Digital Twin—Cyber Replica of Physical Things: Architecture, Applications and Future Research Directions
The Internet of Things (IoT) connects massive smart devices to collect big data and carry out the monitoring and control of numerous things in cyber-physical systems (CPS). By leveraging machine learning (ML) and deep learning (DL) techniques to analyze the collected data, physical systems can be mo...
Uložené v:
| Vydané v: | Future internet Ročník 14; číslo 2; s. 64 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.02.2022
|
| Predmet: | |
| ISSN: | 1999-5903, 1999-5903 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Internet of Things (IoT) connects massive smart devices to collect big data and carry out the monitoring and control of numerous things in cyber-physical systems (CPS). By leveraging machine learning (ML) and deep learning (DL) techniques to analyze the collected data, physical systems can be monitored and controlled effectively. Along with the development of IoT and data analysis technologies, a number of CPS (smart grid, smart transportation, smart manufacturing, smart cities, etc.) adopt IoT and data analysis technologies to improve their performance and operations. Nonetheless, directly manipulating or updating the real system has inherent risks. Thus, creating a digital clone of a real physical system, denoted as a Digital Twin (DT), is a viable strategy. Generally speaking, a DT is a data-driven software and hardware emulation platform, which is a cyber replica of physical systems. Meanwhile, a DT describes a specific physical system and tends to achieve the functions and use cases of physical systems. Since DT is a complex digital system, finding a way to effectively represent a variety of things in timely and efficient manner poses numerous challenges to the networking, computing, and data analytics for IoT. Furthermore, the design of a DT for IoT systems must consider numerous exceptional requirements (e.g., latency, reliability, safety, scalability, security, and privacy). To address such challenges, the thoughtful design of DTs offers opportunities for novel and interdisciplinary research efforts. To address the aforementioned problems and issues, in this paper, we first review the architectures of DTs, data representation, and communication protocols. We then review existing efforts on applying DT into IoT data-driven smart systems, including the smart grid, smart transportation, smart manufacturing, and smart cities. Further, we summarize the existing challenges from CPS, data science, optimization, and security and privacy perspectives. Finally, we outline possible future research directions from the perspectives of performance, new DT-driven services, model and learning, and security and privacy. |
|---|---|
| AbstractList | The Internet of Things (IoT) connects massive smart devices to collect big data and carry out the monitoring and control of numerous things in cyber-physical systems (CPS). By leveraging machine learning (ML) and deep learning (DL) techniques to analyze the collected data, physical systems can be monitored and controlled effectively. Along with the development of IoT and data analysis technologies, a number of CPS (smart grid, smart transportation, smart manufacturing, smart cities, etc.) adopt IoT and data analysis technologies to improve their performance and operations. Nonetheless, directly manipulating or updating the real system has inherent risks. Thus, creating a digital clone of a real physical system, denoted as a Digital Twin (DT), is a viable strategy. Generally speaking, a DT is a data-driven software and hardware emulation platform, which is a cyber replica of physical systems. Meanwhile, a DT describes a specific physical system and tends to achieve the functions and use cases of physical systems. Since DT is a complex digital system, finding a way to effectively represent a variety of things in timely and efficient manner poses numerous challenges to the networking, computing, and data analytics for IoT. Furthermore, the design of a DT for IoT systems must consider numerous exceptional requirements (e.g., latency, reliability, safety, scalability, security, and privacy). To address such challenges, the thoughtful design of DTs offers opportunities for novel and interdisciplinary research efforts. To address the aforementioned problems and issues, in this paper, we first review the architectures of DTs, data representation, and communication protocols. We then review existing efforts on applying DT into IoT data-driven smart systems, including the smart grid, smart transportation, smart manufacturing, and smart cities. Further, we summarize the existing challenges from CPS, data science, optimization, and security and privacy perspectives. Finally, we outline possible future research directions from the perspectives of performance, new DT-driven services, model and learning, and security and privacy. |
| Author | Qian, Mian Liu, Xing Qian, Cheng Ripley, Colin Yu, Wei Liang, Fan |
| Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0003-1681-8512 surname: Qian fullname: Qian, Cheng – sequence: 2 givenname: Xing surname: Liu fullname: Liu, Xing – sequence: 3 givenname: Colin orcidid: 0000-0002-4276-8013 surname: Ripley fullname: Ripley, Colin – sequence: 4 givenname: Mian orcidid: 0000-0003-3584-4468 surname: Qian fullname: Qian, Mian – sequence: 5 givenname: Fan surname: Liang fullname: Liang, Fan – sequence: 6 givenname: Wei surname: Yu fullname: Yu, Wei |
| BookMark | eNptkc9OGzEQxi0EEhBy4Qks9VaR1l7_W_cWBWiRkEAonK1ZM5s42q6DvVGVWx-CJ-yT1CFVWyF8mZG_n7-x5jslh33skZBzzj4JYdnnNnDJKsa0PCAn3Fo7UZaJw__6YzLOecXKEbbS2pyQ1WVYhAE6Ov8R-l8_X2bbBhN9wHUXPNDY0vvlNpe2AMvQL_IXOk1-GQb0wybhBZ2uX8khxD5T6J_o9WYnFIeMUEh6GVJhd_IZOWqhyzj-U0fk8fpqPvs2ub37ejOb3k680HyYNCgbFCAbxT3XQimDSja61sDQoLcWassFCFlrLbQB0xpvsPagQaIBK0bkZu_7FGHl1il8h7R1EYJ7vYhp4SANwXfolGGC-xqg0Y206EHUaE1lpK6UVsV_RD7svdYpPm8wD24VN6kv33eVFpURSnBeqI97yqeYc8L271TO3C4a9y-aArM3sC8B7DY0JAjde09-AzA5kns |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3520003 crossref_primary_10_3390_computers14080321 crossref_primary_10_3390_fi15070223 crossref_primary_10_3390_s23042349 crossref_primary_10_3390_infrastructures9120225 crossref_primary_10_1080_0951192X_2025_2556440 crossref_primary_10_1016_j_ecolmodel_2025_111091 crossref_primary_10_1016_j_envsoft_2025_106559 crossref_primary_10_3390_pr12040787 crossref_primary_10_1016_j_procs_2024_09_352 crossref_primary_10_3390_biomimetics10100640 crossref_primary_10_1016_j_jii_2025_100851 crossref_primary_10_1007_s10207_025_01113_0 crossref_primary_10_3390_en16145525 crossref_primary_10_3390_app15137049 crossref_primary_10_1049_smc2_70006 crossref_primary_10_1108_BIJ_12_2024_1143 crossref_primary_10_3390_asi5040065 crossref_primary_10_1109_TCE_2023_3332099 crossref_primary_10_3390_fi17090385 crossref_primary_10_7769_gesec_v15i9_4160 crossref_primary_10_1016_j_jag_2022_102915 crossref_primary_10_1016_j_joitmc_2024_100297 crossref_primary_10_1088_1742_6596_2695_1_012002 crossref_primary_10_1016_j_tra_2023_103686 crossref_primary_10_1080_07366981_2025_2500799 crossref_primary_10_1007_s41872_025_00345_2 crossref_primary_10_1002_dac_5878 crossref_primary_10_1002_cpe_8334 crossref_primary_10_1109_TITS_2022_3196166 crossref_primary_10_3390_rs16111939 crossref_primary_10_1007_s12008_025_02410_7 crossref_primary_10_1007_s10462_024_10805_3 crossref_primary_10_3389_fnano_2025_1627210 crossref_primary_10_1016_j_iot_2023_100991 crossref_primary_10_1109_ACCESS_2025_3531947 crossref_primary_10_1007_s42452_024_06206_4 crossref_primary_10_1109_ACCESS_2024_3439471 crossref_primary_10_1007_s41064_024_00301_2 crossref_primary_10_3390_eng6050090 crossref_primary_10_3390_fi15110359 crossref_primary_10_3390_fi15020075 crossref_primary_10_3390_en16134853 crossref_primary_10_1016_j_iot_2023_100795 crossref_primary_10_1109_JIOT_2022_3163894 crossref_primary_10_3390_en16114324 crossref_primary_10_3390_fi16040134 crossref_primary_10_1016_j_cie_2024_110616 crossref_primary_10_3390_s22176444 crossref_primary_10_3390_machines13010037 crossref_primary_10_3390_s23125646 crossref_primary_10_1016_j_foodcont_2025_111378 crossref_primary_10_1186_s12544_025_00713_0 crossref_primary_10_3390_computers14090356 crossref_primary_10_1016_j_measen_2022_100661 crossref_primary_10_1038_s41598_025_13579_y crossref_primary_10_1016_j_comcom_2025_108158 crossref_primary_10_3390_electronics13163303 crossref_primary_10_1109_ACCESS_2023_3289536 crossref_primary_10_1109_JIOT_2023_3311690 |
| Cites_doi | 10.1109/IC3INA.2014.7042600 10.3390/s16111884 10.1109/ACCESS.2018.2793265 10.1109/ACCESS.2018.2884906 10.1109/MCOM.2017.1600240 10.1109/IPCCC51483.2021.9679420 10.1109/JIOT.2014.2312291 10.1016/j.procir.2013.05.002 10.1109/TII.2014.2300753 10.1108/00220410510632040 10.1109/NAPS46351.2019.9000371 10.1109/COMST.2018.2844341 10.1016/j.ijpe.2019.01.004 10.1109/COMST.2014.2320093 10.1007/978-3-030-18732-3_5 10.1109/ACCESS.2019.2920763 10.1016/j.renene.2019.08.092 10.23919/ITUK50268.2020.9303189 10.1109/ICMA52036.2021.9512665 10.1145/2740908.2743920 10.1109/NAPS50074.2021.9449682 10.1109/SGC52076.2020.9335750 10.1109/DTPI52967.2021.9540161 10.1109/ICITECH.2017.8079928 10.1109/ACCESS.2016.2529723 10.1016/j.procir.2018.03.192 10.1109/COMST.2017.2736886 10.1109/ICC.2018.8422107 10.1007/978-3-319-32156-1_5 10.1109/ACCESS.2019.2950507 10.1109/TII.2018.2873186 10.1109/ACCESS.2020.3045856 10.3390/su12093658 10.1016/j.procir.2016.06.108 10.1007/978-3-030-18732-3_2 10.1007/s12652-018-0881-5 10.1109/WiSNet.2013.6488632 10.1073/pnas.1707462114 10.1109/ICC40277.2020.9148758 10.1109/TKDE.2009.191 10.1109/ACCESS.2020.2970143 10.1109/TITS.2020.3009455 10.3390/electronics8080822 10.1016/j.comnet.2018.07.017 10.1007/978-3-319-45117-6_33 10.1016/j.ifacol.2018.08.474 10.1109/ACCESS.2021.3052759 10.1109/TSG.2020.3000958 10.1109/IoTSMS.2018.8554494 10.1109/COMST.2018.2881008 10.1109/JIOT.2016.2645125 10.3846/20294913.2016.1266530 10.1109/MNET.2018.1700349 10.1108/9781787696136 10.1109/ENERGYCON.2018.8398846 10.1016/j.jmsy.2020.06.010 10.3390/ijgi9040240 10.1109/ACCESS.2018.2830661 10.1109/ICESC51422.2021.9532619 10.1109/TITS.2017.2778939 10.3390/fi11030066 10.3390/machines9090193 10.1007/978-3-030-18732-3_1 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00020 10.1109/JSAC.2020.2980909 10.1016/j.trpro.2021.02.152 10.1080/00207543.2018.1443229 10.1109/COMST.2019.2938259 10.1109/APCC47188.2019.9026522 10.1109/ACCESS.2017.2756069 10.3390/su13063386 10.1109/JIOT.2016.2579198 10.1109/ACCESS.2019.2948912 10.3390/su13042234 10.1016/j.mfglet.2018.02.006 10.3390/app11114879 10.1109/ICPS48405.2020.9274723 10.1016/j.cirpj.2020.02.002 10.1109/ICUMT48472.2019.8970868 10.1029/2001GC000252 10.3390/su132313322 10.1109/ACCESS.2019.2931659 10.1109/EEEIC/ICPSEurope49358.2020.9160554 10.1007/978-3-030-18732-3_3 10.1109/JIOT.2018.2884485 10.1007/978-3-030-27477-1_13 10.1016/j.apenergy.2019.114039 10.1109/MIC.2021.3056923 10.1109/IWCMC.2016.7577209 10.1145/1952982.1952995 10.3390/act10120318 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.3390/fi14020064 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Agriculture |
| EISSN | 1999-5903 |
| ExternalDocumentID | oai_doaj_org_article_57031c8aab6b49eca38e972746256566 10_3390_fi14020064 |
| GroupedDBID | -DT .4I 5VS 7WY 8FE 8FG 8FL AADQD AAFWJ AAKPC AAYXX ABDBF ABUWG ACIHN ADBBV ADMLS AEAQA AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z EAP EBS EJD ESX FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K60 K6V K6~ K7- KQ8 M0C MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQBIZ PQBZA PQGLB PQQKQ PROAC RNS TR2 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c361t-be4be3a4b51c163557e54b686a0e7ec99a8913a34866367a7f7c7e8ca6a4e7a93 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 81 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000920147100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-5903 |
| IngestDate | Fri Oct 03 12:52:20 EDT 2025 Sun Nov 09 08:14:31 EST 2025 Sat Nov 29 07:09:47 EST 2025 Tue Nov 18 22:18:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-be4be3a4b51c163557e54b686a0e7ec99a8913a34866367a7f7c7e8ca6a4e7a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4276-8013 0000-0003-3584-4468 0000-0003-1681-8512 |
| OpenAccessLink | https://www.proquest.com/docview/2632735311?pq-origsite=%requestingapplication% |
| PQID | 2632735311 |
| PQPubID | 2032396 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_57031c8aab6b49eca38e972746256566 proquest_journals_2632735311 crossref_primary_10_3390_fi14020064 crossref_citationtrail_10_3390_fi14020064 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Future internet |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_94 ref_93 Liang (ref_19) 2018; 32 ref_92 Lu (ref_86) 2020; 56 ref_91 ref_90 Hatcher (ref_48) 2021; 9 ref_14 ref_13 ref_12 (ref_47) 2018; 144 ref_99 ref_96 ref_95 Haag (ref_44) 2018; 15 Hatcher (ref_15) 2018; 6 Frank (ref_80) 2019; 210 Guo (ref_78) 2021; Volume 2083 Liang (ref_16) 2019; 7 ref_22 ref_21 Tao (ref_89) 2017; 5 Dileep (ref_67) 2020; 146 Xu (ref_1) 2014; 10 Guan (ref_24) 2015; 8 ref_29 ref_27 Tao (ref_34) 2018; 15 ref_26 Du (ref_11) 2019; 21 Chen (ref_23) 2009; 33 Deng (ref_98) 2021; 6 Liu (ref_6) 2017; 55 ref_71 ref_70 ref_79 ref_77 ref_76 ref_75 Stankovic (ref_2) 2014; 1 Aceto (ref_31) 2019; 21 Qi (ref_36) 2018; 6 ref_83 ref_82 Liu (ref_46) 2005; 61 ref_88 ref_84 Saad (ref_39) 2020; 11 Xu (ref_7) 2018; 6 Sun (ref_10) 2016; 4 ref_50 Komninos (ref_4) 2014; 16 ref_58 ref_57 ref_54 ref_53 ref_52 ref_51 Jiang (ref_73) 2018; 19 Xu (ref_5) 2017; 4 Shi (ref_20) 2016; 3 ref_59 Jones (ref_45) 2020; 29 ref_61 Schrotter (ref_103) 2020; 88 Autiosalo (ref_55) 2020; 8 ref_69 Rudskoy (ref_74) 2021; 54 Bird (ref_41) 2003; 4 ref_68 Cagnano (ref_60) 2020; 258 Liu (ref_25) 2011; 14 ref_65 ref_64 ref_63 ref_62 Kunath (ref_81) 2018; 72 Leng (ref_35) 2019; 10 Rasheed (ref_43) 2020; 8 Zhou (ref_66) 2019; 5 Tzanis (ref_38) 2020; Volume 1 Mahmud (ref_8) 2017; 4 Pan (ref_107) 2010; 22 ref_32 Mohammadi (ref_18) 2018; 20 Tao (ref_33) 2019; 57 Autiosalo (ref_56) 2020; 8 Xu (ref_105) 2020; 38 ref_37 Liu (ref_3) 2019; 7 Wu (ref_17) 2019; 6 Gharaibeh (ref_97) 2017; 19 Walter (ref_28) 2017; 114 Chen (ref_72) 2022; 23 ref_104 Brenner (ref_87) 2016; 54 Hu (ref_85) 2013; 7 ref_100 ref_102 ref_40 ref_101 Kritzinger (ref_30) 2018; 51 ref_49 ref_9 Liang (ref_106) 2019; 7 Remeikiene (ref_42) 2018; 24 |
| References_xml | – ident: ref_13 doi: 10.1109/IC3INA.2014.7042600 – ident: ref_29 doi: 10.3390/s16111884 – volume: 6 start-page: 3585 year: 2018 ident: ref_36 article-title: Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2793265 – volume: 6 start-page: 78238 year: 2018 ident: ref_7 article-title: A Survey on Industrial Internet of Things: A Cyber-Physical Systems Perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2884906 – volume: 55 start-page: 26 year: 2017 ident: ref_6 article-title: Exploring Data Validity in Transportation Systems for Smart Cities publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1600240 – ident: ref_22 doi: 10.1109/IPCCC51483.2021.9679420 – ident: ref_68 – volume: 1 start-page: 3 year: 2014 ident: ref_2 article-title: Research Directions for the Internet of Things publication-title: Internet Things J. IEEE doi: 10.1109/JIOT.2014.2312291 – volume: 7 start-page: 3 year: 2013 ident: ref_85 article-title: Evolving Paradigms of Manufacturing: From Mass Production to Mass Customization and Personalization publication-title: Procedia CIRP doi: 10.1016/j.procir.2013.05.002 – volume: 10 start-page: 2233 year: 2014 ident: ref_1 article-title: Internet of Things in Industries: A Survey publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2014.2300753 – volume: 61 start-page: 700 year: 2005 ident: ref_46 article-title: Reading behavior in the digital environment: Changes in reading behavior over the past ten years publication-title: J. Doc. doi: 10.1108/00220410510632040 – ident: ref_40 doi: 10.1109/NAPS46351.2019.9000371 – volume: 20 start-page: 2923 year: 2018 ident: ref_18 article-title: Deep Learning for IoT Big Data and Streaming Analytics: A Survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2844341 – volume: 210 start-page: 15 year: 2019 ident: ref_80 article-title: Industry 4.0 technologies: Implementation patterns in manufacturing companies publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2019.01.004 – volume: 16 start-page: 1933 year: 2014 ident: ref_4 article-title: Survey in Smart Grid and Smart Home Security: Issues, Challenges and Countermeasures publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2014.2320093 – ident: ref_95 doi: 10.1007/978-3-030-18732-3_5 – volume: 7 start-page: 79523 year: 2019 ident: ref_3 article-title: Secure Internet of Things (IoT)-Based Smart-World Critical Infrastructures: Survey, Case Study and Research Opportunities publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920763 – volume: 146 start-page: 2589 year: 2020 ident: ref_67 article-title: A survey on grid technologies and applications publication-title: Renew. Energy doi: 10.1016/j.renene.2019.08.092 – ident: ref_65 doi: 10.23919/ITUK50268.2020.9303189 – ident: ref_59 doi: 10.1109/ICMA52036.2021.9512665 – ident: ref_62 – ident: ref_96 doi: 10.1145/2740908.2743920 – ident: ref_70 doi: 10.1109/NAPS50074.2021.9449682 – ident: ref_71 doi: 10.1109/SGC52076.2020.9335750 – ident: ref_76 doi: 10.1109/DTPI52967.2021.9540161 – ident: ref_50 doi: 10.1109/ICITECH.2017.8079928 – volume: 4 start-page: 766 year: 2016 ident: ref_10 article-title: Internet of Things and Big Data Analytics for Smart and Connected Communities publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2529723 – volume: 33 start-page: 1 year: 2009 ident: ref_23 article-title: Survey on smart grid technology publication-title: Power Syst. Technol. – volume: 72 start-page: 225 year: 2018 ident: ref_81 article-title: Integrating the Digital Twin of the manufacturing system into a decision support system for improving the order management process publication-title: Procedia Cirp doi: 10.1016/j.procir.2018.03.192 – volume: 19 start-page: 2456 year: 2017 ident: ref_97 article-title: Smart Cities: A Survey on Data Management, Security, and Enabling Technologies publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2736886 – ident: ref_21 doi: 10.1109/ICC.2018.8422107 – ident: ref_32 doi: 10.1007/978-3-319-32156-1_5 – volume: 8 start-page: 1193 year: 2020 ident: ref_56 article-title: A Feature-Based Framework for Structuring Industrial Digital Twins publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950507 – volume: 15 start-page: 2405 year: 2018 ident: ref_34 article-title: Digital twin in industry: State-of-the-art publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2873186 – volume: 8 start-page: 228675 year: 2020 ident: ref_55 article-title: Data Link for the Creation of Digital Twins publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3045856 – ident: ref_90 doi: 10.3390/su12093658 – volume: 54 start-page: 227 year: 2016 ident: ref_87 article-title: A Seamless Convergence of the Digital and Physical Factory Aiming in Personalized Product Emergence Process (PPEP) for Smart Products within ESB Logistics Learning Factory at Reutlingen University publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.06.108 – ident: ref_93 doi: 10.1007/978-3-030-18732-3_2 – volume: 10 start-page: 1155 year: 2019 ident: ref_35 article-title: Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-018-0881-5 – ident: ref_14 doi: 10.1109/WiSNet.2013.6488632 – volume: 4 start-page: 192 year: 2017 ident: ref_5 article-title: Toward Integrating Distributed Energy Resources and Storage Devices in Smart Grid publication-title: IEEE Internet Things J. – volume: 114 start-page: 6148 year: 2017 ident: ref_28 article-title: Opinion: Smart farming is key to developing sustainable agriculture publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1707462114 – ident: ref_75 – ident: ref_9 doi: 10.1109/ICC40277.2020.9148758 – volume: 22 start-page: 1345 year: 2010 ident: ref_107 article-title: A Survey on Transfer Learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 8 start-page: 21980 year: 2020 ident: ref_43 article-title: Digital twin: Values, challenges and enablers from a modeling perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2970143 – volume: 23 start-page: 200 year: 2022 ident: ref_72 article-title: Routing With Traffic Awareness and Link Preference in Internet of Vehicles publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3009455 – ident: ref_91 doi: 10.3390/electronics8080822 – ident: ref_101 – volume: 144 start-page: 17 year: 2018 ident: ref_47 article-title: Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues publication-title: Comput. Netw. doi: 10.1016/j.comnet.2018.07.017 – ident: ref_84 doi: 10.1007/978-3-319-45117-6_33 – volume: 51 start-page: 1016 year: 2018 ident: ref_30 article-title: Digital Twin in manufacturing: A categorical literature review and classification publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.474 – volume: 9 start-page: 15778 year: 2021 ident: ref_48 article-title: Towards Efficient and Intelligent Internet of Things Search Engine publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3052759 – volume: 11 start-page: 5138 year: 2020 ident: ref_39 article-title: On the implementation of IoT-based digital twin for networked microgrids resiliency against cyber attacks publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.3000958 – ident: ref_57 doi: 10.1109/IoTSMS.2018.8554494 – volume: 21 start-page: 1533 year: 2019 ident: ref_11 article-title: The Sensable City: A Survey on the Deployment and Management for Smart City Monitoring publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2881008 – volume: 4 start-page: 2009 year: 2017 ident: ref_8 article-title: A Wireless Health Monitoring System Using Mobile Phone Accessories publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2016.2645125 – ident: ref_104 – volume: 24 start-page: 696 year: 2018 ident: ref_42 article-title: The definition of digital shadow economy publication-title: Technol. Econ. Dev. Econ. doi: 10.3846/20294913.2016.1266530 – volume: 32 start-page: 8 year: 2018 ident: ref_19 article-title: Deep Learning Based Inference of Private Information Using Embedded Sensors in Smart Devices publication-title: IEEE Netw. doi: 10.1109/MNET.2018.1700349 – ident: ref_102 doi: 10.1108/9781787696136 – ident: ref_37 doi: 10.1109/ENERGYCON.2018.8398846 – volume: 56 start-page: 312 year: 2020 ident: ref_86 article-title: Smart manufacturing process and system automation—A critical review of the standards and envisioned scenarios publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.06.010 – ident: ref_100 doi: 10.3390/ijgi9040240 – ident: ref_52 – volume: 6 start-page: 24411 year: 2018 ident: ref_15 article-title: A Survey of Deep Learning: Platforms, Applications and Emerging Research Trends publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2830661 – ident: ref_63 doi: 10.1109/ICESC51422.2021.9532619 – ident: ref_69 – volume: 19 start-page: 3305 year: 2018 ident: ref_73 article-title: A Joint Multi-Criteria Utility-Based Network Selection Approach for Vehicle-to-Infrastructure Networking publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2778939 – ident: ref_49 doi: 10.3390/fi11030066 – ident: ref_77 doi: 10.3390/machines9090193 – ident: ref_92 doi: 10.1007/978-3-030-18732-3_1 – ident: ref_26 doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00020 – volume: 38 start-page: 885 year: 2020 ident: ref_105 article-title: Reinforcement Learning-Based Control and Networking Co-Design for Industrial Internet of Things publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.2980909 – volume: 54 start-page: 927 year: 2021 ident: ref_74 article-title: Digital Twins in the Intelligent Transport Systems publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2021.02.152 – volume: 8 start-page: 27 year: 2015 ident: ref_24 article-title: A Comprehensive Survey of False Data Injection in Smart Grid publication-title: Int. J. Wire. Mob. Comput. – volume: 57 start-page: 3935 year: 2019 ident: ref_33 article-title: Digital twin-driven product design framework publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2018.1443229 – volume: 21 start-page: 3467 year: 2019 ident: ref_31 article-title: A Survey on Information and Communication Technologies for Industry 4.0: State-of-the-Art, Taxonomies, Perspectives, and Challenges publication-title: Commun. Surv. Tutor. doi: 10.1109/COMST.2019.2938259 – ident: ref_64 doi: 10.1109/APCC47188.2019.9026522 – volume: 5 start-page: 20418 year: 2017 ident: ref_89 article-title: Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2756069 – ident: ref_99 doi: 10.3390/su13063386 – volume: 88 start-page: 99 year: 2020 ident: ref_103 article-title: The digital twin of the city of Zurich for urban planning publication-title: PFG-Photogramm. Remote Sens. Geoinf. Sci. – volume: 3 start-page: 637 year: 2016 ident: ref_20 article-title: Edge Computing: Vision and Challenges publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2016.2579198 – volume: 7 start-page: 158126 year: 2019 ident: ref_16 article-title: Machine Learning for Security and the Internet of Things: The Good, the Bad, and the Ugly publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2948912 – ident: ref_61 doi: 10.3390/su13042234 – volume: 15 start-page: 64 year: 2018 ident: ref_44 article-title: Digital twin–Proof of concept publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2018.02.006 – ident: ref_58 doi: 10.3390/app11114879 – volume: 6 start-page: 125 year: 2021 ident: ref_98 article-title: A Systematic Review of a Digital Twin City: A New Pattern of Urban Governance toward Smart Cities publication-title: J. Manag. Sci. Eng. – volume: Volume 1 start-page: 393 year: 2020 ident: ref_38 article-title: A hybrid cyber physical digital twin approach for smart grid fault prediction publication-title: Proceedings of the 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS) doi: 10.1109/ICPS48405.2020.9274723 – ident: ref_79 – volume: 29 start-page: 36 year: 2020 ident: ref_45 article-title: Characterising the Digital Twin: A systematic literature review publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2020.02.002 – ident: ref_51 doi: 10.1109/ICUMT48472.2019.8970868 – volume: 4 start-page: 1 year: 2003 ident: ref_41 article-title: An updated digital model of plate boundaries publication-title: Geochem. Geophys. Geosystems doi: 10.1029/2001GC000252 – ident: ref_27 doi: 10.3390/su132313322 – ident: ref_54 – volume: 7 start-page: 104673 year: 2019 ident: ref_106 article-title: Search Engine for the Internet of Things: Lessons From Web Search, Vision, and Opportunities publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2931659 – ident: ref_12 doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160554 – volume: Volume 2083 start-page: 032022 year: 2021 ident: ref_78 article-title: 3D Digital Twin of Intelligent Transportation System based on Road-Side Sensing publication-title: Proceedings of the Journal of Physics: Conference Series – ident: ref_94 doi: 10.1007/978-3-030-18732-3_3 – volume: 5 start-page: 391 year: 2019 ident: ref_66 article-title: Digital twin framework and its application to power grid online analysis publication-title: CSEE J. Power Energy Syst. – volume: 6 start-page: 1928 year: 2019 ident: ref_17 article-title: A Feature-Based Learning System for Internet of Things Applications publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2884485 – ident: ref_82 doi: 10.1007/978-3-030-27477-1_13 – volume: 258 start-page: 114039 year: 2020 ident: ref_60 article-title: Microgrids: Overview and guidelines for practical implementations and operation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114039 – ident: ref_53 doi: 10.1109/MIC.2021.3056923 – ident: ref_83 doi: 10.1109/IWCMC.2016.7577209 – volume: 14 start-page: 13 year: 2011 ident: ref_25 article-title: False data injection attacks against state estimation in electric power grids publication-title: ACM Trans. Inf. Syst. Secur. doi: 10.1145/1952982.1952995 – ident: ref_88 doi: 10.3390/act10120318 |
| SSID | ssj0000392667 |
| Score | 2.55174 |
| SecondaryResourceType | review_article |
| Snippet | The Internet of Things (IoT) connects massive smart devices to collect big data and carry out the monitoring and control of numerous things in cyber-physical... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 64 |
| SubjectTerms | Agricultural production Agriculture Big Data CAD Communication Computer aided design Cyber-physical systems Data analysis Data collection Data science Deep learning Digital Twin Digital twins Electronic devices Energy consumption Farming Humidity Interdisciplinary studies Internet of Things Internet of Things (IoT) Machine learning Manufacturing Network latency Optimization Privacy Security Sensors Simulation Smart cities Smart grid smart-world applications System effectiveness Transportation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELZQxQAD4lcUCrIECxJR49q1HbZSqBhQ1aGgbtHZcVAQSlFbQGw8BE_Ik2A7aQkCiYU1OcXR-Xz3Xe7yHULHNIS0RVIWJAkPA8Y5BCAJCYAzpV2EYb7L9_Za9PtyNIoGlVFfriesoAcuFNd0DFFESwDFFYuMBipNZIMus8DdYRHnfS3qqSRT3gfbsM-5KPhIqc3rm2lGXKoUcvYtAnmi_h9-2AeX3jpaK1Eh7hRvs4GWTL6JVitcgVvo_iK7cwM-8PAlyz_e3ruvykywxc_uqxsep3hQahwXozjPcKdSIzjFnUqlGkOe4J5nE8Hz1jtcOj97exvd9C6H3augHJQQaMrJLFCGKUOBqTbRxCEIYdpMcckhNMLoKAJXjATKpMUXXIBIhRZGauDAjICI7qBaPs7NLsIR1yxUQrWBpkzbdIMbFRrNk4TYh1JZRydz5cW6ZBF3wyweYptNOEXHX4quo6OF7GPBnfGr1Lnbg4WE47v2F6wVxKUVxH9ZQR015jsYl4dwGjsqekGtkyF7_7HGPlppuX8ffMt2A9VmkydzgJb18yybTg69_X0Cqw_fBw priority: 102 providerName: Directory of Open Access Journals |
| Title | Digital Twin—Cyber Replica of Physical Things: Architecture, Applications and Future Research Directions |
| URI | https://www.proquest.com/docview/2632735311 https://doaj.org/article/57031c8aab6b49eca38e972746256566 |
| Volume | 14 |
| WOSCitedRecordID | wos000920147100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: 7WY dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: M0C dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH9iGwc4AOOPKBuVpXFBwlpcu3ayC-rKqiFYFaEBG5fIdpyqaEq3tDDtxofgE_JJ8HPdrhOIC5dIia0o0u_5_c_vAbzgia46rBK0LGVChZSa6pQxqqUwFi2MCF2-n96r4TA9OcnymHCbxrbKhU4MirqcWMyR7yKvuOJeYtjr8wuKU6OwuhpHaKzBBut0GMr5O0WXOZbEG38p1ZyVlPvofrcaMwyYEilu2KFA1_-HNg4mZnD_fz_uAdyLziXpzaVhE265-iHc7Y2aSLDh_N0KAeEj-PpmPMKpIeT4clz_-vGzf2VcQ7xTjqk8MqlIHmEk8_mee6S3Unh4RXor5W-i65IMAkUJWfTzkahR_fJj-Dg4OO4f0jh9gVou2YwaJ4zjWpguswzdEuW6wshU6sQpZ7NMY4VTc5F6p0UqrSpllUutllo4pTP-BNbrSe2eAsmkFYlRpqt5JayPYaQzibOyLJl_KU9b8HKBRWEjNTlOyDgrfIiCuBXXuLVgZ7n3fE7I8ddd-wjpcgeSaIcHk2ZUxDNZIPkYs6nWRhqROat56jLvzwkfE6Kb24LtBdpFPNnT4hrqZ_9e3oI7HfxVInR4b8P6rPnmnsNt-302njZtWFOfT9uwsX8wzD-0QyagHYTXX4-Svr_m3S9-PX97lJ_-BsU6-Xc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD6aBhJwwT-iMMAScIFENLt27QQJodJRbVqpdlHQ7oLtnFSdpnSkhWl3PATPwUPxJPjkpysCcbcLLpNYkRJ_Pj8-x98H8Exym3dFrqIs0zxSWtvIxkJEVivnycOoqsv348iMx_HhYXKwAT_aszDUVtnaxMpQZ3NPe-TbxCtuZECMeHPyOSLVKKquthIaNSz28ew0pGyL13s7YX6fd7vDd5PBbtSoCkRearGMHCqH0irXE16QuzXYU07H2nI06JPEUuXOShUHZ6yNNbnxBmNvtVVoLJEvBZN_SamwHKhVkA9Wezo8BBtam5oFVcqEb-czQQka1-o3v1fJA_xh_SuXNrzxv_2Mm3C9CZ5Zv0b7LdjA4jZc60_LhkAEw9UaweIdONqZTUkVhU1OZ8XPb98HZw5LFpIO2qpk85wdNDBltX7pK9ZfK6y8ZP218j6zRcaGFQULa_sVWeMxwuO78OFCPv0ebBbzAu8DS7RX3BnXszJXPuRoGh1Hr7NMhJfKuAMv2rlPfUO9Tgogx2lIwQgn6TlOOvB0NfakJhz566i3BKHVCCIJr27My2na2JyUyNWEj6112qkEvZUxJiFeVSHnpTC-A1stutLGci3Sc2g9-PfjJ3Bld_J-lI72xvsP4WqXjoVU3exbsLksv-AjuOy_LmeL8nG1SBh8umgg_gJpyk9f |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD6atgnBBYw_UTaGJeACCatx7doJEkLdSsXUqerFQLsLtuNURVO6pd2m3fEQPA2Pw5PgkzhdEYi7XXCZ2IqU5PP5zvE5_g7ASx7pvMNyQbNMRlRIqamOGaNaCmORYURV5fv5UI1G8fFxMl6DH81ZGCyrbGxiZaizmcU98jbqiivuEcPaeSiLGPcH70_PKHaQwkxr006jhsjQXV368G3-7qDv__WrTmfw4Wj_Iw0dBqjlki2occI4roXpMsuQepXrCiNjqSOnnE0SjVk8zUXsiVkqrXJllYutllo4pVGIyZv_Dc_CXVxjQ0WX-zuRdzykVLUiKudJ1M6nDIO1SIrfOLBqFfAHE1T0Nrj3P3-YLbgbnGrSq1fBfVhzxQO405uUQVjE-asV4cWH8LU_nWC3FHJ0OS1-fvu-f2VcSXwwgluYZJaTcYAvqfuaviW9lYTLG9JbSfsTXWRkUEmzkKaOkQQm8cOP4NONvPpjWC9mhXsCJJFWREaZrua5sD52k85EzsosY_6hPG7B6wYHqQ2S7NgZ5CT1oRliJr3GTAteLOee1kIkf521h3BazkDx8OrGrJykwRalKLrGbKy1kUYkzmoeu8T7scLHwujet2CnQVoaLNo8vYbZ038PP4dbHn_p4cFouA23O3hapCpy34H1RXnunsGmvVhM5-VutV4IfLlpHP4C38VYBQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Twin%E2%80%94Cyber+Replica+of+Physical+Things%3A+Architecture%2C+Applications+and+Future+Research+Directions&rft.jtitle=Future+internet&rft.au=Cheng%2C+Qian&rft.au=Liu%2C+Xing&rft.au=Ripley%2C+Colin&rft.au=Qian%2C+Mian&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=1999-5903&rft.volume=14&rft.issue=2&rft.spage=64&rft_id=info:doi/10.3390%2Ffi14020064&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon |