Image Segmentation Framework for Detecting Adversarial Attacks for Autonomous Driving Cars

The widespread deployment of deep neural networks (DNNs) in critical real-time applications has spurred significant research into their security and robustness. A key vulnerability identified is that DNN decisions can be maliciously altered by introducing carefully crafted noise into the input data,...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 15; no. 3; p. 1328
Main Authors: Sattout, Ahmad Fakhr Aldeen, Chehab, Ali, Mohanna, Ammar, Tajeddine, Razane
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.02.2025
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The widespread deployment of deep neural networks (DNNs) in critical real-time applications has spurred significant research into their security and robustness. A key vulnerability identified is that DNN decisions can be maliciously altered by introducing carefully crafted noise into the input data, leading to erroneous predictions. This is known as an adversarial attack. In this paper, we propose a novel detection framework leveraging segmentation masks and image segmentation techniques to identify adversarial attacks on DNNs, particularly in the context of autonomous driving systems. Our defense technique considers two levels of adversarial detection. The first level mainly detects adversarial inputs with large perturbations using the U-net model and one-class support vector machine (SVM). The second level of defense proposes a dynamic segmentation algorithm based on the k-means algorithm and a verifier model that controls the final prediction of the input image. To evaluate our approach, we comprehensively compare our method to the state-of-the-art feature squeeze method under a white-box attack, using eleven distinct adversarial attacks across three benchmark and heterogeneous data sets. The experimental results demonstrate the efficacy of our framework, achieving overall detection rates exceeding 96% across all adversarial techniques and data sets studied. It is worth mentioning that our method enhances the detection rates of FGSM and BIM attacks, reaching average detection rates of 95.65% as opposed to 62.63% in feature squeezing across the three data sets.
AbstractList The widespread deployment of deep neural networks (DNNs) in critical real-time applications has spurred significant research into their security and robustness. A key vulnerability identified is that DNN decisions can be maliciously altered by introducing carefully crafted noise into the input data, leading to erroneous predictions. This is known as an adversarial attack. In this paper, we propose a novel detection framework leveraging segmentation masks and image segmentation techniques to identify adversarial attacks on DNNs, particularly in the context of autonomous driving systems. Our defense technique considers two levels of adversarial detection. The first level mainly detects adversarial inputs with large perturbations using the U-net model and one-class support vector machine (SVM). The second level of defense proposes a dynamic segmentation algorithm based on the k-means algorithm and a verifier model that controls the final prediction of the input image. To evaluate our approach, we comprehensively compare our method to the state-of-the-art feature squeeze method under a white-box attack, using eleven distinct adversarial attacks across three benchmark and heterogeneous data sets. The experimental results demonstrate the efficacy of our framework, achieving overall detection rates exceeding 96% across all adversarial techniques and data sets studied. It is worth mentioning that our method enhances the detection rates of FGSM and BIM attacks, reaching average detection rates of 95.65% as opposed to 62.63% in feature squeezing across the three data sets.
Audience Academic
Author Sattout, Ahmad Fakhr Aldeen
Tajeddine, Razane
Chehab, Ali
Mohanna, Ammar
Author_xml – sequence: 1
  givenname: Ahmad Fakhr Aldeen
  orcidid: 0009-0006-7135-9514
  surname: Sattout
  fullname: Sattout, Ahmad Fakhr Aldeen
– sequence: 2
  givenname: Ali
  orcidid: 0000-0002-1939-2740
  surname: Chehab
  fullname: Chehab, Ali
– sequence: 3
  givenname: Ammar
  orcidid: 0000-0001-7622-317X
  surname: Mohanna
  fullname: Mohanna, Ammar
– sequence: 4
  givenname: Razane
  orcidid: 0000-0002-1381-7680
  surname: Tajeddine
  fullname: Tajeddine, Razane
BookMark eNpNkU9r3DAQxUVJoGmSU7-Aoceyqf5bPppN0y4EemhzyUWM5ZHRZm1tJW1Cv3212VIyc5jh8ebHwPtAzpa4ICEfGb0RoqNfYL9nigomuHlHLjht9UpI1p692d-T65y3tFbHhGH0gjxuZpiw-YnTjEuBEuLS3CWY8SWmp8bH1NxiQVfCMjX9-IwpQwqwa_pSwD3lV0d_KHGJczzk5jaF56N1DSlfkXMPu4zX_-Ylebj7-mv9fXX_49tm3d-vnNCsrAavBzGiVuiVcb4DahinVFRZDcpRPshuYJwr8FppqnmnnBcORje0yJkWl2Rz4o4Rtnafwgzpj40Q7KsQ02QhleB2aD0gDh6FkZJJI7WhoEF0o6GaSdCysj6dWPsUfx8wF7uNh7TU961gWrVtS6WprpuTa4IKDYuPJYGrPeIcXE3Fh6r3RlDGWsOP2M-nA5dizgn9_zcZtcfw7JvwxF_H3Y1a
Cites_doi 10.1016/j.procs.2015.06.090
10.1016/j.cie.2005.01.009
10.1109/CVPR.2016.282
10.1007/978-3-319-67361-5_40
10.5201/ipol.2011.bcm_nlm
10.1145/3460120.3484766
10.1109/CVPR42600.2020.00108
10.1109/TIV.2020.3027319
10.1109/SP.2017.49
10.1109/TITS.2023.3317372
10.1201/9781351251389-8
10.5244/C.31.11
10.1109/TIV.2022.3185303
10.1109/CVPR.2018.00175
10.1109/LRA.2024.3490377
10.1109/CVPR52729.2023.00297
10.1109/CVPR46437.2021.01443
10.1109/IVS.2019.8814163
10.24963/ijcai.2018/543
10.14722/vehiclesec.2023.23055
10.1109/IJCNN.2011.6033395
10.1109/IV55152.2023.10186386
10.1109/EuroSP.2016.36
10.1177/0278364913491297
10.1126/scirobotics.abm6074
10.1109/CVPR52688.2022.01491
10.1109/TIV.2022.3173448
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2017.243
10.1109/TIV.2023.3337345
10.1016/j.cose.2023.103345
10.1109/ACCESS.2023.3337046
10.1109/CVPR.2019.00935
10.1109/TITS.2023.3327949
10.14722/ndss.2022.24130
10.1007/978-3-319-66787-4_22
10.1109/IC-CGU58078.2024.10530760
10.14722/ndss.2018.23198
10.1109/CVPR42600.2020.01426
10.1109/SP.2016.41
10.1145/1390156.1390294
10.1145/3133956.3134057
10.3390/electronics12040930
10.1109/SPW53761.2021.00041
10.1109/ICASSP.2019.8683541
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app15031328
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_faeebfe38441484680a6a39d80614a64
A830117824
10_3390_app15031328
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-bf6b3de65ef58cf9a0812003f6b5b5c02b49b1225af65606295cf3cadcb7e2163
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001418495900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:03:22 EDT 2025
Mon Jun 30 12:43:55 EDT 2025
Tue Nov 04 18:13:07 EST 2025
Sat Nov 29 07:12:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-bf6b3de65ef58cf9a0812003f6b5b5c02b49b1225af65606295cf3cadcb7e2163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7622-317X
0009-0006-7135-9514
0000-0002-1939-2740
0000-0002-1381-7680
OpenAccessLink https://www.proquest.com/docview/3165777048?pq-origsite=%requestingapplication%
PQID 3165777048
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_faeebfe38441484680a6a39d80614a64
proquest_journals_3165777048
gale_infotracacademiconefile_A830117824
crossref_primary_10_3390_app15031328
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
ref_14
ref_13
ref_57
ref_12
ref_11
ref_55
ref_10
ref_54
Tian (ref_2) 2023; 8
ref_53
ref_51
Zhang (ref_7) 2024; 9
ref_19
ref_18
ref_17
ref_16
ref_59
Yang (ref_1) 2023; 8
ref_60
Yufeng (ref_15) 2023; 132
ref_25
ref_69
ref_24
ref_68
ref_23
ref_67
ref_22
ref_21
ref_65
ref_20
Geiger (ref_52) 2013; 32
ref_64
ref_63
Simonyan (ref_29) 2014; 2
ref_62
ref_28
ref_27
ref_26
ref_72
ref_71
ref_70
Petit (ref_58) 2015; 11
ref_36
ref_35
ref_34
ref_33
ref_77
ref_32
ref_76
ref_31
ref_75
ref_30
ref_74
ref_73
Nawaz (ref_4) 2024; 25
ref_39
ref_37
Wang (ref_41) 2023; 11
Nie (ref_42) 2021; 6
Macenski (ref_56) 2022; 7
Dhanachandra (ref_66) 2015; 54
ref_47
ref_46
Shin (ref_61) 2005; 48
ref_45
Mirza (ref_38) 2014; 27
ref_44
ref_43
Wang (ref_5) 2024; 25
Buades (ref_40) 2011; 1
ref_49
Natan (ref_3) 2023; 8
ref_48
ref_9
ref_8
ref_6
References_xml – ident: ref_9
– volume: 54
  start-page: 764
  year: 2015
  ident: ref_66
  article-title: Image Segmentation Using K-means Clustering Algorithm and Subtractive Clustering Algorithm
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.06.090
– volume: 11
  start-page: 995
  year: 2015
  ident: ref_58
  article-title: Remote Attacks on Automated Vehicles Sensors: Experiments on Camera and Lidar
  publication-title: Black Hat Eur.
– volume: 48
  start-page: 395
  year: 2005
  ident: ref_61
  article-title: One-class Support Vector Machines—An Application in Machine Fault Detection and Classification
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2005.01.009
– ident: ref_74
– ident: ref_32
– ident: ref_55
– ident: ref_26
– ident: ref_30
  doi: 10.1109/CVPR.2016.282
– ident: ref_68
– ident: ref_54
  doi: 10.1007/978-3-319-67361-5_40
– volume: 27
  start-page: 2672
  year: 2014
  ident: ref_38
  article-title: Generative Adversarial Nets
  publication-title: Proc. Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 208
  year: 2011
  ident: ref_40
  article-title: Non-Local Means Denoising
  publication-title: Image Process. Line
  doi: 10.5201/ipol.2011.bcm_nlm
– ident: ref_19
  doi: 10.1145/3460120.3484766
– ident: ref_39
– ident: ref_18
  doi: 10.1109/CVPR42600.2020.00108
– volume: 6
  start-page: 310
  year: 2021
  ident: ref_42
  article-title: A Multimodality Fusion Deep Neural Network and Safety Test Strategy for Intelligent Vehicles
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2020.3027319
– ident: ref_71
– ident: ref_77
– ident: ref_27
– ident: ref_31
  doi: 10.1109/SP.2017.49
– ident: ref_48
– volume: 25
  start-page: 1148
  year: 2024
  ident: ref_5
  article-title: Multi-Sensor Fusion Technology for 3D Object Detection in Autonomous Driving: A Review
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3317372
– ident: ref_23
  doi: 10.1201/9781351251389-8
– ident: ref_51
  doi: 10.5244/C.31.11
– volume: 8
  start-page: 557
  year: 2023
  ident: ref_3
  article-title: End-to-End Autonomous Driving with Semantic Depth Cloud Mapping and Multi-Agent
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2022.3185303
– ident: ref_47
  doi: 10.1109/CVPR.2018.00175
– volume: 9
  start-page: 11361
  year: 2024
  ident: ref_7
  article-title: PEP: Policy-Embedded Trajectory Planning for Autonomous Driving
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2024.3490377
– ident: ref_65
  doi: 10.1109/CVPR52729.2023.00297
– ident: ref_20
  doi: 10.1109/CVPR46437.2021.01443
– ident: ref_6
  doi: 10.1109/IVS.2019.8814163
– ident: ref_46
  doi: 10.24963/ijcai.2018/543
– ident: ref_16
  doi: 10.14722/vehiclesec.2023.23055
– ident: ref_69
  doi: 10.1109/IJCNN.2011.6033395
– ident: ref_17
– ident: ref_45
– ident: ref_14
  doi: 10.1109/IV55152.2023.10186386
– ident: ref_72
– ident: ref_28
  doi: 10.1109/EuroSP.2016.36
– volume: 32
  start-page: 1231
  year: 2013
  ident: ref_52
  article-title: Vision Meets Robotics: The Kitti Dataset
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913491297
– volume: 7
  start-page: eabm6074
  year: 2022
  ident: ref_56
  article-title: Robot Operating System 2: Design, Architecture, and Uses in The Wild
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.abm6074
– ident: ref_21
  doi: 10.1109/CVPR52688.2022.01491
– volume: 8
  start-page: 379
  year: 2023
  ident: ref_2
  article-title: Parallel Learning-Based Steering Control for Autonomous Driving
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2022.3173448
– ident: ref_53
– ident: ref_60
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_24
– ident: ref_76
  doi: 10.1109/CVPR.2017.243
– volume: 8
  start-page: 4678
  year: 2023
  ident: ref_1
  article-title: A Trustworthy Internet of Vehicles: The DAO to Safe, Secure, and Collaborative Autonomous Driving
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2023.3337345
– volume: 132
  start-page: 103345
  year: 2023
  ident: ref_15
  article-title: Light can be dangerous: Stealthy and Effective Physical-world Adversarial Attack by Spot Light
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2023.103345
– ident: ref_11
– volume: 11
  start-page: 137437
  year: 2023
  ident: ref_41
  article-title: A Novel Lane-Change Decision-Making with Long-Time Trajectory Prediction for Autonomous Vehicle
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3337046
– ident: ref_10
  doi: 10.1109/CVPR.2019.00935
– volume: 25
  start-page: 3228
  year: 2024
  ident: ref_4
  article-title: Robust Cognitive Capability in Autonomous Driving Using Sensor Fusion Techniques: A Survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3327949
– ident: ref_67
– ident: ref_37
– ident: ref_63
– ident: ref_73
– ident: ref_44
  doi: 10.14722/ndss.2022.24130
– ident: ref_59
  doi: 10.1007/978-3-319-66787-4_22
– ident: ref_8
  doi: 10.1109/IC-CGU58078.2024.10530760
– ident: ref_75
– ident: ref_25
  doi: 10.14722/ndss.2018.23198
– ident: ref_50
– ident: ref_33
– ident: ref_49
  doi: 10.1109/CVPR42600.2020.01426
– ident: ref_34
  doi: 10.1109/SP.2016.41
– ident: ref_36
  doi: 10.1145/1390156.1390294
– ident: ref_12
– ident: ref_35
  doi: 10.1145/3133956.3134057
– ident: ref_62
  doi: 10.3390/electronics12040930
– ident: ref_13
  doi: 10.1109/SPW53761.2021.00041
– ident: ref_70
– ident: ref_43
– ident: ref_22
– ident: ref_64
  doi: 10.1109/ICASSP.2019.8683541
– volume: 2
  start-page: 2
  year: 2014
  ident: ref_29
  article-title: Visualising Image Classification Models and Saliency Maps
  publication-title: Deep. Inside Convolutional Netw.
– ident: ref_57
SSID ssj0000913810
Score 2.308931
Snippet The widespread deployment of deep neural networks (DNNs) in critical real-time applications has spurred significant research into their security and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1328
SubjectTerms adversarial attacks detection
Algorithms
autonomous driving cars
deep learning
image and mask segmentation
Image processing
k-means
Neural networks
Safety and security measures
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYq1AM9VARaNTwqH5CAw4qsN34dAzSCS4RUkFAvlu0dVzkkoOymv58Z7waFQ9VLL3uwvCtrxp75Zj3zDWOnQsdQCm-KcRXpMdKFBZAFYmOQyora1yk3m9CzmXl6svdbrb4oJ6yjB-4Ed5k8QEhQGfTbY3SWZuSVr2xtKJTxKjOBjrTdCqayDbYlUVd1BXkVxvV0H4zYh4gKzTsXlJn6_2aPs5OZ7rHPPTrkk25VA_YBlvvs0xZn4D4b9Kex4ec9ZfTFAft1t0C7wH_C70VfS7Tk003aFUdcym-AbgvwCzy3YG48bTw-aVuqsc8zJuuWChye1w2_Wc3pPwO_xqj3C3uc_ni4vi36rglFrFTZFiGpUNWgJCRpYrIenT5loOGwDDKORBhbVI-QPhHxjhJWxlRFX8egQSA8-8p2ls9L-Ma4r0FAsgahLSK_oPBNk0KpwxhMQiUO2elGkO6lI8dwGFSQvN2WvIfsioT8NoUYrfMA6tn1enb_0vOQnZGKHJ27duWj78sHcKXEYOUmhkwV4h2cebzRousPZOOqUkmtNdqrw_-xmiO2K6gRcE7fPmY77WoNJ-xj_NPOm9X3vBdfAUbs49k
  priority: 102
  providerName: Directory of Open Access Journals
Title Image Segmentation Framework for Detecting Adversarial Attacks for Autonomous Driving Cars
URI https://www.proquest.com/docview/3165777048
https://doaj.org/article/faeebfe38441484680a6a39d80614a64
Volume 15
WOSCitedRecordID wos001418495900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKy4Ee6AMQS0vlQyXgELFxYsc5VdvHih5YrXhIhYtlO-Oqh-62Sba_vzNeb1sOcOESKYkTWZqHP49nvmHsUFTe5cLqrCw8XYZVVgPIDLExSFWLxjYhNpuoJhN9cVFPU8CtS2mVK58YHXUz9xQj_1zkSlZVhQp3dHObUdcoOl1NLTSesQ1iKkM93zg-m0y_PURZiPVS58NlYV6B-3s6F0YMRISF-o-lKDL2_80vx8VmvPW_09xmLxPM5KOlXuywNZjtss0n5IO7bCeZdcc_Ju7pT6_Y7_NrdDD8O1xep6KkGR-v8rc4Alx-CnTsgH_gsZdzZ0mD-ajvqVg_jhgteqqUmC86ftpeUcCCn-D2-TX7OT77cfIlS-0XMl-ovM9cUK5oQEkIUvtQW0QPlMqGj6WTfihcWaOchbSBGHyUqKUPhbeNdxUIxHlv2PpsPoO3jNsGBIRaI0ZGCOkUfqmDyytXgg6oDQN2uJKEuVmybBjcnZDAzBOBDdgxSelhCFFjxwfz9tIkSzPBArgAhUagVyK60kOrbFE3mva-VpUD9oFkbMiA-9Z6m-oQcKZEhWVGmnweAiccub-SsUmW3ZlHAb_79-s99kJQr-CY4b3P1vt2Ae_Zc3_XX3XtQVLUgxgDwLvp-dfpr3vIh_Yx
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJwAFpAXSjgQxFwiEicL_tQVdsuq67arlaiSIWLsR276qG7bZIF8af4jZ3JJqUc4NYDlxwcx0ri5_Eb2_MGYIvn1kRciyCJLV3CPJDOpQFyY5dmkhe68E2yiXwyEScncroCv7pYGDpW2dnExlAXc0tr5B_iKEvzPEfA7VxcBpQ1inZXuxQaS1gcuJ8_0GWrtsdD7N83nI8-Hu_tB21WgcDGWVQHxmcmLlyWOp8K66XGSZFOaGFxalIbcpNIfH2eak_CNBmXqfWx1YU1ueNIX7DdO7CaENh7sDodH02_XK_qkMqmiMJlIGAcy5D2oZFzkUCi-GPqazIE_G0eaCa30aP_7bc8hoctjWaDJe7XYMXN1uHBDXHFdVhrzVbF3rXa2u-fwNfxORpQ9smdnrdBVzM26s6nMSTwbOhoWwVbYE2u6krTCGWDuiYxgqbGYFFTJMh8UbFheUYLMmxPl9VT-HwrX_wMerP5zG0A04XjzkuBPgBSZJPhk8KbKDeJEx7R3oetrufVxVJFRKH3RQBRNwDSh11CxXUVkv5uCublqWotifLaOeNdLJDIJsgeRagzHctCkG-vs6QPbwlTigxUXWqr2zgLfFOS-lIDQTYdiSHW3OwwpVrLVanfgHr-79uv4d7-8dGhOhxPDl7AfU55kZvT7JvQq8uFewl37ff6rCpftYOEwbfbBuAVk-1RVQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUJwAFpAXSjgQxFwiEjsfDgHhJYuK1aF1UqAVLgY27GrHrrbJlkQf41fx0zWKeUAtx645OA4Vpw8j5_tmTcAe7ywJuFaRqmwdImLqHQui5AbuywveaUr3yWbKGYzeXhYzjfgZx8LQ26VvU3sDHW1tLRH_kIkeVYUBcnM-uAWMR9PXp2eRZRBik5a-3Qaa4gcuB_fcfnWvJyO8V8_4Xzy5uP-2yhkGIisyJM2Mj43onJ55nwmrS81TpDkrYXFmclszE1aYld4pj2J1OS8zKwXVlfWFI4jlcF2r8AmUvKUD2BzPn0__3y-w0OKmzKJ10GBQpQxnUkj_yKxRPnHNNhlC_jbnNBNdJNb__Mnug03A71mo_V42IINt9iGGxdEF7dhK5izhj0LmtvP78CX6QkaVvbBHZ2EYKwFm_R-awyJPRs7Om7BFliXw7rRNHLZqG1JpKCrMVq1FCGyXDVsXB_TRg3b13VzFz5dSo_vwWCxXLgdYLpy3PlS4toAqbPJ8UnpTVKY1EmPo2AIez0K1OlaXUThqozAoi6AZQivCSHnVUgSvCtY1kcqWBjltXPGOyGR4KbIKmWscy3KStKaX-fpEJ4SvhQZrrbWVof4C3xTkgBTI0m2Hgkj1tzt8aWCRWvUb3Dd__ftx3ANUafeTWcHD-A6p3TJnZP7LgzaeuUewlX7rT1u6kdhvDD4etn4-wVEVloV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Segmentation+Framework+for+Detecting+Adversarial+Attacks+for+Autonomous+Driving+Cars&rft.jtitle=Applied+sciences&rft.au=Sattout%2C+Ahmad+Fakhr+Aldeen&rft.au=Chehab%2C+Ali&rft.au=Mohanna%2C+Ammar&rft.au=Tajeddine%2C+Razane&rft.date=2025-02-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=3&rft.spage=1328&rft_id=info:doi/10.3390%2Fapp15031328&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15031328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon