A Topological-Indicators-Based k-Means Clustering Algorithm and Its Application in Time Series Data: A Case Study on Sea Level Variability in Peninsular Malaysia

Traditional k-means clustering is widely used to analyze regional and temporal variations in time series data, such as sea levels. However, its accuracy can be affected by limitations, particularly when applied to datasets with mixed groups or significant noise. In this study, we analyzed monthly se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 13; S. 46514 - 46533
Hauptverfasser: Lin, Zixin, Zulkepli, Nur Fariha Syaqina, Bin Mohd Kasihmuddin, Mohd Shareduwan, Gobithaasan, Rudrusamyr
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!