Research on Short-Term Load Forecasting Based on Optimized GRU Neural Network

Accurate short-term load forecasting can ensure the safe and stable operation of power grids, but the nonlinear load increases the complexity of forecasting. In order to solve the problem of modal aliasing in historical data, and fully explore the relationship between time series characteristics in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) Jg. 11; H. 22; S. 3834
Hauptverfasser: Li, Chao, Guo, Quanjie, Shao, Lei, Li, Ji, Wu, Han
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2022
Schlagworte:
ISSN:2079-9292, 2079-9292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate short-term load forecasting can ensure the safe and stable operation of power grids, but the nonlinear load increases the complexity of forecasting. In order to solve the problem of modal aliasing in historical data, and fully explore the relationship between time series characteristics in load data, this paper proposes a gated cyclic network model (SSA–GRU) based on sparrow algorithm optimization. Firstly, the complementary sets and empirical mode decomposition (EMD) are used to decompose the original data to obtain the characteristic components. The SSA–GRU combined model is used to predict the characteristic components, and finally obtain the prediction results, and complete the short-term load forecasting. Taking the real data of a company as an example, this paper compares the combined model CEEMD–SSA–GRU with EMD–SSA–GRU, SSA–GRU, and GRU models. Experimental results show that this model has better prediction effect than other models.
AbstractList Accurate short-term load forecasting can ensure the safe and stable operation of power grids, but the nonlinear load increases the complexity of forecasting. In order to solve the problem of modal aliasing in historical data, and fully explore the relationship between time series characteristics in load data, this paper proposes a gated cyclic network model (SSA–GRU) based on sparrow algorithm optimization. Firstly, the complementary sets and empirical mode decomposition (EMD) are used to decompose the original data to obtain the characteristic components. The SSA–GRU combined model is used to predict the characteristic components, and finally obtain the prediction results, and complete the short-term load forecasting. Taking the real data of a company as an example, this paper compares the combined model CEEMD–SSA–GRU with EMD–SSA–GRU, SSA–GRU, and GRU models. Experimental results show that this model has better prediction effect than other models.
Audience Academic
Author Wu, Han
Li, Chao
Li, Ji
Guo, Quanjie
Shao, Lei
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0002-6579-3449
  surname: Li
  fullname: Li, Chao
– sequence: 2
  givenname: Quanjie
  orcidid: 0000-0001-9120-8939
  surname: Guo
  fullname: Guo, Quanjie
– sequence: 3
  givenname: Lei
  surname: Shao
  fullname: Shao, Lei
– sequence: 4
  givenname: Ji
  surname: Li
  fullname: Li, Ji
– sequence: 5
  givenname: Han
  surname: Wu
  fullname: Wu, Han
BookMark eNp9kN9LwzAQx4NMcM79Bb4UfO5sktb2HufQKUwHc3suaXrZMttmJhmif70Z80FEvHu4H3w_d_A9J73OdEjIJU1GnENyjQ1Kb02npaOUMV7w9IT0WZJDDAxY70d_RobObZMQQIMu6ZOnBToUVm4i00UvG2N9vETbRjMj6ujeWJTCed2to1vhsD6I5juvW_0ZhuliFT3j3oomFP9u7OsFOVWicTj8rgOyur9bTh7i2Xz6OBnPYslvqI8roIzTlKGqEbJahKFSKcsrYBK4VFTyghasSLEAxXlNFReC1qAKVucpVHxAro53d9a87dH5cmv2tgsvS5ZzSCnkGQTV6KhaiwZL3SnjrZAha2y1DCYqHfbjPM0yKFiSBACOgLTGOYuqlNoLr00XQN2UNCkPjpd_OB5Y_ovdWd0K-_Ev9QVi7Ik5
CitedBy_id crossref_primary_10_3390_math12213353
crossref_primary_10_1016_j_engfailanal_2024_108693
crossref_primary_10_3390_electronics12071685
crossref_primary_10_1007_s10706_024_02845_x
crossref_primary_10_3390_en17164142
crossref_primary_10_3390_pr13082336
crossref_primary_10_1016_j_optcom_2025_131838
crossref_primary_10_1051_e3sconf_202340904008
crossref_primary_10_3390_app15073625
crossref_primary_10_3390_en17215304
crossref_primary_10_1007_s00202_025_03236_y
crossref_primary_10_3390_app14062656
crossref_primary_10_3390_en16041988
crossref_primary_10_1016_j_asoc_2025_113739
crossref_primary_10_1109_ACCESS_2025_3574409
Cites_doi 10.1109/ACCESS.2021.3060654
10.1109/59.932287
10.1023/A:1012094702855
10.3390/en7031576
10.1142/S0218488598000094
10.3390/en13092390
10.3233/JIFS-169283
10.1142/S0218127403008375
10.1109/ACCESS.2019.2937222
10.1016/j.energy.2021.120480
10.3390/en12061140
10.3390/en15010130
10.1109/TSG.2017.2686012
10.1080/00207160310001597233
10.1016/j.epsr.2005.09.018
10.1109/59.744480
10.1109/TSG.2018.2844307
10.3390/en11051138
10.1016/j.enbuild.2019.04.034
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics11223834
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A745598200
10_3390_electronics11223834
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-b9123142efde95da231bf427b92c93cf1c3818284e89f33d1f3aa1d9f82d749b3
IEDL.DBID P5Z
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000887034700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sun Nov 09 05:37:00 EST 2025
Tue Nov 04 18:30:56 EST 2025
Sat Nov 29 07:10:35 EST 2025
Tue Nov 18 22:12:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-b9123142efde95da231bf427b92c93cf1c3818284e89f33d1f3aa1d9f82d749b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6579-3449
0000-0001-9120-8939
OpenAccessLink https://www.proquest.com/docview/2739419759?pq-origsite=%requestingapplication%
PQID 2739419759
PQPubID 2032404
ParticipantIDs proquest_journals_2739419759
gale_infotracacademiconefile_A745598200
crossref_citationtrail_10_3390_electronics11223834
crossref_primary_10_3390_electronics11223834
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shi (ref_22) 2021; 12606
Mastorocostas (ref_5) 1999; 14
Liu (ref_9) 2016; 22
Rafi (ref_21) 2021; 9
Pandian (ref_12) 2006; 76
ref_24
ref_23
ref_10
Baladron (ref_13) 2014; 7
Farahat (ref_11) 2012; 7
ref_20
Ma (ref_8) 2017; 32
Kim (ref_18) 2019; 194
ref_3
Imani (ref_15) 2021; 227
Shi (ref_17) 2017; 9
Haq (ref_1) 2019; 7
Amjady (ref_7) 2001; 16
Kim (ref_14) 2000; 8
(ref_4) 2001; 31
Chen (ref_2) 2019; 10
Tsaur (ref_6) 2003; 80
Itoh (ref_16) 2003; 13
Hochreiter (ref_19) 1998; 6
References_xml – volume: 22
  start-page: 151
  year: 2016
  ident: ref_9
  article-title: Research on power load forecasting based on support vector machine
  publication-title: J. Balk. Tribol. Assoc.
– volume: 7
  start-page: 6209
  year: 2012
  ident: ref_11
  article-title: The Using of Curve Fitting Prediction Optimized by Genetic Algorithms for Short-Term Load Forecasting
  publication-title: Int. Rev. Electr. Eng.
– volume: 9
  start-page: 32436
  year: 2021
  ident: ref_21
  article-title: A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3060654
– volume: 16
  start-page: 498
  year: 2001
  ident: ref_7
  article-title: Short-term hourly load forecasting using time-series modeling with peak load estimation capability
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.932287
– ident: ref_3
– volume: 31
  start-page: 115
  year: 2001
  ident: ref_4
  article-title: Local Regression-Based Short-Term Load Forecasting
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1023/A:1012094702855
– volume: 7
  start-page: 1576
  year: 2014
  ident: ref_13
  article-title: Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems
  publication-title: Energies
  doi: 10.3390/en7031576
– volume: 6
  start-page: 107
  year: 1998
  ident: ref_19
  article-title: The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions
  publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst.
  doi: 10.1142/S0218488598000094
– ident: ref_10
  doi: 10.3390/en13092390
– volume: 32
  start-page: 3447
  year: 2017
  ident: ref_8
  article-title: A combined model based on seasonal autoregressive integrated moving average and modified particle swarm optimization algorithm for electrical load forecasting
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169283
– volume: 13
  start-page: 2739
  year: 2003
  ident: ref_16
  article-title: DESIGNING CNN GENES
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127403008375
– volume: 8
  start-page: 139
  year: 2000
  ident: ref_14
  article-title: Implementation of short-term load forecasting expert systems in a real environment
  publication-title: Eng. Intell. Syst. Electr. Eng. Commun.
– volume: 7
  start-page: 125413
  year: 2019
  ident: ref_1
  article-title: A New Hybrid Model for Short-Term Electricity Load Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937222
– volume: 227
  start-page: 120480
  year: 2021
  ident: ref_15
  article-title: Electrical load-temperature CNN for residential load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120480
– ident: ref_23
  doi: 10.3390/en12061140
– ident: ref_24
  doi: 10.3390/en15010130
– volume: 9
  start-page: 5271
  year: 2017
  ident: ref_17
  article-title: Deep Learning for Household Load Forecasting—A Novel Pooling Deep RNN
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2686012
– volume: 80
  start-page: 1351
  year: 2003
  ident: ref_6
  article-title: Forecasting by fuzzy double exponential smoothing model
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160310001597233
– volume: 76
  start-page: 541
  year: 2006
  ident: ref_12
  article-title: Fuzzy approach for short term load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2005.09.018
– volume: 14
  start-page: 29
  year: 1999
  ident: ref_5
  article-title: Fuzzy modeling for short term load forecasting using the orthogonal least squares method
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.744480
– volume: 10
  start-page: 3943
  year: 2019
  ident: ref_2
  article-title: Short-Term Load Forecasting With Deep Residual Networks
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2844307
– ident: ref_20
  doi: 10.3390/en11051138
– volume: 194
  start-page: 328
  year: 2019
  ident: ref_18
  article-title: Recurrent inception convolution neural network for multi short-term load forecasting
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.04.034
– volume: 12606
  start-page: e6676
  year: 2021
  ident: ref_22
  article-title: Short-term load forecasting based on CNN-BiLSTM with Bayesian optimization and attention mechanism
  publication-title: Concurr. Comput. Pr. Exp.
SSID ssj0000913830
Score 2.326701
Snippet Accurate short-term load forecasting can ensure the safe and stable operation of power grids, but the nonlinear load increases the complexity of forecasting....
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3834
SubjectTerms Algorithms
Artificial intelligence
Cyclic loads
Deep learning
Forecasting
Mathematical models
Mathematical optimization
Neural networks
Optimization
Prediction theory
Time series
Title Research on Short-Term Load Forecasting Based on Optimized GRU Neural Network
URI https://www.proquest.com/docview/2739419759
Volume 11
WOSCitedRecordID wos000887034700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8aHwd2YONLK7AqB6RdsCC2U8cnBKhsSLRErEXAJfJXtEqjLaTbgQN_O--lKTAJcdnRiZNYefb7-dnPvx_AjuU-7AcTmOPCM-l4ymyiCqZtIXgcEqWqjfbLM9XtpldXOqsX3Mo6rXLmEytH7UeO1sj3EGa1jLVK9MH4jpFqFO2u1hIac7BALAkk3ZAlN89rLMR5mYr9KdmQwOh-70VbpsSJBsKVkP8A0ttuucKak0__28rPsFzPMqPDabdYgQ9huAofX3EPrkFnlnMXjYbRz184C2c99NLR2cj4iAQ7nSkpJTo6QpzzVOkcvcvt4AEL3y_6EbF64Ce60zTydeiftHvHP1itrcCcaMUTZjVCVix5KHzQiTdYsIXkymrutHBF7AjKEbtCqgshfFwIY2Kvi5R7JbUVGzA_HA3DF4isxzAaIyOJoZq0oqVVnCibOiON1V7xBvDZD85dTTxO-he_cwxAyCr5G1ZpwO7zQ-Mp78b71b-R5XIalfhuZ-rDBdhC4rfKD5UkJnp0CQ3Ynlkur4drmb-YbfP921uwxOn8Q3UYcRvmJ_d_wldYdH8ng_K-CQtH7W520YS5zmO7WfVFvJaddrLrJ44-6bA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAl6oDyKSGnBBxAXrGZtb70-INQnjZqECFJUTlu_VlSCpO2mIPhR_EZmsrstSFVvPXC01ut9-NM3HnvmG4AXToTYiTZyL2TgyouMu1QX3LhCiiSmWs8O2j_19GCQHR6a4Rz8bnJhKKyy4cQZUYeJpz3yNTSzRiVGp-btySmnqlF0utqU0KhgsR9__kCXrXzT3cb5fSnE7s5oa4_XVQW4l-vJlDuDZJ0oEYsQTRosNlyhhHZGeCN9kXgyYsjaMTOFlCEppLVJMEUmglbGSRz3FswrAnsL5ofd_vDzxa4OqWxmslPJG0lpOmuX1WxKXNqggZTqHxN4tSGYWbfdxf_tv9yHe_U6mm1UwH8Ac3H8EBb-Uld8BP0mqpBNxuzjF_Qz-AjtEOtNbGBUktTbkoK-2SZa8kCd3iN_fjv-hY13Hw4Y6ZbgIwZVoPwSHNzI9zyG1ngyjk-AuaCR5jJcOqJD6eS60UmqXeatss4ELdogmgnNfS2tThU-vuboYhEK8itQ0IbXFzedVMoi13d_RUjJiXdwbG_r9Al8Q1Lwyje0Iq19JL02rDRIyWtCKvNLmCxff_k53Nkb9Xt5rzvYfwp3BWV7zFIvV6A1PTuPq3Dbf58el2fPauwzOLppWP0BvDRDZA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFD5BMAYfvEJcRO2Dxheb3Wln6PTBEG6rhHXdKBjiy9BrJNFdZBYJ_DR_nefMBTQhvPHgYzOdzqWn39fTnn4H4KUVPvSCCdwJ6XnqRM5tpiLXNkqRhEypaqP9y0ANh_n-vh7NwO_2LAyFVbaYWAG1nzhaI-8izeo00SrT3diERYw2-6tHPzllkKKd1jadRm0iO-HsFN238u32Jvb1KyH6W7sb73mTYYA7uZJMudUI3EkqQvRBZ95gwcZUKKuF09LFxBGhIYKHXEcpfRKlMYnXMRdepdpKbPcWzCn0MSmccJR9vVjfIb3NXPZqoSMpda97mdemxEkOUqVM_yHDqymh4rn-_f_5Dz2Ae83smq3Vw-EhzITxI7j7l-biY_jQxhqyyZh9_obeB99FdmKDifGMEpU6U1IoOFtHfvdU6SOi6o_Dcyy8-7THSM0EHzGsw-cXYO9GvmcRZseTcXgCzHqF4JfjhBLdTCtXtEoyZXNnUmO1V6IDou3cwjWC65T343uBjhdZRHGFRXTgzcVNR7XeyPXVX5PVFIRG2LYzzaEKfEPS9SrWVEoK_AiFHVhuraZoYKosLk1m6frLL-AO2lIx2B7uPIV5QUdAqvOYyzA7PT4Jz-C2-zU9LI-fV4OAwcFN29QfmmRKxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Short-Term+Load+Forecasting+Based+on+Optimized+GRU+Neural+Network&rft.jtitle=Electronics+%28Basel%29&rft.au=Li%2C+Chao&rft.au=Guo%2C+Quanjie&rft.au=Shao%2C+Lei&rft.au=Li%2C+Ji&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=22&rft_id=info:doi/10.3390%2Felectronics11223834&rft.externalDocID=A745598200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon