref_primary_10_1109_TIP_2023_3245323
crossref_primary_10_1109_JSTARS_2022_3229761
crossref_primary_10_1016_j_jocn_2021_04_043
crossref_primary_10_1109_TRPMS_2022_3222213
crossref_primary_10_1111_cgf_13753
crossref_primary_10_1088_1361_6560_abb5c3
crossref_primary_10_1117_1_JEI_34_2_023063
crossref_primary_10_3233_XST_210929
crossref_primary_10_1038_s41598_022_04910_y
crossref_primary_10_1109_TIM_2024_3497165
crossref_primary_10_1016_j_acha_2024_101719
crossref_primary_10_1109_TCI_2021_3125564
crossref_primary_10_1016_j_mri_2024_01_007
crossref_primary_10_1016_j_media_2023_103012
crossref_primary_10_1109_TIP_2018_2869688
crossref_primary_10_3390_s19183929
crossref_primary_10_3390_rs14153810
crossref_primary_10_1109_MSP_2017_2739299
crossref_primary_10_1109_TPAMI_2024_3450575
crossref_primary_10_1088_1361_6560_ab8fc1
crossref_primary_10_1073_pnas_2107151119
crossref_primary_10_1109_JSEN_2018_2876411
crossref_primary_10_1109_TAP_2024_3372772
crossref_primary_10_1109_JSTARS_2020_3021074
crossref_primary_10_1109_TUFFC_2021_3131383
crossref_primary_10_1002_mp_13400
crossref_primary_10_1007_s00034_023_02326_1
crossref_primary_10_1002_mrm_27690
crossref_primary_10_1109_ACCESS_2019_2960456
crossref_primary_10_1088_1361_6560_acc2ab
crossref_primary_10_1088_1361_6560_acc2aa
crossref_primary_10_1002_mp_15817
crossref_primary_10_1109_TGRS_2019_2953473
crossref_primary_10_1190_geo2018_0245_1
crossref_primary_10_1007_s11600_022_00773_z
crossref_primary_10_1002_nme_6593
crossref_primary_10_3390_s24061954
crossref_primary_10_1007_s11760_023_02544_9
crossref_primary_10_1109_TAP_2023_3242424
crossref_primary_10_1016_j_dsp_2021_103285
crossref_primary_10_1109_ACCESS_2020_3033795
crossref_primary_10_1038_s41598_023_42625_w
crossref_primary_10_1038_s41598_018_25153_w
crossref_primary_10_1109_LGRS_2018_2866567
crossref_primary_10_1016_j_phro_2023_100416
crossref_primary_10_1002_mp_13631
crossref_primary_10_1364_OE_559227
crossref_primary_10_1109_TUFFC_2022_3160859
crossref_primary_10_3390_sym17040523
crossref_primary_10_1145_3480168
crossref_primary_10_1002_mp_13627
crossref_primary_10_1002_mp_13869
crossref_primary_10_1155_2021_2973108
crossref_primary_10_1515_jiip_2020_0121
crossref_primary_10_1002_mrm_27201
crossref_primary_10_1109_TCI_2018_2846413
crossref_primary_10_1007_s13163_021_00419_6
crossref_primary_10_1016_j_rsase_2024_101221
crossref_primary_10_1016_j_dsp_2023_104187
crossref_primary_10_1109_TPAMI_2020_3014629
crossref_primary_10_1016_j_bspc_2024_106479
crossref_primary_10_1109_JSTSP_2024_3381335
crossref_primary_10_1109_TNNLS_2023_3289798
crossref_primary_10_1109_TAES_2025_3560257
crossref_primary_10_1016_j_media_2025_103806
crossref_primary_10_1007_s12539_019_00351_w
crossref_primary_10_1016_j_compbiomed_2023_107308
crossref_primary_10_1109_TCBB_2021_3122183
crossref_primary_10_1038_s41598_022_25366_0
crossref_primary_10_1016_j_rcl_2021_07_009
crossref_primary_10_1109_TBME_2020_3020741
crossref_primary_10_1016_j_jcp_2021_110430
crossref_primary_10_1109_ACCESS_2020_2992483
crossref_primary_10_1016_j_mri_2022_12_008
crossref_primary_10_1007_s11220_022_00384_4
crossref_primary_10_1109_JBHI_2022_3184930
crossref_primary_10_1002_mrm_29400
crossref_primary_10_1007_s11548_021_02487_x
crossref_primary_10_1002_mp_14744
crossref_primary_10_1007_s10894_024_00458_z
crossref_primary_10_1142_S2737599424500026
crossref_primary_10_3390_rs13091734
crossref_primary_10_1016_j_ymssp_2022_110059
crossref_primary_10_1051_epjconf_202125103058
crossref_primary_10_1007_s40305_019_00287_4
crossref_primary_10_1109_TCI_2023_3240078
crossref_primary_10_1088_1361_6560_ad5e59
crossref_primary_10_1109_TAP_2022_3188389
crossref_primary_10_1109_JSEN_2023_3253176
crossref_primary_10_1016_j_nima_2025_170306
crossref_primary_10_3390_jimaging7110243
crossref_primary_10_1038_s42256_020_00270_2
crossref_primary_10_1088_1361_6420_ab460a
crossref_primary_10_1109_TRPMS_2023_3340955
crossref_primary_10_3390_app10082661
crossref_primary_10_1109_TCSVT_2024_3486050
crossref_primary_10_1016_j_acra_2019_05_016
crossref_primary_10_1016_j_cherd_2024_06_018
crossref_primary_10_1016_j_ultrasmedbio_2022_05_033
crossref_primary_10_1109_JBHI_2024_3432139
crossref_primary_10_1016_j_procs_2020_02_243
crossref_primary_10_1109_TITS_2023_3311541
crossref_primary_10_1109_TMI_2024_3420411
crossref_primary_10_1109_ACCESS_2023_3291076
crossref_primary_10_1016_j_cam_2023_115503
crossref_primary_10_1109_JSEN_2025_3546972
crossref_primary_10_3233_XST_180423
crossref_primary_10_1109_ACCESS_2021_3056150
crossref_primary_10_1016_j_compbiomed_2019_103587
crossref_primary_10_1109_TGRS_2024_3362391
crossref_primary_10_3390_s20030594
crossref_primary_10_1016_j_cmpb_2024_108376
crossref_primary_10_1186_s13244_020_00869_4
crossref_primary_10_3934_ipi_2021045
crossref_primary_10_1088_1742_6596_2128_1_012016
crossref_primary_10_1088_2399_6528_abebcf
crossref_primary_10_1109_TIM_2023_3256469
crossref_primary_10_1016_j_jsb_2018_09_008
crossref_primary_10_1109_TSP_2022_3179807
crossref_primary_10_1109_TCI_2023_3315853
crossref_primary_10_1109_TRPMS_2021_3083361
crossref_primary_10_1364_OE_569216
crossref_primary_10_1007_s11207_024_02399_4
crossref_primary_10_1109_JBHI_2023_3311189
crossref_primary_10_1007_s10851_025_01249_7
crossref_primary_10_1002_mp_14946
crossref_primary_10_1016_j_compbiomed_2025_110728
crossref_primary_10_1016_j_compbiomed_2023_107345
crossref_primary_10_1109_TMI_2021_3078067
crossref_primary_10_1088_2632_2153_ad5f74
crossref_primary_10_3389_fspas_2022_1001043
crossref_primary_10_1103_PRXEnergy_4_013002
crossref_primary_10_1038_s41598_020_77923_0
crossref_primary_10_1109_JSTARS_2024_3463750
crossref_primary_10_1109_TMI_2021_3085839
crossref_primary_10_1111_exsy_12755
crossref_primary_10_1007_s11517_022_02631_y
crossref_primary_10_1093_comjnl_bxab117
crossref_primary_10_1002_ima_22588
crossref_primary_10_1016_j_measen_2020_100024
crossref_primary_10_1109_ACCESS_2020_3028877
crossref_primary_10_1016_j_cmpb_2024_108359
crossref_primary_10_1007_s10479_025_06734_1
crossref_primary_10_1109_TMI_2021_3097808
crossref_primary_10_1049_iet_ipr_2019_1138
crossref_primary_10_1016_j_isprsjprs_2021_08_019
crossref_primary_10_1016_j_media_2019_03_013
crossref_primary_10_1088_1361_6560_abf278
crossref_primary_10_3390_eng6080189
crossref_primary_10_1007_s11042_023_16535_y
crossref_primary_10_1016_j_optlaseng_2020_106454
crossref_primary_10_1177_08953996251319183
crossref_primary_10_1371_journal_pone_0330463
crossref_primary_10_1109_TGRS_2022_3217162
crossref_primary_10_1109_TGRS_2024_3458402
crossref_primary_10_1109_ACCESS_2023_3295246
crossref_primary_10_1109_TIP_2020_2989100
crossref_primary_10_1190_geo2018_0249_1
crossref_primary_10_1088_2632_2153_ad1b8e
crossref_primary_10_3390_s20010311
crossref_primary_10_1007_s10096_020_03901_z
crossref_primary_10_1109_ACCESS_2021_3086839
crossref_primary_10_1109_ACCESS_2021_3117140
crossref_primary_10_1002_mp_12945
crossref_primary_10_1109_TCI_2022_3197939
crossref_primary_10_1007_s11263_021_01572_7
crossref_primary_10_1088_1361_6544_aca73d
crossref_primary_10_1097_RLI_0000000000000679
crossref_primary_10_1088_2632_2153_ab592b
crossref_primary_10_1109_LAWP_2021_3085033
crossref_primary_10_1093_mnras_stac2672
crossref_primary_10_1109_TGRS_2022_3222502
crossref_primary_10_1121_10_0014289
crossref_primary_10_3390_electronics10243104
crossref_primary_10_1007_s10278_024_01250_3
crossref_primary_10_1016_j_sigpro_2022_108896
crossref_primary_10_1134_S0361768819040029
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104247
crossref_primary_10_1007_s10851_025_01258_6
crossref_primary_10_1109_TIM_2024_3406810
crossref_primary_10_1109_LAWP_2019_2927543
crossref_primary_10_3390_photonics11070671
crossref_primary_10_1109_LAWP_2020_2995455
crossref_primary_10_1109_TMI_2024_3494271
crossref_primary_10_1177_08953996241300016
crossref_primary_10_1038_s42254_024_00798_x
crossref_primary_10_3390_mi16010008
crossref_primary_10_1109_TIM_2025_3568976
crossref_primary_10_1109_TMI_2018_2805692
crossref_primary_10_1109_TMI_2024_3367167
crossref_primary_10_1002_jmri_27058
crossref_primary_10_1016_j_sigpro_2021_108320
crossref_primary_10_1109_TCI_2021_3099632
crossref_primary_10_1109_TMI_2018_2864821
crossref_primary_10_1109_TSMC_2022_3228597
crossref_primary_10_1088_1361_6560_ad3c8e
crossref_primary_10_1109_TMI_2018_2823083
crossref_primary_10_1007_s10208_024_09654_x
crossref_primary_10_1007_s11263_023_01844_4
crossref_primary_10_1016_j_mri_2020_11_010
crossref_primary_10_1109_TMI_2020_2993835
crossref_primary_10_1016_j_optlaseng_2025_108863
crossref_primary_10_1007_s00521_019_04305_7
crossref_primary_10_1016_j_neucom_2025_129771
crossref_primary_10_1103_PhysRevApplied_23_034035
crossref_primary_10_1080_09720529_2022_2072437
crossref_primary_10_1088_1361_6560_ada687
crossref_primary_10_1016_j_nima_2022_166428
crossref_primary_10_3390_en18133346
crossref_primary_10_1109_TMI_2018_2828303
crossref_primary_10_1016_j_compbiomed_2025_109920
crossref_primary_10_3390_s20092619
crossref_primary_10_1109_TMI_2021_3072568
crossref_primary_10_1007_s10462_022_10259_5
crossref_primary_10_1007_s12065_020_00462_0
crossref_primary_10_1088_1361_6560_ac4122
crossref_primary_10_1117_1_AP_1_3_036002
crossref_primary_10_3390_s22186923
crossref_primary_10_1038_s41377_021_00512_x
crossref_primary_10_1109_TMI_2024_3405024
crossref_primary_10_1016_j_compbiomed_2023_107391
Cites_doi 10.1117/12.2254244
10.1038/nature14539
10.1109/MICRO.2016.7783721
10.1137/1.9780898719277
10.1137/080716542
10.1109/TIP.2009.2028254
10.1109/TMI.2011.2140121
10.1002/mrm.21391
10.1007/978-3-319-46448-0_38
10.1109/CVPR.2014.349
10.1016/j.ejmp.2012.01.003
10.1109/TIT.2005.862083
10.1007/978-3-319-46487-9_17
10.1088/0266-5611/23/3/007
10.1109/ICCV.2015.73
10.1002/mrm.21757
10.1109/TIP.2017.2662206
10.1023/B:JMIV.0000011321.19549.88
10.1109/83.862633
10.1109/TIP.2013.2283142
10.1109/TMI.2014.2328660
10.1109/LSP.2016.2548245
10.1145/344779.344972
10.1364/BOE.8.000679
10.1007/978-3-319-11179-7_36
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1109/TIT.2016.2590421
10.1109/CVPR.2016.182
10.1109/CVPR.2012.6247952
10.1109/TCI.2015.2479555
10.1145/2733373.2807412
10.1109/CVPR.2015.7298965
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TIP.2010.2047910
10.1561/2200000016
10.1109/TMI.2015.2401131
10.1109/CVPR.2014.81
10.1137/080725891
10.1109/TMI.2002.1000260
10.1109/TIP.2006.877507
10.1088/0031-9155/53/17/021
10.1007/978-3-319-10590-1_53
10.1364/OE.24.014564
10.1109/TMI.2016.2551324
10.1016/0167-2789(92)90242-F
10.1109/CVPR.2016.55
10.1007/s11263-015-0816-y
10.1109/TMI.2012.2195669
10.1002/cpa.20042
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7299163
10.1109/83.661187
10.1109/TPAMI.2015.2439281
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2017.2713099
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Journals (OA)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 4522
ExternalDocumentID 28641250
10_1109_TIP_2017_2713099
7949028
Genre orig-research
Journal Article
GrantInformation_xml – fundername: European Union’s Horizon 2020 Framework Programme for Research and Innovation (call 2015)
  grantid: 665667
  funderid: 10.13039/100010661
– fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: EB017095; EB017185
  funderid: 10.13039/100000070
– fundername: Center for Biomedical Imaging of the Geneva-Lausanne Universities and EPFL
  funderid: 10.13039/501100006391
– fundername: European Research Council (H2020-ERC Project GlobalBioIm)
  grantid: 692726
  funderid: 10.13039/501100000781
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
ESBDL
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7X8
ID FETCH-LOGICAL-c361t-bfc8c6fcba6beb8378938f2b07593912be98b2cc01ee7d9ba1ef19cb171914373
IEDL.DBID RIE
ISICitedReferencesCount 1792
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405701500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sat Sep 27 18:20:22 EDT 2025
Thu Apr 03 07:08:32 EDT 2025
Sat Nov 29 07:51:33 EST 2025
Tue Nov 18 22:41:41 EST 2025
Wed Aug 27 02:30:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-bfc8c6fcba6beb8378938f2b07593912be98b2cc01ee7d9ba1ef19cb171914373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7885-4792
0000-0001-7645-252X
OpenAccessLink https://ieeexplore.ieee.org/document/7949028
PMID 28641250
PQID 1913398440
PQPubID 23479
PageCount 14
ParticipantIDs crossref_primary_10_1109_TIP_2017_2713099
crossref_citationtrail_10_1109_TIP_2017_2713099
ieee_primary_7949028
pubmed_primary_28641250
proquest_miscellaneous_1913398440
PublicationCentury 2000
PublicationDate 2017-Sept.
2017-9-00
2017-Sep
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
xin (ref33) 2016
ref55
ref11
ref54
ref10
ref17
krishnan (ref5) 2009
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref41
mallat (ref52) 1999
ref44
lee (ref64) 2017; 10133
ref8
ref7
ref9
ref4
ref3
ref6
ref40
han (ref47) 2016
xu (ref23) 2014
ref35
ref34
tibshirani (ref49) 1996; 58
ref37
ref36
ref30
ref32
ref1
ref39
epperson (ref65) 2013
ref38
chambolle (ref2) 2004; 20
xu (ref43) 2012; 31
krizhevsky (ref16) 2012
ref24
ref26
ref25
ref63
ref21
ronneberger (ref20) 2015
ref28
ref27
ref29
pascanu (ref61) 2013; 28
xie (ref22) 2012
ref60
coifman (ref53) 1995
ref62
gregor (ref31) 2010
References_xml – volume: 10133
  start-page: 1013328
  year: 2017
  ident: ref64
  article-title: View-interpolation of sparsely sampled sinogram using convolutional neural network
  publication-title: Proc SPIE
  doi: 10.1117/12.2254244
– ident: ref15
  doi: 10.1038/nature14539
– ident: ref59
  doi: 10.1109/MICRO.2016.7783721
– ident: ref40
  doi: 10.1137/1.9780898719277
– ident: ref55
  doi: 10.1137/080716542
– ident: ref34
  doi: 10.1109/TIP.2009.2028254
– ident: ref11
  doi: 10.1109/TMI.2011.2140121
– ident: ref9
  doi: 10.1002/mrm.21391
– ident: ref25
  doi: 10.1007/978-3-319-46448-0_38
– ident: ref35
  doi: 10.1109/CVPR.2014.349
– ident: ref41
  doi: 10.1016/j.ejmp.2012.01.003
– ident: ref7
  doi: 10.1109/TIT.2005.862083
– start-page: 4340
  year: 2016
  ident: ref33
  article-title: Maximal sparsity with deep networks?
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref30
  doi: 10.1007/978-3-319-46487-9_17
– ident: ref50
  doi: 10.1088/0266-5611/23/3/007
– ident: ref24
  doi: 10.1109/ICCV.2015.73
– ident: ref10
  doi: 10.1002/mrm.21757
– year: 2016
  ident: ref47
  publication-title: Deep residual learning for compressed sensing ct reconstruction via persistent homology analysis
– ident: ref63
  doi: 10.1109/TIP.2017.2662206
– year: 1999
  ident: ref52
  publication-title: A Wavelet Tour of Signal Processing
– volume: 20
  start-page: 89
  year: 2004
  ident: ref2
  article-title: An algorithm for total variation minimization and applications
  publication-title: J Math Imag Vis
  doi: 10.1023/B:JMIV.0000011321.19549.88
– ident: ref3
  doi: 10.1109/83.862633
– ident: ref44
  doi: 10.1109/TIP.2013.2283142
– ident: ref42
  doi: 10.1109/TMI.2014.2328660
– start-page: 399
  year: 2010
  ident: ref31
  article-title: Learning fast approximations of sparse coding
  publication-title: Proc 27th Int Conf Mach Learn (ICML)
– ident: ref37
  doi: 10.1109/LSP.2016.2548245
– ident: ref6
  doi: 10.1145/344779.344972
– ident: ref46
  doi: 10.1364/BOE.8.000679
– ident: ref58
  doi: 10.1007/978-3-319-11179-7_36
– ident: ref38
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: ref62
  doi: 10.1109/TIT.2016.2590421
– volume: 28
  start-page: 1310
  year: 2013
  ident: ref61
  article-title: On the difficulty of training recurrent neural networks
  publication-title: Proc ICML
– ident: ref29
  doi: 10.1109/CVPR.2016.182
– ident: ref21
  doi: 10.1109/CVPR.2012.6247952
– start-page: 1790
  year: 2014
  ident: ref23
  article-title: Deep convolutional neural network for image deconvolution
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref13
  doi: 10.1109/TCI.2015.2479555
– ident: ref60
  doi: 10.1145/2733373.2807412
– ident: ref19
  doi: 10.1109/CVPR.2015.7298965
– volume: 58
  start-page: 267
  year: 1996
  ident: ref49
  article-title: Regression shrinkage and selection via the LASSO
  publication-title: J Roy Statist Soc Series B (Methodol )
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref56
  doi: 10.1109/TIP.2010.2047910
– ident: ref54
  doi: 10.1561/2200000016
– ident: ref45
  doi: 10.1109/TMI.2015.2401131
– ident: ref18
  doi: 10.1109/CVPR.2014.81
– ident: ref8
  doi: 10.1137/080725891
– ident: ref48
  doi: 10.1109/TMI.2002.1000260
– ident: ref51
  doi: 10.1109/TIP.2006.877507
– ident: ref12
  doi: 10.1088/0031-9155/53/17/021
– ident: ref57
  doi: 10.1007/978-3-319-10590-1_53
– year: 1995
  ident: ref53
  publication-title: Translation-Invariant de-Noising
– ident: ref14
  doi: 10.1364/OE.24.014564
– ident: ref27
  doi: 10.1109/TMI.2016.2551324
– ident: ref1
  doi: 10.1016/0167-2789(92)90242-F
– start-page: 1033
  year: 2009
  ident: ref5
  article-title: Fast image deconvolution using hyper-Laplacian priors
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref26
  doi: 10.1109/CVPR.2016.55
– ident: ref17
  doi: 10.1007/s11263-015-0816-y
– volume: 31
  start-page: 1682
  year: 2012
  ident: ref43
  article-title: Low-dose X-ray CT reconstruction via dictionary learning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2012.2195669
– ident: ref36
  doi: 10.1002/cpa.20042
– start-page: 1097
  year: 2012
  ident: ref16
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 234
  year: 2015
  ident: ref20
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref39
  doi: 10.1109/CVPR.2016.90
– ident: ref32
  doi: 10.1109/CVPR.2015.7299163
– year: 2013
  ident: ref65
  article-title: Creation of fully sampled mr data repository for compressed sensing of the knee
  publication-title: Proc SMRT Conf
– start-page: 341
  year: 2012
  ident: ref22
  article-title: Image denoising and inpainting with deep neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1109/83.661187
– ident: ref28
  doi: 10.1109/TPAMI.2015.2439281
SSID ssj0014516
Score 2.7120125
Snippet In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4509
SubjectTerms biomedical imaging
biomedical signal processing
Computed tomography
Convolution
Image reconstruction
Image restoration
Inverse problems
Iterative methods
magnetic resonance imaging
Neural networks
reconstruction algorithms
tomography
Title Deep Convolutional Neural Network for Inverse Problems in Imaging
URI https://ieeexplore.ieee.org/document/7949028
https://www.ncbi.nlm.nih.gov/pubmed/28641250
https://www.proquest.com/docview/1913398440
Volume 26
WOSCitedRecordID wos000405701500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS-QwFH6oeNCDrr9n3ZUIXgTrtEnaJEeZ3WG9yBwU5laa5AUE7ch0xr9_k7RTFFTw1B6S9JH3Qr70vXwfwAX3ICDT1CapKaqES54nFWU8cc73cFamltooNiHu7uR0qiZrcNXfhUHEWHyG1-E15vLtzCzDr7Khj51ANrIO60KI9q5WnzEIgrMxs5mLRHjYv0pJpmp4fzsJNVzimvoTmUdEgQBYFtxv7em73SjKq3yONOOOM979nq0_YKdDluSmDYU9WMN6H3Y7lEm6Ndzsw_YbCsIDuPmD-EJGs_q1i0E_RCDsiI9YIU48rCWBjmPeIJm0-jMNeazJ7XNUODqEh_Hf-9G_pJNVSAwrskWinZGmcEZXhUYdCOUVk45qDx4UUxnVqKSmxqQZorBKVxm6TBmdicAFxwQ7go16VuMJEIbGZblRzjLOKTWqyKvUKsktywWadADD1fSWpuMcD9IXT2U8e6Sq9L4pg2_KzjcDuOx7vLR8G1-0PQjz3rfrpnwA5ysPln6thARIVeNs2ZTefsa8ddwbdty6tu-8ioifHw96Clvh02112S_YWMyX-Bs2zevisZmf-YCcyrMYkP8Bm8rZuA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC58gbuH1VXXHV01ghfBdjqPfuQoruKgDnOYBW9NJ6mAoD0yPePvN0n3NCvsCp46hyQUqQr50lX5PoAT4UAAVcxEsU7LSOQiiUrGRWStG2FNHhtmgthENhzmDw9ytARn3VsYRAzFZ3jumyGXbyZ67n-V9V3seLKRZVhNhGC0ea3V5Qy85GzIbSZZlDngv0hKxrI_Hox8FVd2ztydzGEiTwGcp8Id7vG78ygIrPwfa4Yz53rjc9ZuwrcWW5KLJhi-wxJWW7DR4kzS7uJ6C77-RUK4DRe_EV_I5aR6baPQTeEpO8In1IgTB2yJJ-SY1khGjQJNTR4rMngOGkc78Of6anx5E7XCCpHmKZ1Fyupcp1arMlWoPKW85LllysEHySVlCmWumNYxRcyMVCVFS6VWNPNscDzjP2ClmlT4EwhHbWmipTXcuYRpmSZlbGQuDE8y1HEP-ovlLXTLOu7FL56KcPuIZeF8U3jfFK1venDajXhpGDc-6Lvt173r1y55D44XHizcbvEpkLLCybwunP2cO-uEM2y3cW03eBERe_-e9AjWb8b3d8XdYHi7D1-8GU2t2S9YmU3neABr-nX2WE8PQ1i-AfZq3Bc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Neural+Network+for+Inverse+Problems+in+Imaging&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Jin%2C+Kyong+Hwan&rft.au=McCann%2C+Michael+T.&rft.au=Froustey%2C+Emmanuel&rft.au=Unser%2C+Michael&rft.date=2017-09-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=26&rft.issue=9&rft.spage=4509&rft.epage=4522&rft_id=info:doi/10.1109%2FTIP.2017.2713099&rft_id=info%3Apmid%2F28641250&rft.externalDocID=7949028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon