Belyi's Theorem for Complex Surfaces

Belyi's theorem states that a compact Riemann surface C can be defined over a number field if and only if there is on it a meromorphic function f with three critical values. Such functions (resp. Riemann surfaces) are called Belyi functions (resp. Belyi surfaces). Alternatively Belyi surfaces c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:American journal of mathematics Ročník 130; číslo 1; s. 59 - 74
Hlavní autor: González-Diez, Gabino
Médium: Journal Article
Jazyk:angličtina
Vydáno: Baltimore, MD Johns Hopkins University Press 01.02.2008
Témata:
ISSN:0002-9327, 1080-6377, 1080-6377
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Belyi's theorem states that a compact Riemann surface C can be defined over a number field if and only if there is on it a meromorphic function f with three critical values. Such functions (resp. Riemann surfaces) are called Belyi functions (resp. Belyi surfaces). Alternatively Belyi surfaces can be characterized as those which contain a proper Zariski open subset uniformised by a torsion free subgroup of the classical modular group PSL₂(Z). In this article we establish a result analogous to Belyi's theorem in complex dimension two. It turns out that the role of Belyi functions is now played by (composed) Lefschetz pencils with three critical values while the analogous to torsion free subgroups of the modular group will be certain extensions of them acting on a Bergmann domain of C². These groups were first introduced by Bers and Griffiths.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2008.0004