Analysis of Energy Efficient Scheduling of the Manufacturing Line with Finite Buffer Capacity and Machine Setup and Shutdown Times

The aim of this paper is to present a model of energy efficient scheduling for series production systems during operation, including setup and shutdown activities. The flow shop system together with setup, shutdown times and energy consumption are considered. Production tasks enter the system with e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energies (Basel) Ročník 14; číslo 21; s. 7446
Hlavní autori: Kampa, Adrian, Paprocka, Iwona
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.11.2021
Predmet:
ISSN:1996-1073, 1996-1073
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The aim of this paper is to present a model of energy efficient scheduling for series production systems during operation, including setup and shutdown activities. The flow shop system together with setup, shutdown times and energy consumption are considered. Production tasks enter the system with exponentially distributed interarrival times and are carried out according to the times assumed as predefined. Tasks arriving from one waiting queue are handled in the order set by the Multi Objective Immune Algorithm. Tasks are stored in a finite-capacity buffer if machines are busy, or setup activities are being performed. Whenever a production system is idle, machines are stopped according to shutdown times in order to save energy. A machine requires setup time before executing the first batch of jobs after the idle time. Scientists agree that turning off an idle machine is a common measure that is appropriate for all types of workshops, but usually requires more steps, such as setup and shutdown. Literature analysis shows that there is a research gap regarding multi-objective algorithms, as minimizing energy consumption is not the only factor affecting the total manufacturing cost—there are other factors, such as late delivery cost or early delivery cost with additional storage cost, which make the optimization of the total cost of the production process more complicated. Another goal is to develop previous scheduling algorithms and research framework for energy efficient scheduling. The impact of the input data on the production system performance and energy consumption for series production is investigated in serial, parallel or serial–parallel flows. Parallel flow of upcoming tasks achieves minimum values of makespan criterion. Serial and serial–parallel flows of arriving tasks ensure minimum cost of energy consumption. Parallel flow of arriving tasks ensures minimum values of the costs of tardiness or premature execution. Parallel flow or serial–parallel flow of incoming tasks allows one to implement schedules with tasks that are not delayed.
AbstractList The aim of this paper is to present a model of energy efficient scheduling for series production systems during operation, including setup and shutdown activities. The flow shop system together with setup, shutdown times and energy consumption are considered. Production tasks enter the system with exponentially distributed interarrival times and are carried out according to the times assumed as predefined. Tasks arriving from one waiting queue are handled in the order set by the Multi Objective Immune Algorithm. Tasks are stored in a finite-capacity buffer if machines are busy, or setup activities are being performed. Whenever a production system is idle, machines are stopped according to shutdown times in order to save energy. A machine requires setup time before executing the first batch of jobs after the idle time. Scientists agree that turning off an idle machine is a common measure that is appropriate for all types of workshops, but usually requires more steps, such as setup and shutdown. Literature analysis shows that there is a research gap regarding multi-objective algorithms, as minimizing energy consumption is not the only factor affecting the total manufacturing cost—there are other factors, such as late delivery cost or early delivery cost with additional storage cost, which make the optimization of the total cost of the production process more complicated. Another goal is to develop previous scheduling algorithms and research framework for energy efficient scheduling. The impact of the input data on the production system performance and energy consumption for series production is investigated in serial, parallel or serial–parallel flows. Parallel flow of upcoming tasks achieves minimum values of makespan criterion. Serial and serial–parallel flows of arriving tasks ensure minimum cost of energy consumption. Parallel flow of arriving tasks ensures minimum values of the costs of tardiness or premature execution. Parallel flow or serial–parallel flow of incoming tasks allows one to implement schedules with tasks that are not delayed.
Author Paprocka, Iwona
Kampa, Adrian
Author_xml – sequence: 1
  givenname: Adrian
  orcidid: 0000-0002-7442-4485
  surname: Kampa
  fullname: Kampa, Adrian
– sequence: 2
  givenname: Iwona
  orcidid: 0000-0002-3870-7509
  surname: Paprocka
  fullname: Paprocka, Iwona
BookMark eNptkU1rGzEQhkVJIWmaS36BoLeCU32sdlfH1DhpwKUH-77MSiOvzEZyJS3B1_7yruPSltK5zPDOM-_AzDtyEWJAQm45u5NSs08YeCV4U1X1G3LFta4XnDXy4q_6ktzkvGdzSMmllFfkx32A8Zh9ptHRVcC0O9KVc954DIVuzIB2Gn3YndplQPoVwuTAlCmdxLUPSF98GeiDD74g_Tw5h4ku4QDGlyOFYOcRM5y4DZbp8KpshqnY-BLo1j9jfk_eOhgz3vzK12T7sNouvyzW3x6flvfrhZE1L4tet42AliumlVQIDEH0BpvGGaG4stq1zipAw5hAxmwjUdat0z0HLSsrr8nT2dZG2HeH5J8hHbsIvnsVYtp1kIo3I3bCQYOtUE63fdWAhFb1VlstLZe9aOvZ68PZ65Di9wlz6fZxSvMlcyeUrpkUVa1m6uOZMinmnND93spZd_pY9-djM8z-gecDQvExlAR-_N_ITz14mo0
CitedBy_id crossref_primary_10_1155_2022_5056356
crossref_primary_10_3390_app132212261
crossref_primary_10_3390_sym16010063
crossref_primary_10_3390_en15228471
Cites_doi 10.1016/j.jclepro.2018.10.289
10.1016/j.jclepro.2018.03.254
10.1016/j.jclepro.2019.118276
10.1016/j.compind.2015.10.001
10.1109/ACCESS.2019.2908200
10.1016/j.ejor.2015.07.017
10.1080/00207543.2019.1660826
10.1080/00207543.2018.1501166
10.1109/ACCESS.2020.2982570
10.3390/su10030841
10.1177/1687814017695959
10.1080/00207543.2020.1715504
10.1016/j.asoc.2020.106949
10.1109/TSMC.2019.2916088
10.1007/s40747-019-00122-6
10.1016/j.promfg.2020.01.379
10.3390/en14144142
10.3390/su11010065
10.1002/nav.21830
10.4028/www.scientific.net/AMM.809-810.1360
10.1007/s00170-010-2642-2
10.1016/j.jclepro.2016.07.206
10.3390/en12112204
10.3390/app11167366
10.1016/j.cie.2019.106072
10.1016/j.jclepro.2013.12.024
10.3390/en13195034
10.3390/en13195177
10.3390/pr8121648
10.1155/2020/8870917
10.1016/j.swevo.2019.100557
10.1109/TII.2020.3043734
10.1109/ACCESS.2019.2924998
10.1016/j.jclepro.2016.06.161
10.1016/j.jclepro.2015.05.093
10.1016/j.ejor.2004.07.017
10.1109/TSMC.2017.2788879
10.3390/en14123620
10.3390/en12234448
10.4028/www.scientific.net/AMR.1036.885
10.3390/en14144341
10.3390/pr9010019
10.1016/j.jclepro.2020.123125
10.1016/j.omega.2019.102117
10.1016/j.cie.2020.106295
10.3103/S1068798X14040108
10.11591/eei.v10i3.2958
10.3390/en12244708
10.1016/j.swevo.2021.100858
10.3390/su8121268
10.3390/en14061569
10.3390/app10082862
10.1016/j.energy.2020.118420
10.1016/S0377-2217(99)00168-X
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en14217446
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_2fa7e825f98b47a3a85bd9d93d13b286
10_3390_en14217446
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-b9872a81509535ea0ea2bce77fc2515d9f8fd5aec002e00d73e368f9b1a934d3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000718543800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:43:31 EDT 2025
Mon Jun 30 07:30:48 EDT 2025
Sat Nov 29 07:12:39 EST 2025
Tue Nov 18 21:32:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-b9872a81509535ea0ea2bce77fc2515d9f8fd5aec002e00d73e368f9b1a934d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3870-7509
0000-0002-7442-4485
OpenAccessLink https://doaj.org/article/2fa7e825f98b47a3a85bd9d93d13b286
PQID 2596032465
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_2fa7e825f98b47a3a85bd9d93d13b286
proquest_journals_2596032465
crossref_primary_10_3390_en14217446
crossref_citationtrail_10_3390_en14217446
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Nouiri (ref_18) 2019; 58
Monteil (ref_19) 2018; 93
Wang (ref_28) 2021; 297
Saddikuti (ref_22) 2019; 39
Ho (ref_29) 2020; 59
ref_13
ref_12
Yan (ref_32) 2016; 137
ref_11
Kuznetsov (ref_15) 2014; 34
Zhou (ref_41) 2019; 7
ref_55
ref_10
ref_53
Wang (ref_36) 2021; 62
ref_51
Paprocka (ref_52) 2019; 11
Sihag (ref_7) 2020; 275
ref_59
Paprocka (ref_63) 2019; XI
Zhang (ref_38) 2019; 50
Kempa (ref_62) 2015; 809–810
ref_61
Wang (ref_45) 2018; 188
ref_60
Gao (ref_17) 2019; 6
Chen (ref_26) 2019; 137
Kong (ref_33) 2020; 8
Paprocka (ref_58) 2012; 12
Zhou (ref_14) 2016; 112
ref_20
Wu (ref_37) 2019; 94
Paprocka (ref_56) 2014; 1036
Liaw (ref_64) 2000; 124
Zhou (ref_27) 2020; 209
Ebrahimi (ref_42) 2020; 141
Meng (ref_34) 2018; 57
Cui (ref_21) 2019; 66
Jiang (ref_24) 2020; 2020
Jiang (ref_43) 2019; 7
Mousavi (ref_48) 2017; 104
Wang (ref_66) 2010; 51
Arroyo (ref_65) 2005; 167
Wang (ref_39) 2018; 50
Shoeb (ref_54) 2017; 7
ref_35
Gahm (ref_16) 2016; 248
Garai (ref_8) 2020; 100
ref_31
Mokhtari (ref_47) 2018; 209
Wang (ref_23) 2016; 137
Paprocka (ref_57) 2012; 12
Utama (ref_50) 2021; 10
Lu (ref_40) 2020; 17
Tang (ref_30) 2016; 81
ref_46
ref_44
ref_3
ref_2
ref_49
ref_9
Shrouf (ref_25) 2014; 67
ref_5
ref_4
Menghi (ref_1) 2019; 240
ref_6
References_xml – volume: 11
  start-page: 72
  year: 2019
  ident: ref_52
  article-title: The effects of a machine failure on the robustness of job shop systems-the predictive-reactive approach
  publication-title: Int. J. Mod. Manuf. Technol.
– ident: ref_46
  doi: 10.1016/j.jclepro.2018.10.289
– volume: 188
  start-page: 575
  year: 2018
  ident: ref_45
  article-title: A two-stage optimization method for energy-saving flexible job-shop scheduling based on energy dynamic characterization
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.03.254
– ident: ref_55
– ident: ref_51
– volume: 240
  start-page: 118276
  year: 2019
  ident: ref_1
  article-title: Energy efficiency of manufacturing systems: A review of energy assessment methods and tools
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118276
– volume: 81
  start-page: 82
  year: 2016
  ident: ref_30
  article-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2015.10.001
– volume: 7
  start-page: 43153
  year: 2019
  ident: ref_43
  article-title: Green Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2908200
– volume: 248
  start-page: 744
  year: 2016
  ident: ref_16
  article-title: Energy-efficient scheduling in manufacturing companies: A review and research framework
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.07.017
– volume: 58
  start-page: 3263
  year: 2019
  ident: ref_18
  article-title: An energy-efficient scheduling and rescheduling method for production and logistics systems
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1660826
– volume: 57
  start-page: 1119
  year: 2018
  ident: ref_34
  article-title: Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2018.1501166
– volume: 8
  start-page: 79998
  year: 2020
  ident: ref_33
  article-title: A New Sustainable Scheduling Method for Hybrid Flow-Shop Subject to the Characteristics of Parallel Machines
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982570
– ident: ref_31
  doi: 10.3390/su10030841
– ident: ref_44
  doi: 10.1177/1687814017695959
– volume: 59
  start-page: 1041
  year: 2020
  ident: ref_29
  article-title: Electricity cost minimisation for optimal makespan solution in flow shop scheduling under time-of-use tariffs
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1715504
– volume: 100
  start-page: 106949
  year: 2020
  ident: ref_8
  article-title: Cost-effective subsidy policy for growers and biofuels-plants in closed-loop supply chain of herbs and herbal medicines: An interactive bi-objective optimization in T-environment
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106949
– volume: 104
  start-page: 339
  year: 2017
  ident: ref_48
  article-title: Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization
  publication-title: PLoS ONE
– volume: 50
  start-page: 4984
  year: 2019
  ident: ref_38
  article-title: A Three-Stage Multiobjective Approach Based on Decomposition for an Energy-Efficient Hybrid Flow Shop Scheduling Problem
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2916088
– volume: 6
  start-page: 237
  year: 2019
  ident: ref_17
  article-title: A review of energy-efficient scheduling in intelligent production systems
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-019-00122-6
– volume: 39
  start-page: 1002
  year: 2019
  ident: ref_22
  article-title: NSGA Based Algorithm for Energy Efficient Scheduling in Cellular Manufacturing
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.01.379
– ident: ref_6
  doi: 10.3390/en14144142
– ident: ref_53
  doi: 10.3390/su11010065
– volume: 66
  start-page: 154
  year: 2019
  ident: ref_21
  article-title: Energy-efficient scheduling for sustainable manufacturing systems with renewable energy resources
  publication-title: Nav. Res. Logist.
  doi: 10.1002/nav.21830
– volume: 809–810
  start-page: 1360
  year: 2015
  ident: ref_62
  article-title: Analytical Solution for Time-Dependent Queue-Size Behavior in the Manufacturing Line with Finite Buffer Capacity and Machine Setup and Closedown Times
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.809-810.1360
– volume: 51
  start-page: 757
  year: 2010
  ident: ref_66
  article-title: A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-2642-2
– volume: 297
  start-page: 1
  year: 2021
  ident: ref_28
  article-title: An effective multi-objective whale swarm algorithm for energy-efficient scheduling of distributed welding flow shop
  publication-title: Ann. Oper. Res.
– volume: 137
  start-page: 1205
  year: 2016
  ident: ref_23
  article-title: Bi-objective optimization of a single machine batch scheduling problem with energy cost consideration
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.07.206
– ident: ref_13
  doi: 10.3390/en12112204
– ident: ref_2
  doi: 10.3390/app11167366
– volume: 137
  start-page: 106072
  year: 2019
  ident: ref_26
  article-title: An energy-efficient single machine scheduling problem with machine reliability constraints
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106072
– volume: 67
  start-page: 197
  year: 2014
  ident: ref_25
  article-title: Optimizing the production scheduling of a single machine to minimize total energy consumption costs
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2013.12.024
– ident: ref_3
  doi: 10.3390/en13195034
– ident: ref_4
  doi: 10.3390/en13195177
– ident: ref_61
  doi: 10.3390/pr8121648
– volume: 2020
  start-page: 8870917
  year: 2020
  ident: ref_24
  article-title: Energy-Saving Production Scheduling in a Single-Machine Manufacturing System by Improved Particle Swarm Optimization
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2020/8870917
– ident: ref_35
  doi: 10.1016/j.swevo.2019.100557
– volume: 17
  start-page: 6687
  year: 2020
  ident: ref_40
  article-title: Energy-Efficient Scheduling of Distributed Flow Shop with Heterogeneous Factories: A Real-World Case from Automobile Industry in China
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3043734
– volume: 7
  start-page: 85029
  year: 2019
  ident: ref_41
  article-title: Multi-Objective Energy-Efficient Interval Scheduling in Hybrid Flow Shop Using Imperialist Competitive Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924998
– volume: 137
  start-page: 1543
  year: 2016
  ident: ref_32
  article-title: A multi-level optimization approach for energy-efficient flexible flow shop scheduling
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.06.161
– volume: 112
  start-page: 3721
  year: 2016
  ident: ref_14
  article-title: Energy consumption model and energy efficiency of machine tools: A comprehensive literature review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.05.093
– volume: 167
  start-page: 717
  year: 2005
  ident: ref_65
  article-title: Genetic local search for multi-objective flowshop scheduling problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2004.07.017
– volume: 209
  start-page: 1078
  year: 2018
  ident: ref_47
  article-title: An energy-efficient multi-objective optimization for flexible job-shop scheduling problem
  publication-title: Comput. Chem. Eng.
– volume: 50
  start-page: 1805
  year: 2018
  ident: ref_39
  article-title: A Knowledge-Based Cooperative Algorithm for Energy-Efficient Scheduling of Distributed Flow-Shop
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2788879
– ident: ref_12
  doi: 10.3390/en14123620
– ident: ref_20
  doi: 10.3390/en12234448
– volume: 1036
  start-page: 885
  year: 2014
  ident: ref_56
  article-title: A production scheduling model with maintenance
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.1036.885
– ident: ref_10
  doi: 10.3390/en14144341
– ident: ref_9
  doi: 10.3390/pr9010019
– volume: 275
  start-page: 123125
  year: 2020
  ident: ref_7
  article-title: A systematic literature review on machine tool energy consumption
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123125
– volume: 94
  start-page: 102117
  year: 2019
  ident: ref_37
  article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search
  publication-title: Omega
  doi: 10.1016/j.omega.2019.102117
– volume: 141
  start-page: 106295
  year: 2020
  ident: ref_42
  article-title: Minimizing total energy cost and tardiness penalty for a scheduling-layout problem in a flexible job shop system: A comparison of four metaheuristic algorithms
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106295
– volume: 12
  start-page: 52
  year: 2012
  ident: ref_58
  article-title: Total production maintenance and robust scheduling for a production system efficiency increasing
  publication-title: J. Mach. Eng.
– volume: 34
  start-page: 136
  year: 2014
  ident: ref_15
  article-title: Classification of metal-cutting machines by energy efficiency
  publication-title: Russ. Eng. Res.
  doi: 10.3103/S1068798X14040108
– volume: XI
  start-page: 128
  year: 2019
  ident: ref_63
  article-title: Analysis of queue-size behaviour and throughput of a system with buffer controlled by a rope and production speed controlled by a drum
  publication-title: Int. J. Mod. Manuf. Technol.
– volume: 10
  start-page: 1154
  year: 2021
  ident: ref_50
  article-title: An energy-efficient flow shop scheduling using hybrid harris hawks optimization
  publication-title: Bull. Electr. Eng. Inform.
  doi: 10.11591/eei.v10i3.2958
– ident: ref_5
  doi: 10.3390/en12244708
– volume: 12
  start-page: 62
  year: 2012
  ident: ref_57
  article-title: A numerical example of total production maintenance and robust scheduling application for a production system efficiency increasing
  publication-title: J. Mach. Eng.
– volume: 62
  start-page: 100858
  year: 2021
  ident: ref_36
  article-title: Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a modified MOEA/D
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100858
– volume: 7
  start-page: 41
  year: 2017
  ident: ref_54
  article-title: Implementation of Lean Manufacturing System for Successful Production System in Manufacturing Industries
  publication-title: Int. J. Eng. Res. Appl.
– volume: 93
  start-page: 208
  year: 2018
  ident: ref_19
  article-title: Green energy efficient scheduling management
  publication-title: Simul. Model. Pract. Theory
– ident: ref_60
– ident: ref_49
  doi: 10.3390/su8121268
– ident: ref_11
  doi: 10.3390/en14061569
– ident: ref_59
  doi: 10.3390/app10082862
– volume: 209
  start-page: 118420
  year: 2020
  ident: ref_27
  article-title: Energy-efficient scheduling of a single batch processing machine with dynamic job arrival times
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118420
– volume: 124
  start-page: 28
  year: 2000
  ident: ref_64
  article-title: Hybrid genetic algorithm for the open shop scheduling problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(99)00168-X
SSID ssj0000331333
Score 2.3086777
Snippet The aim of this paper is to present a model of energy efficient scheduling for series production systems during operation, including setup and shutdown...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7446
SubjectTerms Algorithms
Comparative analysis
Energy consumption
Energy efficiency
energy-efficient scheduling
flow shop
Lean manufacturing
multi objective immune algorithm
Performance evaluation
Scheduling
serial–parallel flow
Supply chains
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9QwDI1glwMc-EYsLCgSXDhU29Ztk5wQs5oRBxitmBXaW5UmzrIS6gwzLT-AX46dycyuBOLCNUmrSnbsZ9d-FuJtTste-ZCZylGA4poiMxrrDDpofPCNNZFI--snNZ_riwtzlhJum1RWubOJ0VD7peMc-QnB9CYn79_U71c_Mp4axX9X0wiN2-KQmcpIzw8n0_nZl32WJQegIAy2vKRA8f0J9kXFMJwR7w1PFAn7_7DH0cnMHvzv5z0U9xO8lB-2-vBI3ML-sbh3g3Twifi14yGRyyCnsfVPTiORBPkfuSAheq5Ov-RtQofys-1Hbn-I_YySYleUnLyVsyuGq3Iy8oQVeUpO1xGil7b39AhXaKJc4DCu4sri2zh4CvhlbDl5Ks5n0_PTj1maxJA5aIoh64xWpdUEHk0NNdocbdk5VCo4wke1N0EHX1t0ZF8xz70ChEYH0xXWQOXhmTjolz0-F9KQM0TtmhCcqdBUBuje-84Q1AtBBTgS73ZCaV1iKedhGd9bilZYgO21AI_Em_3Z1Zab46-nJizb_Qnm044Ly_Vlm65nWwarkILlYHRXKQtW15033oAvoCs1veR4J_Y2XfJNey3zF__efinullwKE1sYj8XBsB7xlbjjfg5Xm_XrpLO_Abcf-FE
  priority: 102
  providerName: ProQuest
Title Analysis of Energy Efficient Scheduling of the Manufacturing Line with Finite Buffer Capacity and Machine Setup and Shutdown Times
URI https://www.proquest.com/docview/2596032465
https://doaj.org/article/2fa7e825f98b47a3a85bd9d93d13b286
Volume 14
WOSCitedRecordID wos000718543800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQ4QAHRAuIhVJZKhcOUZNMEnuObJVVkdjViq1QOUWOPYZKKK3ahCMHvpyxky0rgcSFSw4TR4nGY8970cyzEG9SNjvlfIKFZYJiqyxBTWUCLVTOu8pgFNL-9EGtVvriAtc7R32FmrBRHnh03EnujSKmMR51WygDRpetQ4fgMmhzHcW2U4U7ZCruwQBMvmDUIwXm9SfUZUWA3wHp7mSgKNT_xz4ck8viiXg8oUL5bvyafXGPugPxaEcr8Kn4uZUPkVde1rFjT9ZR_4HThtyw710oKv8SbjOok0vTDaFrIbYhSqacJMM_V7m4DChTzodwMIo85VxpGYhL0zl-JBRWktxQP1xHy-br0Dvm6TJ2ijwT54v6_PQsmQ5QSCxUWZ-0qFVuNGM-LKEkk5LJW0tKecuwpnTotXelIcvbIqWpU0BQaY9tZhAKB8_FXnfV0QshkXMYaVt5b7EgLBB4uboWGaF5rzzMxNutTxs7iYuHMy6-NUwygv-b3_6fieO7sdejpMZfR83D1NyNCDLY0cDB0UzB0fwrOGbicDuxzbQ2bxsmfFXKOLIqX_6Pd7wSD_NQ5xL7Ew_FXn8z0GvxwH7vL29vjsT9eb1afzyK4cnX5Y-abev3y_XnX7g37ak
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFgk48CxqoYAl4MAhahLnYR8QomVXXXV3tdKuUDlZjh-lEkq2uwkVV_4P_5EZb7KtBOLWA1fb8cH5MvONM_MNIW9CGDa5cYFINAQoOosCwW0asIJlxplMCS-k_XmUTyb89FRMt8ivrhYG0yo7m-gNtak03pEfAE3PQvD-WfphcRFg1yj8u9q10FjD4sT-uISQbfV--Ane79s4HvTnR8dB21Ug0CyL6qCAKDtWHIiQSFlqVWhVXGib506Dr0-NcNyZVFkNtsKGocmZZRl3ooiUYIlhsO0tsp0g1ntkezocT79sLnVCxiDmY2sZVMZEeGDLKEHWjwT7muPz_QH-MP_epw0e_Gen8ZDcb8kz_bhG-yOyZcvH5N41ScUn5GenskIrR_u-sJH2vUwGeFc6A4gazL0_w2ngvnSsygaLO3y1JoXI3FK8mqaDcyTj9LDB_jH0CCiFhniFqtLAI5h_aunM1s3Cj8y-NrWpLkvqC2p2yPwmzuAp6ZVVaXcJFeDqLdeZc1okViSCgVUzhQAi61zu2B5512FA6laDHVuBfJMQiyFe5BVe9sjrzdrFWnnkr6sOEUqbFagW7geq5ZlsjY-Mncotj1MneJHkiimeFkYYwUzEipjDJvsdymRrwlbyCmLP_j39itw5no9HcjScnDwnd2NM-vHFmvukVy8b-4Lc1t_r89XyZfu5UCJvGJK_AeYpVR0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUL0wLOohQKWgAOHaJM4D_tQIdruilXb1UpboXKyHD9KJZRsd5NWXPlX_LuOvcm2EohbD1xtx4fk88w3zsw3AO9DHNa5tgFPFAYoKosCzkwa0IJm2upMci-k_fUoH4_Z6SmfrMHvrhbGpVV2NtEbal0pd0feR5qehej9s7Rv27SIycHw0-wicB2k3J_Wrp3GEiKH5ucVhm-L3dEBfusPcTwcnOx_CdoOA4GiWVQHBUbcsWRIinhKUyNDI-NCmTy3Cv1-qrllVqfSKLQbJgx1Tg3NmOVFJDlNNMVt78E6MvIk7sH6ZHQ8-ba64AkpxfiPLiVRKeVh35RR4iIAR7ZvOUHfK-APV-D92_Dxf_xmnsCjllSTz8tT8BTWTPkMNm5JLT6HX536CqksGfiCRzLw8hnodckUoatdTv6Zm0ZOTI5l2biiD1_FSTBiN8RdWZPhuSPpZK9xfWXIPlINhXEMkaXGR1xeqiFTUzczPzL93tS6uiqJL7TZhJO7eAcvoFdWpdkCwpECGKYyaxVPDE84RWunC44E19rc0m342OFBqFab3bUI-SEwRnPYETfY2YZ3q7WzpSLJX1ftOVitVjgVcT9Qzc9Ea5REbGVuWJxazookl1SytNBcc6ojWsQMN9npECda07YQN3B7-e_pt_AAcSiORuPDV_AwdrlAvoZzB3r1vDGv4b66rM8X8zftySEg7hiR1_RsXd0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Energy+Efficient+Scheduling+of+the+Manufacturing+Line+with+Finite+Buffer+Capacity+and+Machine+Setup+and+Shutdown+Times&rft.jtitle=Energies+%28Basel%29&rft.au=Adrian+Kampa&rft.au=Iwona+Paprocka&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=21&rft.spage=7446&rft_id=info:doi/10.3390%2Fen14217446&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2fa7e825f98b47a3a85bd9d93d13b286
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon