Deep Convolutional Neural Network for Inverse Problems in Imaging
In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but...
Saved in:
| Published in: | IEEE transactions on image processing Vol. 26; no. 9; pp. 4509 - 4522 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.09.2017
|
| Subjects: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise nonlinearity) when the normal operator (H*H, where H* is the adjoint of the forward imaging operator, H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 × 512 image on the GPU. |
|---|---|
| AbstractList | In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise nonlinearity) when the normal operator (H*H, where H* is the adjoint of the forward imaging operator, H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 × 512 image on the GPU. In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise nonlinearity) when the normal operator (H*H, where H* is the adjoint of the forward imaging operator, H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 × 512 image on the GPU.In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise nonlinearity) when the normal operator (H*H, where H* is the adjoint of the forward imaging operator, H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 × 512 image on the GPU. |
| Author | Jin, Kyong Hwan Froustey, Emmanuel Unser, Michael McCann, Michael T. |
| Author_xml | – sequence: 1 givenname: Kyong Hwan orcidid: 0000-0001-7885-4792 surname: Jin fullname: Jin, Kyong Hwan email: kyonghwan.jin@gmail.com organization: Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 2 givenname: Michael T. orcidid: 0000-0001-7645-252X surname: McCann fullname: McCann, Michael T. email: michael.mccann@epfl.ch organization: Center for Biomedical Imaging, Signal Processing Core and the Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 3 givenname: Emmanuel surname: Froustey fullname: Froustey, Emmanuel organization: Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 4 givenname: Michael surname: Unser fullname: Unser, Michael email: michael.unser@epfl.ch organization: Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28641250$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kD1PwzAQhi0E4qOwIyGhjCwpPtuN4xGVr0gVdIA5ss2lMiRxsZMi_j0pLQwMTO8Nz3une47IbutbJOQU6BiAqsunYj5mFOSYSeBUqR1yCEpASqlgu8NMJzKVINQBOYrxlVIQE8j2yQHLMwFsQg_J1TXiMpn6duXrvnO-1XXygH34ju7Dh7ek8iEp2hWGiMk8eFNjExPXJkWjF65dHJO9StcRT7Y5Is-3N0_T-3T2eFdMr2ap5Rl0qalsbrPKGp0ZNDmXueJ5xQyVE8UVMIMqN8xaCojyRRkNWIGyBiQoEFzyEbnY7F0G_95j7MrGRYt1rVv0fSwHjHOVC0EH9HyL9qbBl3IZXKPDZ_nz9gDQDWCDjzFg9YsALddmy8FsuTZbbs0OlexPxbpOr411Qbv6v-LZpugQ8feOVEJRlvMvu-qEgQ |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1002_mp_15183 crossref_primary_10_1016_j_ndteint_2020_102344 crossref_primary_10_1109_TMI_2020_3000341 crossref_primary_10_1016_j_ndteint_2020_102347 crossref_primary_10_1016_j_ins_2020_11_002 crossref_primary_10_1055_a_1248_2556 crossref_primary_10_1007_s11432_020_3077_5 crossref_primary_10_1016_j_asoc_2024_112457 crossref_primary_10_1109_TRPMS_2024_3420742 crossref_primary_10_1016_j_mri_2025_110334 crossref_primary_10_1109_TAP_2022_3177533 crossref_primary_10_3390_app15137198 crossref_primary_10_1088_2399_6528_ac26aa crossref_primary_10_1016_j_compbiomed_2023_107161 crossref_primary_10_1109_TIM_2020_3047922 crossref_primary_10_1109_JBHI_2020_2999731 crossref_primary_10_1002_mp_15176 crossref_primary_10_1364_PRJ_415960 crossref_primary_10_1016_j_compbiomed_2025_109900 crossref_primary_10_1039_D1NR03932F crossref_primary_10_1109_TMM_2020_2985541 crossref_primary_10_1002_jbio_202300127 crossref_primary_10_1088_1361_6560_ac6560 crossref_primary_10_1109_TUFFC_2020_2977202 crossref_primary_10_3390_s19112597 crossref_primary_10_1016_j_bspc_2023_105746 crossref_primary_10_1137_22M1506547 crossref_primary_10_1007_s13139_017_0504_7 crossref_primary_10_1007_s10444_024_10106_x crossref_primary_10_1109_TGRS_2024_3365818 crossref_primary_10_1080_1206212X_2024_2420870 crossref_primary_10_1109_ACCESS_2020_2975572 crossref_primary_10_1007_s42979_023_02059_7 crossref_primary_10_1137_22M148793X crossref_primary_10_1049_rsn2_12176 crossref_primary_10_1016_j_mri_2023_02_004 crossref_primary_10_1016_j_compmedimag_2025_102530 crossref_primary_10_1109_ACCESS_2021_3137656 crossref_primary_10_1002_mrm_29057 crossref_primary_10_1016_j_engfracmech_2025_111036 crossref_primary_10_1109_TMI_2024_3475516 crossref_primary_10_1016_j_compmedimag_2024_102491 crossref_primary_10_1109_JIOT_2024_3516696 crossref_primary_10_1109_TPAMI_2022_3148324 crossref_primary_10_1109_TCI_2020_2996751 crossref_primary_10_1088_1361_6560_adf939 crossref_primary_10_1109_OJSP_2025_3593189 crossref_primary_10_1109_TCI_2025_3594983 crossref_primary_10_3390_app10228089 crossref_primary_10_1109_TAP_2022_3177556 crossref_primary_10_3390_s23094485 crossref_primary_10_1109_TMI_2022_3214475 crossref_primary_10_1371_journal_pone_0224426 crossref_primary_10_1016_j_joen_2020_12_020 crossref_primary_10_1080_17415977_2018_1490279 crossref_primary_10_3390_s24144496 crossref_primary_10_1109_TCI_2024_3369394 crossref_primary_10_1177_08953996251322078 crossref_primary_10_1002_mrm_29047 crossref_primary_10_1109_TMI_2024_3413085 crossref_primary_10_1109_TMI_2019_2922026 crossref_primary_10_1109_TNNLS_2020_3037923 crossref_primary_10_3390_en11082149 crossref_primary_10_1016_j_cmpb_2022_107199 crossref_primary_10_1002_ima_22625 crossref_primary_10_1109_TGRS_2020_3047112 crossref_primary_10_1109_TRPMS_2020_2996566 crossref_primary_10_1016_j_media_2025_103579 crossref_primary_10_1109_TIP_2021_3099956 crossref_primary_10_1137_23M1616716 crossref_primary_10_3748_wjg_v29_i9_1427 crossref_primary_10_1016_j_patcog_2025_111786 crossref_primary_10_1038_s41377_020_0267_2 crossref_primary_10_32604_cmc_2022_030420 crossref_primary_10_1088_1742_6596_2651_1_012058 crossref_primary_10_1016_j_neunet_2020_07_025 crossref_primary_10_1016_j_neuroimage_2020_116579 crossref_primary_10_1109_TGRS_2019_2934154 crossref_primary_10_1109_JBHI_2022_3193299 crossref_primary_10_3390_sym15010119 crossref_primary_10_1109_TCI_2021_3085534 crossref_primary_10_3390_electronics7110302 crossref_primary_10_1088_1361_6560_ad31c7 crossref_primary_10_1007_s11760_023_02853_z crossref_primary_10_1007_s00779_019_01271_8 crossref_primary_10_1109_JSEN_2023_3293205 crossref_primary_10_1016_j_ijleo_2021_168043 crossref_primary_10_1038_s41377_022_00768_x crossref_primary_10_1088_2057_1976_ac87b4 crossref_primary_10_1016_j_displa_2022_102166 crossref_primary_10_1016_j_neucom_2021_12_096 crossref_primary_10_1137_18M1174027 crossref_primary_10_3233_JIFS_189013 crossref_primary_10_1016_j_nucengdes_2025_113975 crossref_primary_10_1109_TCI_2024_3463485 crossref_primary_10_1016_j_jvcir_2019_102654 crossref_primary_10_1109_TMI_2019_2896085 crossref_primary_10_1016_j_optlastec_2025_113916 crossref_primary_10_1088_1361_6501_ac4a19 crossref_primary_10_1364_AO_377810 crossref_primary_10_1109_LGRS_2020_2967456 crossref_primary_10_1063_5_0226457 crossref_primary_10_1007_s13244_018_0639_9 crossref_primary_10_3390_s20061608 crossref_primary_10_1088_1361_6560_ac0afd crossref_primary_10_1088_1361_6560_ad00fb crossref_primary_10_1186_s13663_021_00706_3 crossref_primary_10_3390_app12178841 crossref_primary_10_1051_0004_6361_201937039 crossref_primary_10_1016_j_ejmp_2020_11_021 crossref_primary_10_3390_s23021023 crossref_primary_10_1007_s11517_019_01965_4 crossref_primary_10_7717_peerj_cs_1849 crossref_primary_10_3390_rs15133284 crossref_primary_10_1088_1742_6596_2651_1_012028 crossref_primary_10_1016_j_jappgeo_2021_104507 crossref_primary_10_1007_s10278_025_01639_8 crossref_primary_10_1002_acm2_13121 crossref_primary_10_1038_s42005_025_02249_0 crossref_primary_10_1088_1361_6420_ad2b99 crossref_primary_10_1109_TIM_2024_3366281 crossref_primary_10_1109_TIP_2023_3274967 crossref_primary_10_1109_TMI_2021_3077857 crossref_primary_10_1109_TCI_2024_3394770 crossref_primary_10_1145_3643509 crossref_primary_10_1007_s00034_024_02875_z crossref_primary_10_1109_TCI_2025_3540706 crossref_primary_10_1016_j_radmeas_2024_107167 crossref_primary_10_1016_j_ejmp_2020_11_012 crossref_primary_10_1088_1674_1056_ad62e1 crossref_primary_10_1016_j_neucom_2020_09_086 crossref_primary_10_1364_AO_58_003748 crossref_primary_10_1109_JSTSP_2022_3172592 crossref_primary_10_1109_TGRS_2023_3337893 crossref_primary_10_1109_TGRS_2023_3337413 crossref_primary_10_1038_lsa_2017_141 crossref_primary_10_1109_TSP_2023_3282062 crossref_primary_10_1007_s00034_024_02631_3 crossref_primary_10_1016_j_cma_2024_117109 crossref_primary_10_1016_j_compmedimag_2025_102508 crossref_primary_10_1103_PhysRevX_10_031029 crossref_primary_10_1088_1361_6420_ad0660 crossref_primary_10_1109_TAP_2024_3369683 crossref_primary_10_1109_TCI_2024_3380319 crossref_primary_10_1121_10_0021171 crossref_primary_10_1002_mp_15101 crossref_primary_10_1117_1_APN_1_1_014001 crossref_primary_10_1002_mrm_28344 crossref_primary_10_1109_TGRS_2020_2984951 crossref_primary_10_1109_TCAD_2020_3046572 crossref_primary_10_1177_08953996251339368 crossref_primary_10_1016_j_bspc_2023_104821 crossref_primary_10_1073_pnas_1821378116 crossref_primary_10_1109_TGRS_2025_3556448 crossref_primary_10_3390_en12163043 crossref_primary_10_1016_j_neunet_2025_107740 crossref_primary_10_1080_15376494_2019_1681037 crossref_primary_10_1109_TAP_2022_3225532 crossref_primary_10_1109_TGRS_2018_2865197 crossref_primary_10_1109_TMI_2023_3332614 crossref_primary_10_1108_COMPEL_10_2021_0383 crossref_primary_10_1016_j_patcog_2025_111734 crossref_primary_10_1177_1748302620973528 crossref_primary_10_1016_j_ndteint_2022_102755 crossref_primary_10_1016_j_patcog_2024_111233 crossref_primary_10_1109_TMI_2019_2927101 crossref_primary_10_1145_3453657 crossref_primary_10_1080_10589759_2024_2305329 crossref_primary_10_1109_TMI_2018_2820120 crossref_primary_10_1002_mrm_27480 crossref_primary_10_1063_5_0265254 crossref_primary_10_1002_mp_15577 crossref_primary_10_1088_1361_6420_acce5e crossref_primary_10_1109_TIM_2019_2925881 crossref_primary_10_1002_mp_14006 crossref_primary_10_1002_mrm_28338 crossref_primary_10_1088_2632_2153_ad370e crossref_primary_10_1109_TIM_2021_3092061 crossref_primary_10_1109_TCI_2021_3049648 crossref_primary_10_1109_TIP_2019_2893530 crossref_primary_10_1109_TAP_2024_3387689 crossref_primary_10_1177_0142331219845037 crossref_primary_10_1016_j_apenergy_2019_113596 crossref_primary_10_1186_s41747_024_00450_4 crossref_primary_10_1109_TMI_2024_3473970 crossref_primary_10_1088_1742_6596_1769_1_012015 crossref_primary_10_1137_19M1283914 crossref_primary_10_1038_s41377_022_00844_2 crossref_primary_10_1039_D1NR03232A crossref_primary_10_1109_TIM_2022_3209751 crossref_primary_10_1098_rsta_2020_0203 crossref_primary_10_1148_ryai_210114 crossref_primary_10_1007_s11701_020_01149_5 crossref_primary_10_3390_jimaging9010001 crossref_primary_10_1109_TMI_2018_2887072 crossref_primary_10_1109_TIM_2022_3147877 crossref_primary_10_1016_j_compmedimag_2021_101968 crossref_primary_10_1109_JSTSP_2020_2998402 crossref_primary_10_3390_app10051680 crossref_primary_10_1007_s00381_025_06862_w crossref_primary_10_1016_j_measurement_2021_109437 crossref_primary_10_1088_1361_6560_ab831a crossref_primary_10_1109_ACCESS_2020_2991183 crossref_primary_10_1109_TBME_2019_2891676 crossref_primary_10_1088_1361_6560_ac195c crossref_primary_10_1016_j_optcom_2017_12_041 crossref_primary_10_1109_TIP_2018_2884076 crossref_primary_10_1016_j_ejmp_2022_07_001 crossref_primary_10_1029_2020JB020549 crossref_primary_10_1109_TGRS_2021_3051303 crossref_primary_10_1109_TGRS_2021_3110606 crossref_primary_10_1007_s11220_025_00584_8 crossref_primary_10_1109_TNNLS_2023_3323131 crossref_primary_10_1109_TIP_2024_3351382 crossref_primary_10_3390_s21051873 crossref_primary_10_1016_j_bspc_2024_107182 crossref_primary_10_1109_TCI_2023_3328278 crossref_primary_10_1109_TRPMS_2020_2989634 crossref_primary_10_1007_s40747_021_00426_6 crossref_primary_10_1016_j_compstruc_2019_106171 crossref_primary_10_1016_j_bspc_2023_104632 crossref_primary_10_1038_s41598_020_69187_5 crossref_primary_10_1109_ACCESS_2024_3448612 crossref_primary_10_1155_2022_9565062 crossref_primary_10_1109_TBME_2018_2821699 crossref_primary_10_1088_1361_6560_ad4845 crossref_primary_10_3389_fnins_2022_837721 crossref_primary_10_1109_TAP_2022_3196496 crossref_primary_10_1109_TMI_2024_3376414 crossref_primary_10_3934_ipi_2025031 crossref_primary_10_3390_s19184050 crossref_primary_10_1016_j_jsv_2022_117418 crossref_primary_10_1364_AO_405120 crossref_primary_10_1364_AO_404276 crossref_primary_10_1016_j_bspc_2024_107195 crossref_primary_10_1016_j_jcp_2021_110194 crossref_primary_10_1109_TPAMI_2020_3012955 crossref_primary_10_1109_ACCESS_2020_3004174 crossref_primary_10_1016_j_compbiomed_2023_107819 crossref_primary_10_1016_j_knosys_2022_109295 crossref_primary_10_1364_AO_544395 crossref_primary_10_1109_TCI_2020_2996385 crossref_primary_10_1109_TMI_2021_3066318 crossref_primary_10_1002_mp_17946 crossref_primary_10_1007_s11227_021_04298_y crossref_primary_10_1016_j_sigpro_2019_107444 crossref_primary_10_1109_TCI_2024_3377101 crossref_primary_10_1016_j_neuroimage_2020_117012 crossref_primary_10_1109_TMI_2020_3046700 crossref_primary_10_1109_TMTT_2022_3228945 crossref_primary_10_1109_LMWC_2020_2986156 crossref_primary_10_1177_1475921720942958 crossref_primary_10_1109_ACCESS_2024_3417928 crossref_primary_10_1177_08953996241308759 crossref_primary_10_1137_23M1545628 crossref_primary_10_1007_s00779_020_01419_x crossref_primary_10_1109_TMI_2025_3541491 crossref_primary_10_1038_s41377_024_01453_x crossref_primary_10_1016_j_cmpb_2022_107168 crossref_primary_10_1002_jmri_28944 crossref_primary_10_1088_1361_6501_addc06 crossref_primary_10_3390_math10224210 crossref_primary_10_1002_mrm_28164 crossref_primary_10_1016_j_cmpb_2022_107167 crossref_primary_10_1016_j_optlaseng_2022_107410 crossref_primary_10_1016_j_cmpb_2023_107440 crossref_primary_10_3390_photonics9030186 crossref_primary_10_1137_20M1338460 crossref_primary_10_1109_TCSVT_2019_2959815 crossref_primary_10_1177_08953996241308760 crossref_primary_10_1109_TCI_2023_3273423 crossref_primary_10_1007_s10278_022_00685_w crossref_primary_10_1016_j_eswa_2023_120001 crossref_primary_10_1038_s41524_025_01724_0 crossref_primary_10_1007_s10462_020_09861_2 crossref_primary_10_1109_TIM_2022_3166177 crossref_primary_10_1109_TIP_2021_3090531 crossref_primary_10_3390_a17020071 crossref_primary_10_1016_j_jmr_2019_07_020 crossref_primary_10_1109_TMI_2018_2820382 crossref_primary_10_1371_journal_pone_0278668 crossref_primary_10_1002_mp_16645 crossref_primary_10_1016_j_patcog_2025_111956 crossref_primary_10_1109_TIP_2021_3125489 crossref_primary_10_1002_mp_16405 crossref_primary_10_1029_2023WR036514 crossref_primary_10_1016_j_compbiomed_2022_106204 crossref_primary_10_1109_TGRS_2021_3093100 crossref_primary_10_1016_j_sigpro_2024_109883 crossref_primary_10_1109_ACCESS_2020_2994252 crossref_primary_10_1109_TMI_2021_3088344 crossref_primary_10_1109_TRPMS_2024_3471677 crossref_primary_10_1016_j_compbiomed_2023_107830 crossref_primary_10_3390_math12010078 crossref_primary_10_1038_s41377_019_0209_z crossref_primary_10_1007_s13369_020_04758_2 crossref_primary_10_1007_s12530_023_09510_3 crossref_primary_10_3348_jksr_2022_0156 crossref_primary_10_1016_j_knosys_2024_111866 crossref_primary_10_1002_mp_16830 crossref_primary_10_1016_j_neuroimage_2019_03_060 crossref_primary_10_1109_ACCESS_2022_3177277 crossref_primary_10_1002_mp_15502 crossref_primary_10_1080_01431161_2021_1995074 crossref_primary_10_1016_j_optlastec_2025_113055 crossref_primary_10_1073_pnas_1916634117 crossref_primary_10_1016_j_procs_2019_12_113 crossref_primary_10_1109_TMI_2018_2823338 crossref_primary_10_1007_s00530_021_00835_0 crossref_primary_10_1007_s11548_021_02482_2 crossref_primary_10_1088_1361_6420_ab32f7 crossref_primary_10_1088_2516_1091_acd973 crossref_primary_10_1515_jiip_2020_0056 crossref_primary_10_1088_1361_6560_ad3797 crossref_primary_10_1109_ACCESS_2024_3357355 crossref_primary_10_1088_1361_6560_ab4aa9 crossref_primary_10_1007_s00330_020_07006_1 crossref_primary_10_1007_s11001_020_09409_7 crossref_primary_10_1016_j_optlastec_2023_109349 crossref_primary_10_1109_TCI_2021_3114542 crossref_primary_10_1016_j_radi_2024_10_009 crossref_primary_10_1038_s41598_023_43698_3 crossref_primary_10_3390_s19235302 crossref_primary_10_1007_s00340_022_07764_4 crossref_primary_10_1109_TSP_2021_3125601 crossref_primary_10_1088_1674_1056_ac0dab crossref_primary_10_1109_TRPMS_2023_3316349 crossref_primary_10_1615_JMachLearnModelComput_2025056536 crossref_primary_10_1016_j_enganabound_2023_06_005 crossref_primary_10_1088_1361_6560_ad9dac crossref_primary_10_1016_j_compscitech_2021_108875 crossref_primary_10_1109_TCI_2021_3132190 crossref_primary_10_1109_TCI_2023_3346294 crossref_primary_10_1109_TMI_2021_3054167 crossref_primary_10_3390_app9173617 crossref_primary_10_1002_mp_13583 crossref_primary_10_1109_MSP_2023_3242833 crossref_primary_10_1109_TGRS_2018_2859203 crossref_primary_10_3390_tomography11030023 crossref_primary_10_1016_j_optlaseng_2024_108469 crossref_primary_10_1137_23M1571150 crossref_primary_10_3390_math11153336 crossref_primary_10_1109_TCI_2020_3039385 crossref_primary_10_1002_hyp_70118 crossref_primary_10_1098_rsos_231374 crossref_primary_10_1016_j_petrol_2020_107271 crossref_primary_10_1088_1742_6596_2650_1_012024 crossref_primary_10_1109_TMI_2019_2930318 crossref_primary_10_1109_TMTT_2022_3205650 crossref_primary_10_1364_OE_561684 crossref_primary_10_1016_j_optcom_2021_126813 crossref_primary_10_1016_j_addma_2020_101183 crossref_primary_10_1186_s43593_022_00013_3 crossref_primary_10_1016_j_nimb_2025_165804 crossref_primary_10_1109_JSTARS_2021_3111404 crossref_primary_10_1109_TAP_2022_3216999 crossref_primary_10_1109_TCI_2020_2964202 crossref_primary_10_1109_TRPMS_2024_3512172 crossref_primary_10_1088_2632_2153_abde8e crossref_primary_10_1002_mp_17933 crossref_primary_10_1137_24M1654051 crossref_primary_10_7717_peerj_cs_934 crossref_primary_10_1063_5_0281578 crossref_primary_10_1109_TRPMS_2023_3281148 crossref_primary_10_1109_JSTARS_2020_3014696 crossref_primary_10_1007_s00432_018_02834_7 crossref_primary_10_1109_LAWP_2023_3299224 crossref_primary_10_3390_app14083397 crossref_primary_10_1109_LSP_2019_2926828 crossref_primary_10_1109_TPAMI_2021_3070382 crossref_primary_10_1109_JERM_2021_3127110 crossref_primary_10_1007_s13755_022_00204_9 crossref_primary_10_1109_JSEN_2020_3021280 crossref_primary_10_1038_s41551_024_01283_7 crossref_primary_10_1109_TMI_2019_2948909 crossref_primary_10_1038_s41598_020_62484_z crossref_primary_10_1002_mrm_29759 crossref_primary_10_1063_5_0073209 crossref_primary_10_1109_TPS_2020_2990459 crossref_primary_10_1109_JSTSP_2020_2999820 crossref_primary_10_1134_S1061830922060067 crossref_primary_10_1016_j_matpr_2021_12_345 crossref_primary_10_1109_TIM_2023_3346510 crossref_primary_10_1038_s42256_020_00273_z crossref_primary_10_1109_TMI_2019_2910760 crossref_primary_10_1038_s41598_023_37523_0 crossref_primary_10_1109_TNNLS_2018_2890018 crossref_primary_10_1088_1361_6420_ab10ca crossref_primary_10_1029_2020RS007248 crossref_primary_10_1016_j_jhydrol_2022_127762 crossref_primary_10_1080_01431161_2020_1799449 crossref_primary_10_1007_s11340_024_01081_x crossref_primary_10_1002_mp_13753 crossref_primary_10_1007_s11071_019_05318_6 crossref_primary_10_1002_mp_13986 crossref_primary_10_1088_1361_6501_ac9c21 crossref_primary_10_1364_AO_506951 crossref_primary_10_1109_JPROC_2019_2936204 crossref_primary_10_1109_TCI_2020_3012928 crossref_primary_10_1109_JBHI_2019_2912935 crossref_primary_10_1016_j_bspc_2024_106593 crossref_primary_10_1088_1748_3190_aca7a8 crossref_primary_10_1109_TMI_2019_2963248 crossref_primary_10_1016_j_neucom_2025_130481 crossref_primary_10_1109_ACCESS_2021_3087424 crossref_primary_10_1109_ACCESS_2020_3031286 crossref_primary_10_32604_cmc_2024_051147 crossref_primary_10_1007_s13748_020_00224_0 crossref_primary_10_1088_1361_6560_ac7bce crossref_primary_10_1109_JIOT_2020_3012452 crossref_primary_10_1177_08953996251329214 crossref_primary_10_1088_1361_6560_ab9066 crossref_primary_10_1016_j_bspc_2024_106119 crossref_primary_10_1109_ACCESS_2019_2917723 crossref_primary_10_1109_TMI_2019_2927199 crossref_primary_10_3390_s23083832 crossref_primary_10_1364_PRJ_415590 crossref_primary_10_1016_j_compmedimag_2021_101920 crossref_primary_10_1088_1361_6560_ad29ba crossref_primary_10_1109_TWC_2021_3054977 crossref_primary_10_1002_mp_16807 crossref_primary_10_1109_TMI_2024_3355455 crossref_primary_10_1002_nbm_4239 crossref_primary_10_1007_s10589_022_00392_w crossref_primary_10_3390_photonics10010025 crossref_primary_10_1088_1361_6560_adaf06 crossref_primary_10_3934_ammc_2023006 crossref_primary_10_1016_j_cma_2024_116820 crossref_primary_10_1109_TCI_2025_3562059 crossref_primary_10_3934_ammc_2023008 crossref_primary_10_1002_nbm_4225 crossref_primary_10_3390_bioengineering6040111 crossref_primary_10_1109_LAWP_2024_3372437 crossref_primary_10_1109_TMI_2021_3090257 crossref_primary_10_1002_nbm_4461 crossref_primary_10_1137_17M1141771 crossref_primary_10_1186_s12911_023_02114_6 crossref_primary_10_1002_mrm_27106 crossref_primary_10_1109_TIP_2024_3372469 crossref_primary_10_3390_electronics10182206 crossref_primary_10_1109_ACCESS_2021_3076763 crossref_primary_10_1016_j_neucom_2025_131317 crossref_primary_10_1038_s41377_023_01337_6 crossref_primary_10_1109_LSP_2024_3438118 crossref_primary_10_1109_TMM_2021_3076298 crossref_primary_10_3390_app9122445 crossref_primary_10_23919_JSEE_2023_000109 crossref_primary_10_1016_j_imu_2021_100727 crossref_primary_10_1049_mia2_12273 crossref_primary_10_1002_mp_13713 crossref_primary_10_1088_1361_6560_aba939 crossref_primary_10_1109_TCI_2025_3572699 crossref_primary_10_1145_3514228 crossref_primary_10_1002_mp_14809 crossref_primary_10_1016_j_media_2021_102098 crossref_primary_10_1109_TAP_2025_3553972 crossref_primary_10_1109_ACCESS_2020_2978435 crossref_primary_10_1016_j_media_2017_07_006 crossref_primary_10_1016_j_ymeth_2021_05_005 crossref_primary_10_1097_RMR_0000000000000249 crossref_primary_10_1007_s11709_024_1078_y crossref_primary_10_1190_geo2019_0382_1 crossref_primary_10_1109_TMI_2017_2753138 crossref_primary_10_1088_1361_6560_aca517 crossref_primary_10_1088_1361_6560_ad5d47 crossref_primary_10_1103_kn3z_rmm8 crossref_primary_10_3934_ammc_2025001 crossref_primary_10_1088_1361_6560_aca513 crossref_primary_10_1109_TGRS_2023_3335128 crossref_primary_10_1016_j_cmpb_2024_108010 crossref_primary_10_1007_s11042_025_20956_2 crossref_primary_10_1007_s11227_022_04629_7 crossref_primary_10_1109_LAWP_2024_3424940 crossref_primary_10_1115_1_4066102 crossref_primary_10_1016_j_sigpro_2021_108239 crossref_primary_10_3390_s22114122 crossref_primary_10_1109_TRPMS_2018_2827239 crossref_primary_10_1109_JMMCT_2023_3304709 crossref_primary_10_1016_j_mri_2020_06_002 crossref_primary_10_1002_mp_13946 crossref_primary_10_1137_20M1343075 crossref_primary_10_3390_electronics12081815 crossref_primary_10_1088_1361_6560_abc09c crossref_primary_10_1109_TPAMI_2018_2889096 crossref_primary_10_1126_science_ade1220 crossref_primary_10_1002_aenm_202300103 crossref_primary_10_1007_s10278_025_01390_0 crossref_primary_10_3390_electronics10162029 crossref_primary_10_1049_iet_ipr_2018_6582 crossref_primary_10_1016_j_compbiomed_2025_109853 crossref_primary_10_1080_10589759_2024_2334431 crossref_primary_10_1109_TIP_2019_2902794 crossref_primary_10_1093_imamat_hxae005 crossref_primary_10_1109_JSTARS_2025_3569410 crossref_primary_10_1016_j_neucom_2018_01_015 crossref_primary_10_1109_JSTARS_2022_3140211 crossref_primary_10_1016_j_nucengdes_2025_114236 crossref_primary_10_1007_s00500_020_05013_4 crossref_primary_10_1080_09205071_2022_2113444 crossref_primary_10_1109_LMWT_2025_3575160 crossref_primary_10_1016_j_ipm_2022_102901 crossref_primary_10_1038_s41597_021_00893_z crossref_primary_10_1016_j_dsp_2023_104277 crossref_primary_10_3390_app112110180 crossref_primary_10_1016_j_dsp_2023_104274 crossref_primary_10_1007_s11042_023_14328_x crossref_primary_10_1109_TAP_2018_2885437 crossref_primary_10_1038_s42256_022_00530_3 crossref_primary_10_1007_s00261_025_05031_6 crossref_primary_10_1109_TCI_2023_3304475 crossref_primary_10_1007_s10554_024_03234_4 crossref_primary_10_1088_1361_6579_ab21b2 crossref_primary_10_1016_j_patcog_2024_110801 crossref_primary_10_1016_j_optcom_2020_126341 crossref_primary_10_1364_OE_557102 crossref_primary_10_1109_TCI_2019_2905434 crossref_primary_10_1038_s41598_019_45484_6 crossref_primary_10_1109_JPHOT_2022_3155250 crossref_primary_10_1016_j_media_2022_102387 crossref_primary_10_1002_mrm_27706 crossref_primary_10_1111_1754_9485_13276 crossref_primary_10_1109_TSP_2020_3014611 crossref_primary_10_1109_TMI_2022_3154011 crossref_primary_10_1364_AO_58_009230 crossref_primary_10_1088_1402_4896_ad852c crossref_primary_10_1038_nature25988 crossref_primary_10_1109_TSP_2023_3330267 crossref_primary_10_1109_TMI_2025_3568157 crossref_primary_10_3389_fnins_2022_919186 crossref_primary_10_1109_TUFFC_2024_3459391 crossref_primary_10_1007_s11263_023_01812_y crossref_primary_10_1109_ACCESS_2021_3072551 crossref_primary_10_1109_TII_2019_2960837 crossref_primary_10_1016_j_patcog_2022_108776 crossref_primary_10_1109_TCI_2022_3183405 crossref_primary_10_3938_jkps_75_73 crossref_primary_10_1109_TMI_2018_2799231 crossref_primary_10_1088_1361_6560_ab18db crossref_primary_10_1063_5_0215063 crossref_primary_10_3390_a16060270 crossref_primary_10_1109_TCI_2023_3248949 crossref_primary_10_1016_j_knosys_2020_106182 crossref_primary_10_1016_j_mri_2020_05_004 crossref_primary_10_1007_s00170_023_11466_2 crossref_primary_10_1016_j_sigpro_2022_108776 crossref_primary_10_1109_TIM_2022_3221136 crossref_primary_10_1109_ACCESS_2019_2961810 crossref_primary_10_1109_JSTQE_2018_2859234 crossref_primary_10_1007_s10483_022_2912_6 crossref_primary_10_1016_j_applthermaleng_2018_12_048 crossref_primary_10_1016_j_dsp_2020_102856 crossref_primary_10_1109_TGRS_2021_3100393 crossref_primary_10_1002_nbm_4405 crossref_primary_10_1016_j_media_2021_102061 crossref_primary_10_1109_JSTSP_2020_2982777 crossref_primary_10_1109_TNNLS_2023_3238511 crossref_primary_10_1016_j_media_2021_102065 crossref_primary_10_1002_mrm_27727 crossref_primary_10_1007_s12145_023_01018_3 crossref_primary_10_1109_TCI_2019_2937221 crossref_primary_10_1007_s12204_024_2701_8 crossref_primary_10_1016_j_neunet_2024_106740 crossref_primary_10_1109_TMI_2019_2936522 crossref_primary_10_1177_2515841419827172 crossref_primary_10_1109_JIOT_2023_3332867 crossref_primary_10_3390_jimaging6120135 crossref_primary_10_1109_TMI_2021_3095310 crossref_primary_10_1088_1361_6560_ad4a1b crossref_primary_10_1016_j_optcom_2024_130521 crossref_primary_10_1109_MSP_2020_3016905 crossref_primary_10_3389_frai_2023_1289669 crossref_primary_10_1109_TMI_2020_2998179 crossref_primary_10_1109_TAP_2023_3239185 crossref_primary_10_3390_electronics12234742 crossref_primary_10_1016_j_ssci_2019_05_039 crossref_primary_10_1109_ACCESS_2023_3276864 crossref_primary_10_1007_s11760_019_01559_5 crossref_primary_10_1117_1_JMI_10_6_066003 crossref_primary_10_3390_electronics10060752 crossref_primary_10_1016_j_ijsolstr_2024_112692 crossref_primary_10_1109_TMI_2025_3557243 crossref_primary_10_1016_j_neuroimage_2024_120921 crossref_primary_10_1109_TAP_2019_2948565 crossref_primary_10_1109_TUFFC_2020_2986166 crossref_primary_10_1109_TCI_2021_3096491 crossref_primary_10_1088_1361_6560_ac556e crossref_primary_10_1088_1361_6560_ac7999 crossref_primary_10_1109_TIM_2025_3529044 crossref_primary_10_1109_TMI_2024_3522242 crossref_primary_10_3390_jimaging6080080 crossref_primary_10_3390_aerospace8040112 crossref_primary_10_1038_s41598_025_02133_5 crossref_primary_10_1109_TCI_2025_3531729 crossref_primary_10_1002_gamm_202470004 crossref_primary_10_1016_j_apm_2024_02_026 crossref_primary_10_1016_j_jvcir_2022_103588 crossref_primary_10_1073_pnas_1907377117 crossref_primary_10_1007_s42967_023_00333_2 crossref_primary_10_1109_JSTSP_2021_3054506 crossref_primary_10_1109_TGRS_2020_3032743 crossref_primary_10_1016_j_media_2021_102289 crossref_primary_10_1016_j_neucom_2020_04_105 crossref_primary_10_1088_1361_6420_ad4f0b crossref_primary_10_1109_JSEN_2020_2973337 crossref_primary_10_1007_s12553_022_00688_1 crossref_primary_10_1107_S1600577520000831 crossref_primary_10_1177_15330338221085358 crossref_primary_10_1109_TMM_2019_2938340 crossref_primary_10_1109_TMI_2022_3180228 crossref_primary_10_3390_s20216353 crossref_primary_10_1109_TUFFC_2022_3221682 crossref_primary_10_1109_TPAMI_2018_2883941 crossref_primary_10_1109_TRPMS_2022_3217517 crossref_primary_10_3233_XST_230184 crossref_primary_10_1109_TGRS_2022_3214495 crossref_primary_10_1016_j_neunet_2021_08_026 crossref_primary_10_1088_1361_6560_ab990e crossref_primary_10_1109_TRPMS_2023_3309474 crossref_primary_10_3389_fnins_2023_1165446 crossref_primary_10_1002_wics_1646 crossref_primary_10_1016_j_optlaseng_2023_107873 crossref_primary_10_1107_S1600577523008032 crossref_primary_10_1109_LGRS_2025_3557521 crossref_primary_10_1109_TMI_2022_3148728 crossref_primary_10_1088_1361_6560_ad69f7 crossref_primary_10_1186_s13014_024_02532_4 crossref_primary_10_1016_j_compmedimag_2024_102345 crossref_primary_10_1016_j_eswa_2025_127703 crossref_primary_10_1016_j_optlastec_2024_112016 crossref_primary_10_1109_TCI_2020_2990299 crossref_primary_10_1109_TIM_2020_3029383 crossref_primary_10_1007_s11263_025_02426_2 crossref_primary_10_1073_pnas_2305890120 crossref_primary_10_1109_TIM_2025_3554318 crossref_primary_10_1109_TMI_2021_3065948 crossref_primary_10_1109_TMI_2021_3117246 crossref_primary_10_3390_jimaging8120312 crossref_primary_10_1109_TGRS_2020_2969040 crossref_primary_10_1016_j_mri_2025_110465 crossref_primary_10_3390_electronics12081777 crossref_primary_10_1016_j_cmpb_2022_107090 crossref_primary_10_3390_jimaging4110128 crossref_primary_10_1088_1361_6420_ad7d30 crossref_primary_10_1007_s10489_021_02604_y crossref_primary_10_1109_JSTSP_2020_3007326 crossref_primary_10_3390_s22207925 crossref_primary_10_1137_21M1455000 crossref_primary_10_1016_j_cam_2023_115557 crossref_primary_10_1109_TIM_2025_3568935 crossref_primary_10_3389_fonc_2020_01715 crossref_primary_10_1109_TAP_2019_2922779 crossref_primary_10_1109_ACCESS_2021_3079323 crossref_primary_10_1007_s11071_023_09127_w crossref_primary_10_1038_s41598_021_87482_7 crossref_primary_10_1007_s13369_022_07009_8 crossref_primary_10_1016_j_mattod_2024_08_016 crossref_primary_10_1002_mrm_29176 crossref_primary_10_1109_TMI_2023_3325824 crossref_primary_10_1007_s42979_023_02210_4 crossref_primary_10_1227_neu_0000000000003260 crossref_primary_10_1109_LGRS_2019_2943069 crossref_primary_10_1186_s12911_025_02989_7 crossref_primary_10_1109_ACCESS_2023_3260405 crossref_primary_10_1016_j_fuel_2020_119011 crossref_primary_10_1371_journal_pone_0226963 crossref_primary_10_1109_LAWP_2021_3100135 crossref_primary_10_1109_TRPMS_2025_3528953 crossref_primary_10_3390_s23094369 crossref_primary_10_3390_s23010061 crossref_primary_10_1109_ACCESS_2020_3002090 crossref_primary_10_3390_jimaging7080139 crossref_primary_10_1007_s10489_020_02061_z crossref_primary_10_1016_j_mri_2024_04_028 crossref_primary_10_1109_TMI_2024_3418652 crossref_primary_10_2528_PIER19080610 crossref_primary_10_1016_j_media_2024_103398 crossref_primary_10_1016_j_optlastec_2024_112271 crossref_primary_10_1109_LAWP_2022_3224983 crossref_primary_10_1038_s42256_020_0165_6 crossref_primary_10_1088_1361_6420_aaf14a crossref_primary_10_3390_math13172903 crossref_primary_10_1007_s10845_020_01715_6 crossref_primary_10_1109_TMI_2019_2934125 crossref_primary_10_1109_TMI_2024_3402079 crossref_primary_10_1126_science_aat8084 crossref_primary_10_1109_TIP_2019_2947790 crossref_primary_10_1109_ACCESS_2019_2918593 crossref_primary_10_1002_mp_14170 crossref_primary_10_1002_mp_16591 crossref_primary_10_1016_j_radmeas_2021_106565 crossref_primary_10_1017_S0962492919000059 crossref_primary_10_1049_iet_rsn_2019_0625 crossref_primary_10_1093_rasti_rzaf025 crossref_primary_10_1007_s12517_021_07577_3 crossref_primary_10_1109_TMI_2018_2832656 crossref_primary_10_1016_j_media_2021_102217 crossref_primary_10_1002_mp_17685 crossref_primary_10_1038_s41598_019_51779_5 crossref_primary_10_1053_j_ro_2023_02_003 crossref_primary_10_1002_adom_202200619 crossref_primary_10_1007_s10334_024_01173_8 crossref_primary_10_1007_s11831_022_09785_w crossref_primary_10_1038_s41377_023_01340_x crossref_primary_10_3103_S1060992X20010038 crossref_primary_10_3390_jmse12111913 crossref_primary_10_1109_JSTARS_2025_3576179 crossref_primary_10_1016_j_net_2025_103897 crossref_primary_10_1088_1361_6560_ac950c crossref_primary_10_1088_2057_1976_ac31cb crossref_primary_10_1002_mp_17431 crossref_primary_10_1109_LSENS_2023_3303046 crossref_primary_10_3233_JIFS_179575 crossref_primary_10_1109_TCI_2022_3158865 crossref_primary_10_3390_s20123494 crossref_primary_10_1002_adom_202300215 crossref_primary_10_1016_j_cmpb_2024_108575 crossref_primary_10_1016_j_optcom_2023_130156 crossref_primary_10_1016_j_irbm_2020_08_004 crossref_primary_10_1109_TMI_2021_3084288 crossref_primary_10_3390_rs15051394 crossref_primary_10_1088_1361_6560_acbe8e crossref_primary_10_1088_1748_0221_20_05_P05004 crossref_primary_10_1097_MD_0000000000019114 crossref_primary_10_1002_appl_202300016 crossref_primary_10_1109_TPAMI_2024_3359087 crossref_primary_10_1177_1475921719844039 crossref_primary_10_1371_journal_pone_0304738 crossref_primary_10_1109_TCI_2024_3507645 crossref_primary_10_1109_TRPMS_2018_2867611 crossref_primary_10_1016_j_future_2020_08_022 crossref_primary_10_1088_1361_6560_ac3eae crossref_primary_10_1364_AO_399715 crossref_primary_10_1016_j_cma_2020_113603 crossref_primary_10_1364_AO_443330 crossref_primary_10_1002_mp_16371 crossref_primary_10_1190_geo2021_0744_1 crossref_primary_10_1109_TCI_2024_3402335 crossref_primary_10_1109_JSEN_2024_3443468 crossref_primary_10_1109_TMI_2024_3418838 crossref_primary_10_1016_j_camwa_2023_11_038 crossref_primary_10_1109_TCI_2021_3098937 crossref_primary_10_1016_j_neucom_2021_09_035 crossref_primary_10_1109_TCI_2023_3306100 crossref_primary_10_1107_S1600577521011322 crossref_primary_10_1109_TCI_2022_3216207 crossref_primary_10_1016_j_nima_2024_169338 crossref_primary_10_1002_jbio_201900128 crossref_primary_10_1017_S1431927622007917 crossref_primary_10_1016_j_clinimag_2020_09_005 crossref_primary_10_1038_s41592_019_0458_z crossref_primary_10_1016_j_media_2023_102802 crossref_primary_10_3233_XST_200777 crossref_primary_10_1088_1361_6560_ab23a6 crossref_primary_10_1109_TRPMS_2022_3150322 crossref_primary_10_1109_JSTSP_2017_2784181 crossref_primary_10_1109_TIP_2025_3534559 crossref_primary_10_1109_TMI_2019_2948320 crossref_primary_10_3390_s18051342 crossref_primary_10_1016_j_nimb_2025_165682 crossref_primary_10_1109_TGRS_2021_3052793 crossref_primary_10_1016_j_jcp_2023_112427 crossref_primary_10_1109_JSTSP_2020_3039393 crossref_primary_10_1007_s10915_024_02638_7 crossref_primary_10_3389_fnins_2021_569918 crossref_primary_10_1016_j_inffus_2025_103323 crossref_primary_10_1002_nbm_4292 crossref_primary_10_1109_TMI_2018_2832217 crossref_primary_10_1016_j_ymssp_2020_106625 crossref_primary_10_1049_iet_rsn_2019_0422 crossref_primary_10_1002_mp_13284 crossref_primary_10_1002_mp_16552 crossref_primary_10_1109_TMI_2020_3033541 crossref_primary_10_1109_TRPMS_2024_3515036 crossref_primary_10_1109_TCI_2021_3098922 crossref_primary_10_3390_photonics10020204 crossref_primary_10_1038_s41598_020_65235_2 crossref_primary_10_1016_j_ins_2022_03_080 crossref_primary_10_1109_TMTT_2024_3369420 crossref_primary_10_1088_1742_6596_2651_1_012128 crossref_primary_10_1109_TRPMS_2020_3000789 crossref_primary_10_1002_mrm_29317 crossref_primary_10_1038_s41598_025_03900_0 crossref_primary_10_1016_j_compbiomed_2022_106513 crossref_primary_10_1002_acm2_14113 crossref_primary_10_1007_s11548_025_03402_4 crossref_primary_10_1007_s10851_025_01263_9 crossref_primary_10_1007_s10851_019_00923_x crossref_primary_10_1088_1361_6420_ad0f3b crossref_primary_10_1109_TIP_2019_2907461 crossref_primary_10_3390_math12060859 crossref_primary_10_3390_e26020101 crossref_primary_10_1109_TIM_2020_3038014 crossref_primary_10_1364_AO_565597 crossref_primary_10_1109_TVLSI_2018_2858014 crossref_primary_10_1117_1_JBO_29_1_016010 crossref_primary_10_1109_TIM_2023_3260280 crossref_primary_10_1088_1748_0221_18_05_P05038 crossref_primary_10_1016_j_compbiomed_2023_106809 crossref_primary_10_1002_mp_15213 crossref_primary_10_1002_mp_16543 crossref_primary_10_1088_2632_2153_aba8e7 crossref_primary_10_3390_s19112636 crossref_primary_10_1002_mp_17636 crossref_primary_10_1016_j_bspc_2022_103598 crossref_primary_10_1002_mrm_30537 crossref_primary_10_1109_TCI_2021_3093003 crossref_primary_10_1016_j_media_2024_103334 crossref_primary_10_1186_s42492_022_00127_y crossref_primary_10_1109_TMECH_2021_3065522 crossref_primary_10_1016_j_bspc_2025_107564 crossref_primary_10_1007_s11227_021_04157_w crossref_primary_10_1109_TAP_2022_3216920 crossref_primary_10_1109_TCI_2021_3062986 crossref_primary_10_1002_mp_16331 crossref_primary_10_1007_s00500_024_09918_2 crossref_primary_10_1016_j_neucom_2019_09_092 crossref_primary_10_3390_electronics14101959 crossref_primary_10_4018_JCIT_326131 crossref_primary_10_1016_j_media_2025_103605 crossref_primary_10_1002_mp_16576 crossref_primary_10_1038_s41377_023_01248_6 crossref_primary_10_1109_TMI_2022_3148110 crossref_primary_10_1002_mp_15489 crossref_primary_10_1109_JSYST_2023_3238678 crossref_primary_10_1109_TCI_2025_3553039 crossref_primary_10_1109_TGRS_2023_3273149 crossref_primary_10_1109_TCCN_2021_3061464 crossref_primary_10_1117_1_JMM_18_2_024001 crossref_primary_10_1007_s11277_023_10678_9 crossref_primary_10_1016_j_eswa_2024_125099 crossref_primary_10_3390_rs14112614 crossref_primary_10_1007_s13246_023_01320_w crossref_primary_10_1016_j_engappai_2021_104252 crossref_primary_10_1007_s10278_025_01462_1 crossref_primary_10_3389_fninf_2020_00015 crossref_primary_10_1109_TCI_2023_3281196 crossref_primary_10_1007_s10278_024_01314_4 crossref_primary_10_59277_RomRepPhys_2025_77_102 crossref_primary_10_1364_AO_545150 crossref_primary_10_1088_1361_6560_ab1aba crossref_primary_10_1371_journal_pone_0313226 crossref_primary_10_1109_TIT_2023_3326879 crossref_primary_10_1109_TGRS_2018_2869221 crossref_primary_10_1038_s41598_024_54124_7 crossref_primary_10_3390_jimaging7030044 crossref_primary_10_1007_s10851_019_00901_3 crossref_primary_10_1109_LSP_2023_3323248 crossref_primary_10_1016_j_dsp_2022_103797 crossref_primary_10_1016_j_radphyschem_2022_110718 crossref_primary_10_1364_OE_551221 crossref_primary_10_7717_peerj_cs_951 crossref_primary_10_3233_XST_221260 crossref_primary_10_3938_jkps_75_160 crossref_primary_10_1109_TAP_2024_3388205 crossref_primary_10_1109_TSMC_2024_3449332 crossref_primary_10_1109_TPAMI_2021_3099035 crossref_primary_10_1038_s41598_023_36249_3 crossref_primary_10_1007_s11042_020_09543_9 crossref_primary_10_1049_ccs_2019_0004 crossref_primary_10_1088_1361_6501_ad11cd crossref_primary_10_1109_TCI_2023_3236161 crossref_primary_10_1016_j_apenergy_2021_117379 crossref_primary_10_1016_j_cageo_2024_105663 crossref_primary_10_1109_TUFFC_2024_3417905 crossref_primary_10_1016_j_sigpro_2024_109746 crossref_primary_10_1016_j_neucom_2022_04_040 crossref_primary_10_1109_TGRS_2023_3243927 crossref_primary_10_3389_fonc_2021_760689 crossref_primary_10_1109_TMI_2022_3175529 crossref_primary_10_3390_s22249771 crossref_primary_10_1109_TCYB_2019_2933257 crossref_primary_10_1016_j_segan_2023_101248 crossref_primary_10_1109_TIP_2022_3167915 crossref_primary_10_1109_TCI_2023_3279053 crossref_primary_10_1007_s10278_021_00467_w crossref_primary_10_1364_AO_58_005422 crossref_primary_10_1109_ACCESS_2020_3019307 crossref_primary_10_1016_j_neunet_2023_08_004 crossref_primary_10_1049_joe_2019_0571 crossref_primary_10_1016_j_ndteint_2023_102923 crossref_primary_10_1109_TIP_2021_3122089 crossref_primary_10_1109_TWC_2025_3563243 crossref_primary_10_1080_10589759_2023_2170374 crossref_primary_10_1002_mrm_30121 crossref_primary_10_3390_app10134446 crossref_primary_10_1137_21M1445697 crossref_primary_10_1002_mp_13264 crossref_primary_10_3390_en18040918 crossref_primary_10_1049_ipr2_12270 crossref_primary_10_3389_fnbot_2021_651432 crossref_primary_10_1109_TMI_2018_2865356 crossref_primary_10_1038_s41584_021_00719_7 crossref_primary_10_1002_mp_16779 crossref_primary_10_1109_TIM_2024_3522391 crossref_primary_10_1109_TIP_2019_2913092 crossref_primary_10_1186_s12911_021_01736_y crossref_primary_10_1002_mp_15205 crossref_primary_10_3390_photonics10020224 crossref_primary_10_1186_s12880_025_01910_y crossref_primary_10_1109_ACCESS_2019_2959037 crossref_primary_10_1088_1361_6560_abc12c crossref_primary_10_1109_TCI_2019_2956877 crossref_primary_10_1016_j_neuroimage_2020_117366 crossref_primary_10_1109_TCI_2022_3149088 crossref_primary_10_3390_jmse12091609 crossref_primary_10_1038_s41598_025_16978_3 crossref_primary_10_1137_23M1581807 crossref_primary_10_1109_TIP_2023_3293768 crossref_primary_10_3390_cancers17010130 crossref_primary_10_1016_j_neucom_2019_09_057 crossref_primary_10_1109_TCI_2022_3233188 crossref_primary_10_1109_TCI_2023_3236155 crossref_primary_10_32604_cmes_2023_029562 crossref_primary_10_3390_s22093228 crossref_primary_10_1364_AO_425099 crossref_primary_10_1016_j_compag_2021_106014 crossref_primary_10_1088_1361_6560_ad360a crossref_primary_10_1038_s41598_022_14039_7 crossref_primary_10_1016_j_eswa_2024_123704 crossref_primary_10_1002_mrm_30359 crossref_primary_10_1088_1361_6528_abd508 crossref_primary_10_1016_j_jrras_2022_03_003 crossref_primary_10_1016_j_bspc_2024_107058 crossref_primary_10_1016_j_eswa_2020_114285 crossref_primary_10_1137_23M162750X crossref_primary_10_1088_1361_6560_aae511 crossref_primary_10_1109_TMI_2018_2823768 crossref_primary_10_3390_bios10120193 crossref_primary_10_1109_TCI_2019_2956866 crossref_primary_10_1002_mrm_28038 crossref_primary_10_1109_TIE_2023_3273272 crossref_primary_10_1109_TMECH_2022_3195524 crossref_primary_10_1038_s41598_022_12914_x crossref_primary_10_1109_TIP_2021_3053398 crossref_primary_10_1148_ryai_230275 crossref_primary_10_1109_ACCESS_2020_3044981 crossref_primary_10_1016_j_ejmp_2023_102535 crossref_primary_10_23919_JSEE_2024_000042 crossref_primary_10_1038_s42256_020_00289_5 crossref_primary_10_1109_TUFFC_2021_3126530 crossref_primary_10_1016_j_media_2021_101967 crossref_primary_10_1109_TCI_2025_3536078 crossref_primary_10_1016_j_eswa_2025_128109 crossref_primary_10_1109_ACCESS_2024_3516380 crossref_primary_10_1109_TCI_2022_3207351 crossref_primary_10_1016_j_jcp_2021_110414 crossref_primary_10_1109_TIP_2021_3097187 crossref_primary_10_1002_mp_15617 crossref_primary_10_1038_s41598_019_38903_1 crossref_primary_10_1109_LAWP_2019_2925578 crossref_primary_10_1002_mrm_29833 crossref_primary_10_1007_s11263_025_02378_7 crossref_primary_10_1109_MGRS_2022_3218801 crossref_primary_10_1039_D2NH00377E crossref_primary_10_1109_TIP_2018_2865280 crossref_primary_10_1109_TMI_2022_3167809 crossref_primary_10_1109_TMI_2020_2998480 crossref_primary_10_3390_s21134278 crossref_primary_10_1016_j_isatra_2019_08_054 crossref_primary_10_1109_TIP_2021_3120053 crossref_primary_10_3934_ipi_2025001 crossref_primary_10_1109_TIM_2024_3476543 crossref_primary_10_1109_TMI_2020_2979940 crossref_primary_10_1002_mp_14523 crossref_primary_10_1016_j_compbiomed_2023_106888 crossref_primary_10_1088_2632_2153_ad95dd crossref_primary_10_1002_mrm_27889 crossref_primary_10_1088_1361_6560_ac5ce7 crossref_primary_10_1016_j_sigpro_2024_109660 crossref_primary_10_1166_jmihi_2021_3915 crossref_primary_10_1016_j_media_2019_01_005 crossref_primary_10_1109_LSP_2018_2829766 crossref_primary_10_1109_ACCESS_2021_3127393 crossref_primary_10_1016_j_optlaseng_2021_106533 crossref_primary_10_1016_j_ejmp_2021_07_005 crossref_primary_10_1109_TMI_2021_3136461 crossref_primary_10_1109_TRPMS_2018_2860788 crossref_primary_10_1109_TIM_2024_3369160 crossref_primary_10_1117_1_JMI_11_2_026002 crossref_primary_10_1016_j_acha_2022_04_003 crossref_primary_10_1109_TMI_2023_3347258 crossref_primary_10_1186_s40658_021_00426_y crossref_primary_10_1007_s13246_023_01290_z crossref_primary_10_1002_mp_15884 crossref_primary_10_1002_mp_15886 crossref_primary_10_1002_mp_15885 crossref_primary_10_1088_2632_2153_ac1d35 crossref_primary_10_1097_RCT_0000000000001734 crossref_primary_10_1186_s12968_020_00651_x crossref_primary_10_1080_10106049_2021_1912194 crossref_primary_10_3390_diagnostics11050840 crossref_primary_10_1002_mp_16734 crossref_primary_10_1038_s42256_023_00724_3 crossref_primary_10_1016_j_compmedimag_2020_101720 crossref_primary_10_1016_j_bspc_2021_103117 crossref_primary_10_1109_TIP_2024_3388970 crossref_primary_10_1364_AO_525144 crossref_primary_10_3390_app10061902 crossref_primary_10_1109_MAP_2020_3043469 crossref_primary_10_1016_j_optlastec_2023_110241 crossref_primary_10_1109_TIV_2023_3331533 crossref_primary_10_1016_j_rse_2024_114575 crossref_primary_10_15446_esrj_v28n4_117639 crossref_primary_10_1016_j_neuroimage_2022_119410 crossref_primary_10_1109_TIP_2023_3245323 crossref_primary_10_1109_JSTARS_2022_3229761 crossref_primary_10_1016_j_jocn_2021_04_043 crossref_primary_10_1109_TRPMS_2022_3222213 crossref_primary_10_1111_cgf_13753 crossref_primary_10_1088_1361_6560_abb5c3 crossref_primary_10_1117_1_JEI_34_2_023063 crossref_primary_10_3233_XST_210929 crossref_primary_10_1038_s41598_022_04910_y crossref_primary_10_1109_TIM_2024_3497165 crossref_primary_10_1016_j_acha_2024_101719 crossref_primary_10_1109_TCI_2021_3125564 crossref_primary_10_1016_j_mri_2024_01_007 crossref_primary_10_1016_j_media_2023_103012 crossref_primary_10_1109_TIP_2018_2869688 crossref_primary_10_3390_s19183929 crossref_primary_10_3390_rs14153810 crossref_primary_10_1109_MSP_2017_2739299 crossref_primary_10_1109_TPAMI_2024_3450575 crossref_primary_10_1088_1361_6560_ab8fc1 crossref_primary_10_1073_pnas_2107151119 crossref_primary_10_1109_JSEN_2018_2876411 crossref_primary_10_1109_TAP_2024_3372772 crossref_primary_10_1109_JSTARS_2020_3021074 crossref_primary_10_1109_TUFFC_2021_3131383 crossref_primary_10_1002_mp_13400 crossref_primary_10_1007_s00034_023_02326_1 crossref_primary_10_1002_mrm_27690 crossref_primary_10_1109_ACCESS_2019_2960456 crossref_primary_10_1088_1361_6560_acc2ab crossref_primary_10_1088_1361_6560_acc2aa crossref_primary_10_1002_mp_15817 crossref_primary_10_1109_TGRS_2019_2953473 crossref_primary_10_1190_geo2018_0245_1 crossref_primary_10_1007_s11600_022_00773_z crossref_primary_10_1002_nme_6593 crossref_primary_10_3390_s24061954 crossref_primary_10_1007_s11760_023_02544_9 crossref_primary_10_1109_TAP_2023_3242424 crossref_primary_10_1016_j_dsp_2021_103285 crossref_primary_10_1109_ACCESS_2020_3033795 crossref_primary_10_1038_s41598_023_42625_w crossref_primary_10_1038_s41598_018_25153_w crossref_primary_10_1109_LGRS_2018_2866567 crossref_primary_10_1016_j_phro_2023_100416 crossref_primary_10_1002_mp_13631 crossref_primary_10_1364_OE_559227 crossref_primary_10_1109_TUFFC_2022_3160859 crossref_primary_10_3390_sym17040523 crossref_primary_10_1145_3480168 crossref_primary_10_1002_mp_13627 crossref_primary_10_1002_mp_13869 crossref_primary_10_1155_2021_2973108 crossref_primary_10_1515_jiip_2020_0121 crossref_primary_10_1002_mrm_27201 crossref_primary_10_1109_TCI_2018_2846413 crossref_primary_10_1007_s13163_021_00419_6 crossref_primary_10_1016_j_rsase_2024_101221 crossref_primary_10_1016_j_dsp_2023_104187 crossref_primary_10_1109_TPAMI_2020_3014629 crossref_primary_10_1016_j_bspc_2024_106479 crossref_primary_10_1109_JSTSP_2024_3381335 crossref_primary_10_1109_TNNLS_2023_3289798 crossref_primary_10_1109_TAES_2025_3560257 crossref_primary_10_1016_j_media_2025_103806 crossref_primary_10_1007_s12539_019_00351_w crossref_primary_10_1016_j_compbiomed_2023_107308 crossref_primary_10_1109_TCBB_2021_3122183 crossref_primary_10_1038_s41598_022_25366_0 crossref_primary_10_1016_j_rcl_2021_07_009 crossref_primary_10_1109_TBME_2020_3020741 crossref_primary_10_1016_j_jcp_2021_110430 crossref_primary_10_1109_ACCESS_2020_2992483 crossref_primary_10_1016_j_mri_2022_12_008 crossref_primary_10_1007_s11220_022_00384_4 crossref_primary_10_1109_JBHI_2022_3184930 crossref_primary_10_1002_mrm_29400 crossref_primary_10_1007_s11548_021_02487_x crossref_primary_10_1002_mp_14744 crossref_primary_10_1007_s10894_024_00458_z crossref_primary_10_1142_S2737599424500026 crossref_primary_10_3390_rs13091734 crossref_primary_10_1016_j_ymssp_2022_110059 crossref_primary_10_1051_epjconf_202125103058 crossref_primary_10_1007_s40305_019_00287_4 crossref_primary_10_1109_TCI_2023_3240078 crossref_primary_10_1088_1361_6560_ad5e59 crossref_primary_10_1109_TAP_2022_3188389 crossref_primary_10_1109_JSEN_2023_3253176 crossref_primary_10_1016_j_nima_2025_170306 crossref_primary_10_3390_jimaging7110243 crossref_primary_10_1038_s42256_020_00270_2 crossref_primary_10_1088_1361_6420_ab460a crossref_primary_10_1109_TRPMS_2023_3340955 crossref_primary_10_3390_app10082661 crossref_primary_10_1109_TCSVT_2024_3486050 crossref_primary_10_1016_j_acra_2019_05_016 crossref_primary_10_1016_j_cherd_2024_06_018 crossref_primary_10_1016_j_ultrasmedbio_2022_05_033 crossref_primary_10_1109_JBHI_2024_3432139 crossref_primary_10_1016_j_procs_2020_02_243 crossref_primary_10_1109_TITS_2023_3311541 crossref_primary_10_1109_TMI_2024_3420411 crossref_primary_10_1109_ACCESS_2023_3291076 crossref_primary_10_1016_j_cam_2023_115503 crossref_primary_10_1109_JSEN_2025_3546972 crossref_primary_10_3233_XST_180423 crossref_primary_10_1109_ACCESS_2021_3056150 crossref_primary_10_1016_j_compbiomed_2019_103587 crossref_primary_10_1109_TGRS_2024_3362391 crossref_primary_10_3390_s20030594 crossref_primary_10_1016_j_cmpb_2024_108376 crossref_primary_10_1186_s13244_020_00869_4 crossref_primary_10_3934_ipi_2021045 crossref_primary_10_1088_1742_6596_2128_1_012016 crossref_primary_10_1088_2399_6528_abebcf crossref_primary_10_1109_TIM_2023_3256469 crossref_primary_10_1016_j_jsb_2018_09_008 crossref_primary_10_1109_TSP_2022_3179807 crossref_primary_10_1109_TCI_2023_3315853 crossref_primary_10_1109_TRPMS_2021_3083361 crossref_primary_10_1364_OE_569216 crossref_primary_10_1007_s11207_024_02399_4 crossref_primary_10_1109_JBHI_2023_3311189 crossref_primary_10_1007_s10851_025_01249_7 crossref_primary_10_1002_mp_14946 crossref_primary_10_1016_j_compbiomed_2025_110728 crossref_primary_10_1016_j_compbiomed_2023_107345 crossref_primary_10_1109_TMI_2021_3078067 crossref_primary_10_1088_2632_2153_ad5f74 crossref_primary_10_3389_fspas_2022_1001043 crossref_primary_10_1103_PRXEnergy_4_013002 crossref_primary_10_1038_s41598_020_77923_0 crossref_primary_10_1109_JSTARS_2024_3463750 crossref_primary_10_1109_TMI_2021_3085839 crossref_primary_10_1111_exsy_12755 crossref_primary_10_1007_s11517_022_02631_y crossref_primary_10_1093_comjnl_bxab117 crossref_primary_10_1002_ima_22588 crossref_primary_10_1016_j_measen_2020_100024 crossref_primary_10_1109_ACCESS_2020_3028877 crossref_primary_10_1016_j_cmpb_2024_108359 crossref_primary_10_1007_s10479_025_06734_1 crossref_primary_10_1109_TMI_2021_3097808 crossref_primary_10_1049_iet_ipr_2019_1138 crossref_primary_10_1016_j_isprsjprs_2021_08_019 crossref_primary_10_1016_j_media_2019_03_013 crossref_primary_10_1088_1361_6560_abf278 crossref_primary_10_3390_eng6080189 crossref_primary_10_1007_s11042_023_16535_y crossref_primary_10_1016_j_optlaseng_2020_106454 crossref_primary_10_1177_08953996251319183 crossref_primary_10_1371_journal_pone_0330463 crossref_primary_10_1109_TGRS_2022_3217162 crossref_primary_10_1109_TGRS_2024_3458402 crossref_primary_10_1109_ACCESS_2023_3295246 crossref_primary_10_1109_TIP_2020_2989100 crossref_primary_10_1190_geo2018_0249_1 crossref_primary_10_1088_2632_2153_ad1b8e crossref_primary_10_3390_s20010311 crossref_primary_10_1007_s10096_020_03901_z crossref_primary_10_1109_ACCESS_2021_3086839 crossref_primary_10_1109_ACCESS_2021_3117140 crossref_primary_10_1002_mp_12945 crossref_primary_10_1109_TCI_2022_3197939 crossref_primary_10_1007_s11263_021_01572_7 crossref_primary_10_1088_1361_6544_aca73d crossref_primary_10_1097_RLI_0000000000000679 crossref_primary_10_1088_2632_2153_ab592b crossref_primary_10_1109_LAWP_2021_3085033 crossref_primary_10_1093_mnras_stac2672 crossref_primary_10_1109_TGRS_2022_3222502 crossref_primary_10_1121_10_0014289 crossref_primary_10_3390_electronics10243104 crossref_primary_10_1007_s10278_024_01250_3 crossref_primary_10_1016_j_sigpro_2022_108896 crossref_primary_10_1134_S0361768819040029 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104247 crossref_primary_10_1007_s10851_025_01258_6 crossref_primary_10_1109_TIM_2024_3406810 crossref_primary_10_1109_LAWP_2019_2927543 crossref_primary_10_3390_photonics11070671 crossref_primary_10_1109_LAWP_2020_2995455 crossref_primary_10_1109_TMI_2024_3494271 crossref_primary_10_1177_08953996241300016 crossref_primary_10_1038_s42254_024_00798_x crossref_primary_10_3390_mi16010008 crossref_primary_10_1109_TIM_2025_3568976 crossref_primary_10_1109_TMI_2018_2805692 crossref_primary_10_1109_TMI_2024_3367167 crossref_primary_10_1002_jmri_27058 crossref_primary_10_1016_j_sigpro_2021_108320 crossref_primary_10_1109_TCI_2021_3099632 crossref_primary_10_1109_TMI_2018_2864821 crossref_primary_10_1109_TSMC_2022_3228597 crossref_primary_10_1088_1361_6560_ad3c8e crossref_primary_10_1109_TMI_2018_2823083 crossref_primary_10_1007_s10208_024_09654_x crossref_primary_10_1007_s11263_023_01844_4 crossref_primary_10_1016_j_mri_2020_11_010 crossref_primary_10_1109_TMI_2020_2993835 crossref_primary_10_1016_j_optlaseng_2025_108863 crossref_primary_10_1007_s00521_019_04305_7 crossref_primary_10_1016_j_neucom_2025_129771 crossref_primary_10_1103_PhysRevApplied_23_034035 crossref_primary_10_1080_09720529_2022_2072437 crossref_primary_10_1088_1361_6560_ada687 crossref_primary_10_1016_j_nima_2022_166428 crossref_primary_10_3390_en18133346 crossref_primary_10_1109_TMI_2018_2828303 crossref_primary_10_1016_j_compbiomed_2025_109920 crossref_primary_10_3390_s20092619 crossref_primary_10_1109_TMI_2021_3072568 crossref_primary_10_1007_s10462_022_10259_5 crossref_primary_10_1007_s12065_020_00462_0 crossref_primary_10_1088_1361_6560_ac4122 crossref_primary_10_1117_1_AP_1_3_036002 crossref_primary_10_3390_s22186923 crossref_primary_10_1038_s41377_021_00512_x crossref_primary_10_1109_TMI_2024_3405024 crossref_primary_10_1016_j_compbiomed_2023_107391 |
| Cites_doi | 10.1117/12.2254244 10.1038/nature14539 10.1109/MICRO.2016.7783721 10.1137/1.9780898719277 10.1137/080716542 10.1109/TIP.2009.2028254 10.1109/TMI.2011.2140121 10.1002/mrm.21391 10.1007/978-3-319-46448-0_38 10.1109/CVPR.2014.349 10.1016/j.ejmp.2012.01.003 10.1109/TIT.2005.862083 10.1007/978-3-319-46487-9_17 10.1088/0266-5611/23/3/007 10.1109/ICCV.2015.73 10.1002/mrm.21757 10.1109/TIP.2017.2662206 10.1023/B:JMIV.0000011321.19549.88 10.1109/83.862633 10.1109/TIP.2013.2283142 10.1109/TMI.2014.2328660 10.1109/LSP.2016.2548245 10.1145/344779.344972 10.1364/BOE.8.000679 10.1007/978-3-319-11179-7_36 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1109/TIT.2016.2590421 10.1109/CVPR.2016.182 10.1109/CVPR.2012.6247952 10.1109/TCI.2015.2479555 10.1145/2733373.2807412 10.1109/CVPR.2015.7298965 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TIP.2010.2047910 10.1561/2200000016 10.1109/TMI.2015.2401131 10.1109/CVPR.2014.81 10.1137/080725891 10.1109/TMI.2002.1000260 10.1109/TIP.2006.877507 10.1088/0031-9155/53/17/021 10.1007/978-3-319-10590-1_53 10.1364/OE.24.014564 10.1109/TMI.2016.2551324 10.1016/0167-2789(92)90242-F 10.1109/CVPR.2016.55 10.1007/s11263-015-0816-y 10.1109/TMI.2012.2195669 10.1002/cpa.20042 10.1109/CVPR.2016.90 10.1109/CVPR.2015.7299163 10.1109/83.661187 10.1109/TPAMI.2015.2439281 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TIP.2017.2713099 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Journals (OA) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 4522 |
| ExternalDocumentID | 28641250 10_1109_TIP_2017_2713099 7949028 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: European Union’s Horizon 2020 Framework Programme for Research and Innovation (call 2015) grantid: 665667 funderid: 10.13039/100010661 – fundername: National Institute of Biomedical Imaging and Bioengineering grantid: EB017095; EB017185 funderid: 10.13039/100000070 – fundername: Center for Biomedical Imaging of the Geneva-Lausanne Universities and EPFL funderid: 10.13039/501100006391 – fundername: European Research Council (H2020-ERC Project GlobalBioIm) grantid: 692726 funderid: 10.13039/501100000781 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD ESBDL F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c361t-bfc8c6fcba6beb8378938f2b07593912be98b2cc01ee7d9ba1ef19cb171914373 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1792 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405701500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Sat Sep 27 18:20:22 EDT 2025 Thu Apr 03 07:08:32 EDT 2025 Sat Nov 29 07:51:33 EST 2025 Tue Nov 18 22:41:41 EST 2025 Wed Aug 27 02:30:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-bfc8c6fcba6beb8378938f2b07593912be98b2cc01ee7d9ba1ef19cb171914373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7885-4792 0000-0001-7645-252X |
| OpenAccessLink | https://ieeexplore.ieee.org/document/7949028 |
| PMID | 28641250 |
| PQID | 1913398440 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TIP_2017_2713099 crossref_citationtrail_10_1109_TIP_2017_2713099 ieee_primary_7949028 pubmed_primary_28641250 proquest_miscellaneous_1913398440 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Sept. 2017-9-00 2017-Sep 20170901 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sept. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 xin (ref33) 2016 ref55 ref11 ref54 ref10 ref17 krishnan (ref5) 2009 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref42 ref41 mallat (ref52) 1999 ref44 lee (ref64) 2017; 10133 ref8 ref7 ref9 ref4 ref3 ref6 ref40 han (ref47) 2016 xu (ref23) 2014 ref35 ref34 tibshirani (ref49) 1996; 58 ref37 ref36 ref30 ref32 ref1 ref39 epperson (ref65) 2013 ref38 chambolle (ref2) 2004; 20 xu (ref43) 2012; 31 krizhevsky (ref16) 2012 ref24 ref26 ref25 ref63 ref21 ronneberger (ref20) 2015 ref28 ref27 ref29 pascanu (ref61) 2013; 28 xie (ref22) 2012 ref60 coifman (ref53) 1995 ref62 gregor (ref31) 2010 |
| References_xml | – volume: 10133 start-page: 1013328 year: 2017 ident: ref64 article-title: View-interpolation of sparsely sampled sinogram using convolutional neural network publication-title: Proc SPIE doi: 10.1117/12.2254244 – ident: ref15 doi: 10.1038/nature14539 – ident: ref59 doi: 10.1109/MICRO.2016.7783721 – ident: ref40 doi: 10.1137/1.9780898719277 – ident: ref55 doi: 10.1137/080716542 – ident: ref34 doi: 10.1109/TIP.2009.2028254 – ident: ref11 doi: 10.1109/TMI.2011.2140121 – ident: ref9 doi: 10.1002/mrm.21391 – ident: ref25 doi: 10.1007/978-3-319-46448-0_38 – ident: ref35 doi: 10.1109/CVPR.2014.349 – ident: ref41 doi: 10.1016/j.ejmp.2012.01.003 – ident: ref7 doi: 10.1109/TIT.2005.862083 – start-page: 4340 year: 2016 ident: ref33 article-title: Maximal sparsity with deep networks? publication-title: Proc Adv Neural Inf Process Syst – ident: ref30 doi: 10.1007/978-3-319-46487-9_17 – ident: ref50 doi: 10.1088/0266-5611/23/3/007 – ident: ref24 doi: 10.1109/ICCV.2015.73 – ident: ref10 doi: 10.1002/mrm.21757 – year: 2016 ident: ref47 publication-title: Deep residual learning for compressed sensing ct reconstruction via persistent homology analysis – ident: ref63 doi: 10.1109/TIP.2017.2662206 – year: 1999 ident: ref52 publication-title: A Wavelet Tour of Signal Processing – volume: 20 start-page: 89 year: 2004 ident: ref2 article-title: An algorithm for total variation minimization and applications publication-title: J Math Imag Vis doi: 10.1023/B:JMIV.0000011321.19549.88 – ident: ref3 doi: 10.1109/83.862633 – ident: ref44 doi: 10.1109/TIP.2013.2283142 – ident: ref42 doi: 10.1109/TMI.2014.2328660 – start-page: 399 year: 2010 ident: ref31 article-title: Learning fast approximations of sparse coding publication-title: Proc 27th Int Conf Mach Learn (ICML) – ident: ref37 doi: 10.1109/LSP.2016.2548245 – ident: ref6 doi: 10.1145/344779.344972 – ident: ref46 doi: 10.1364/BOE.8.000679 – ident: ref58 doi: 10.1007/978-3-319-11179-7_36 – ident: ref38 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: ref62 doi: 10.1109/TIT.2016.2590421 – volume: 28 start-page: 1310 year: 2013 ident: ref61 article-title: On the difficulty of training recurrent neural networks publication-title: Proc ICML – ident: ref29 doi: 10.1109/CVPR.2016.182 – ident: ref21 doi: 10.1109/CVPR.2012.6247952 – start-page: 1790 year: 2014 ident: ref23 article-title: Deep convolutional neural network for image deconvolution publication-title: Proc Adv Neural Inf Process Syst – ident: ref13 doi: 10.1109/TCI.2015.2479555 – ident: ref60 doi: 10.1145/2733373.2807412 – ident: ref19 doi: 10.1109/CVPR.2015.7298965 – volume: 58 start-page: 267 year: 1996 ident: ref49 article-title: Regression shrinkage and selection via the LASSO publication-title: J Roy Statist Soc Series B (Methodol ) doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref56 doi: 10.1109/TIP.2010.2047910 – ident: ref54 doi: 10.1561/2200000016 – ident: ref45 doi: 10.1109/TMI.2015.2401131 – ident: ref18 doi: 10.1109/CVPR.2014.81 – ident: ref8 doi: 10.1137/080725891 – ident: ref48 doi: 10.1109/TMI.2002.1000260 – ident: ref51 doi: 10.1109/TIP.2006.877507 – ident: ref12 doi: 10.1088/0031-9155/53/17/021 – ident: ref57 doi: 10.1007/978-3-319-10590-1_53 – year: 1995 ident: ref53 publication-title: Translation-Invariant de-Noising – ident: ref14 doi: 10.1364/OE.24.014564 – ident: ref27 doi: 10.1109/TMI.2016.2551324 – ident: ref1 doi: 10.1016/0167-2789(92)90242-F – start-page: 1033 year: 2009 ident: ref5 article-title: Fast image deconvolution using hyper-Laplacian priors publication-title: Proc Adv Neural Inf Process Syst – ident: ref26 doi: 10.1109/CVPR.2016.55 – ident: ref17 doi: 10.1007/s11263-015-0816-y – volume: 31 start-page: 1682 year: 2012 ident: ref43 article-title: Low-dose X-ray CT reconstruction via dictionary learning publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2195669 – ident: ref36 doi: 10.1002/cpa.20042 – start-page: 1097 year: 2012 ident: ref16 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – start-page: 234 year: 2015 ident: ref20 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref39 doi: 10.1109/CVPR.2016.90 – ident: ref32 doi: 10.1109/CVPR.2015.7299163 – year: 2013 ident: ref65 article-title: Creation of fully sampled mr data repository for compressed sensing of the knee publication-title: Proc SMRT Conf – start-page: 341 year: 2012 ident: ref22 article-title: Image denoising and inpainting with deep neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref4 doi: 10.1109/83.661187 – ident: ref28 doi: 10.1109/TPAMI.2015.2439281 |
| SSID | ssj0014516 |
| Score | 2.7120125 |
| Snippet | In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4509 |
| SubjectTerms | biomedical imaging biomedical signal processing Computed tomography Convolution Image reconstruction Image restoration Inverse problems Iterative methods magnetic resonance imaging Neural networks reconstruction algorithms tomography |
| Title | Deep Convolutional Neural Network for Inverse Problems in Imaging |
| URI | https://ieeexplore.ieee.org/document/7949028 https://www.ncbi.nlm.nih.gov/pubmed/28641250 https://www.proquest.com/docview/1913398440 |
| Volume | 26 |
| WOSCitedRecordID | wos000405701500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS-QwFH6oeNCDrr9n3ZUIXgTrtEnaJEeZ3WG9yBwU5laa5AUE7ch0xr9_k7RTFFTw1B6S9JH3Qr70vXwfwAX3ICDT1CapKaqES54nFWU8cc73cFamltooNiHu7uR0qiZrcNXfhUHEWHyG1-E15vLtzCzDr7Khj51ANrIO60KI9q5WnzEIgrMxs5mLRHjYv0pJpmp4fzsJNVzimvoTmUdEgQBYFtxv7em73SjKq3yONOOOM979nq0_YKdDluSmDYU9WMN6H3Y7lEm6Ndzsw_YbCsIDuPmD-EJGs_q1i0E_RCDsiI9YIU48rCWBjmPeIJm0-jMNeazJ7XNUODqEh_Hf-9G_pJNVSAwrskWinZGmcEZXhUYdCOUVk45qDx4UUxnVqKSmxqQZorBKVxm6TBmdicAFxwQ7go16VuMJEIbGZblRzjLOKTWqyKvUKsktywWadADD1fSWpuMcD9IXT2U8e6Sq9L4pg2_KzjcDuOx7vLR8G1-0PQjz3rfrpnwA5ysPln6thARIVeNs2ZTefsa8ddwbdty6tu-8ioifHw96Clvh02112S_YWMyX-Bs2zevisZmf-YCcyrMYkP8Bm8rZuA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC58gbuH1VXXHV01ghfBdjqPfuQoruKgDnOYBW9NJ6mAoD0yPePvN0n3NCvsCp46hyQUqQr50lX5PoAT4UAAVcxEsU7LSOQiiUrGRWStG2FNHhtmgthENhzmDw9ytARn3VsYRAzFZ3jumyGXbyZ67n-V9V3seLKRZVhNhGC0ea3V5Qy85GzIbSZZlDngv0hKxrI_Hox8FVd2ztydzGEiTwGcp8Id7vG78ygIrPwfa4Yz53rjc9ZuwrcWW5KLJhi-wxJWW7DR4kzS7uJ6C77-RUK4DRe_EV_I5aR6baPQTeEpO8In1IgTB2yJJ-SY1khGjQJNTR4rMngOGkc78Of6anx5E7XCCpHmKZ1Fyupcp1arMlWoPKW85LllysEHySVlCmWumNYxRcyMVCVFS6VWNPNscDzjP2ClmlT4EwhHbWmipTXcuYRpmSZlbGQuDE8y1HEP-ovlLXTLOu7FL56KcPuIZeF8U3jfFK1venDajXhpGDc-6Lvt173r1y55D44XHizcbvEpkLLCybwunP2cO-uEM2y3cW03eBERe_-e9AjWb8b3d8XdYHi7D1-8GU2t2S9YmU3neABr-nX2WE8PQ1i-AfZq3Bc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Neural+Network+for+Inverse+Problems+in+Imaging&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Jin%2C+Kyong+Hwan&rft.au=McCann%2C+Michael+T.&rft.au=Froustey%2C+Emmanuel&rft.au=Unser%2C+Michael&rft.date=2017-09-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=26&rft.issue=9&rft.spage=4509&rft.epage=4522&rft_id=info:doi/10.1109%2FTIP.2017.2713099&rft_id=info%3Apmid%2F28641250&rft.externalDocID=7949028 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |