Deep Learning Based Communication Over the Air

End-to-end learning of communications systems is a fascinating novel concept that has so far only been validated by simulations for block-based transmissions. It allows learning of transmitter and receiver implementations as deep neural networks (NNs) that are optimized for an arbitrary differentiab...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in signal processing Ročník 12; číslo 1; s. 132 - 143
Hlavní autoři: Dorner, Sebastian, Cammerer, Sebastian, Hoydis, Jakob, Brink, Stephan ten
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1932-4553, 1941-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract End-to-end learning of communications systems is a fascinating novel concept that has so far only been validated by simulations for block-based transmissions. It allows learning of transmitter and receiver implementations as deep neural networks (NNs) that are optimized for an arbitrary differentiable end-to-end performance metric, e.g., block error rate (BLER). In this paper, we demonstrate that over-the-air transmissions are possible: We build, train, and run a complete communications system solely composed of NNs using unsynchronized off-the-shelf software-defined radios and open-source deep learning software libraries. We extend the existing ideas toward continuous data transmission, which eases their current restriction to short block lengths but also entails the issue of receiver synchronization. We overcome this problem by introducing a frame synchronization module based on another NN. A comparison of the BLER performance of the "learned" system with that of a practical baseline shows competitive performance close to 1 dB, even without extensive hyperparameter tuning. We identify several practical challenges of training such a system over actual channels, in particular, the missing channel gradient, and propose a two-step learning procedure based on the idea of transfer learning that circumvents this issue.
AbstractList End-to-end learning of communications systems is a fascinating novel concept that has so far only been validated by simulations for block-based transmissions. It allows learning of transmitter and receiver implementations as deep neural networks (NNs) that are optimized for an arbitrary differentiable end-to-end performance metric, e.g., block error rate (BLER). In this paper, we demonstrate that over-the-air transmissions are possible: We build, train, and run a complete communications system solely composed of NNs using unsynchronized off-the-shelf software-defined radios and open-source deep learning software libraries. We extend the existing ideas toward continuous data transmission, which eases their current restriction to short block lengths but also entails the issue of receiver synchronization. We overcome this problem by introducing a frame synchronization module based on another NN. A comparison of the BLER performance of the "learned" system with that of a practical baseline shows competitive performance close to 1 dB, even without extensive hyperparameter tuning. We identify several practical challenges of training such a system over actual channels, in particular, the missing channel gradient, and propose a two-step learning procedure based on the idea of transfer learning that circumvents this issue.
End-to-end learning of communications systems is a fascinating novel concept that has so far only been validated by simulations for block-based transmissions. It allows learning of transmitter and receiver implementations as deep neural networks (NNs) that are optimized for an arbitrary differentiable end-to-end performance metric, e.g., block error rate (BLER). In this paper, we demonstrate that over-the-air transmissions are possible: We build, train, and run a complete communications system solely composed of NNs using unsynchronized off-the-shelf software-defined radios and open-source deep learning software libraries. We extend the existing ideas toward continuous data transmission, which eases their current restriction to short block lengths but also entails the issue of receiver synchronization. We overcome this problem by introducing a frame synchronization module based on another NN. A comparison of the BLER performance of the “learned” system with that of a practical baseline shows competitive performance close to [Formula Omitted] dB, even without extensive hyperparameter tuning. We identify several practical challenges of training such a system over actual channels, in particular, the missing channel gradient, and propose a two-step learning procedure based on the idea of transfer learning that circumvents this issue.
Author Dorner, Sebastian
Hoydis, Jakob
Brink, Stephan ten
Cammerer, Sebastian
Author_xml – sequence: 1
  givenname: Sebastian
  orcidid: 0000-0002-7614-5156
  surname: Dorner
  fullname: Dorner, Sebastian
  email: doerner@inue.uni-stuttgart.de
  organization: Institute of Telecommunications, University of Stuttgart, Stuttgart, Germany
– sequence: 2
  givenname: Sebastian
  surname: Cammerer
  fullname: Cammerer, Sebastian
  email: cammerer@inue.uni-stuttgart.de
  organization: Institute of Telecommunications, University of Stuttgart, Stuttgart, Germany
– sequence: 3
  givenname: Jakob
  surname: Hoydis
  fullname: Hoydis, Jakob
  email: jakob.hoydis@nokia-bell-labs.com
  organization: Nokia Bell Labs, Nozay, France
– sequence: 4
  givenname: Stephan ten
  surname: Brink
  fullname: Brink, Stephan ten
  email: tenbrink@inue.uni-stuttgart.de
  organization: Institute of Telecommunications, University of Stuttgart, Stuttgart, Germany
BookMark eNp9kE1Lw0AQhhepYFv9A3oJeE7cz-zmWOs3hQqt52WzmeiWdlN3U8F_b9IWDx48zTC8z8zwjNDANx4QuiQ4IwQXNy-L5eI1o5jIjErFicInaEgKTlLMFR_0PaMpF4KdoVGMK4yFzAkfouwOYJvMwATv_HtyayJUybTZbHbeWdO6xifzLwhJ-wHJxIVzdFqbdYSLYx2jt4f75fQpnc0fn6eTWWpZTtq0FLWUdS1KIwDKAowpFaiCsIpyU-e15UIJwxRVPC8qLKztimWs6qYSSszG6Pqwdxuazx3EVq-aXfDdSU0xlhQXkvUpdUjZ0MQYoNbWtfun22DcWhOsezt6b0f3dvTRTofSP-g2uI0J3_9DVwfIAcAvoCjhlDH2AwT9caU
CODEN IJSTGY
CitedBy_id crossref_primary_10_1109_MITP_2019_2963491
crossref_primary_10_1002_ett_4220
crossref_primary_10_1049_cmu2_12076
crossref_primary_10_1016_j_comnet_2022_109367
crossref_primary_10_1109_TVT_2022_3162887
crossref_primary_10_1109_TCCN_2022_3147203
crossref_primary_10_1109_JSAC_2020_3036954
crossref_primary_10_1109_TCOMM_2023_3237259
crossref_primary_10_1109_TWC_2020_2970707
crossref_primary_10_1109_TCOMM_2023_3343787
crossref_primary_10_1109_ACCESS_2021_3108625
crossref_primary_10_1109_LCOMM_2019_2915977
crossref_primary_10_1109_TWC_2020_2976004
crossref_primary_10_1186_s13638_022_02195_3
crossref_primary_10_1109_JIOT_2023_3324667
crossref_primary_10_1109_ACCESS_2021_3117902
crossref_primary_10_1109_TSP_2018_2868322
crossref_primary_10_1109_JLT_2024_3403129
crossref_primary_10_54097_3fkgwa24
crossref_primary_10_1109_MWC_2019_1800598
crossref_primary_10_1109_LCOMM_2018_2868103
crossref_primary_10_1002_dac_5606
crossref_primary_10_1134_S1063785019070241
crossref_primary_10_1109_JPROC_2021_3055679
crossref_primary_10_1109_MBITS_2024_3504521
crossref_primary_10_1088_1757_899X_768_7_072022
crossref_primary_10_1109_ACCESS_2023_3244928
crossref_primary_10_1109_JSAC_2020_3036968
crossref_primary_10_1109_ACCESS_2019_2936796
crossref_primary_10_1109_TCOMM_2020_2977280
crossref_primary_10_1109_JSTQE_2022_3163474
crossref_primary_10_1109_TWC_2021_3054520
crossref_primary_10_1364_JOCN_492770
crossref_primary_10_1109_JSAC_2025_3559116
crossref_primary_10_1109_TWC_2020_2977340
crossref_primary_10_1109_ACCESS_2019_2926843
crossref_primary_10_1109_ACCESS_2023_3245330
crossref_primary_10_1109_TCCN_2019_2943455
crossref_primary_10_1109_TSP_2021_3071210
crossref_primary_10_1109_TVT_2023_3327276
crossref_primary_10_1109_ACCESS_2024_3522847
crossref_primary_10_1109_ACCESS_2022_3224922
crossref_primary_10_1109_TWC_2020_3040983
crossref_primary_10_1109_JIOT_2024_3487246
crossref_primary_10_1109_JLT_2023_3236400
crossref_primary_10_1109_TVT_2022_3162624
crossref_primary_10_1007_s11227_023_05355_4
crossref_primary_10_1109_ACCESS_2020_3003059
crossref_primary_10_1002_inst_12416
crossref_primary_10_1109_ACCESS_2023_3316605
crossref_primary_10_1016_j_comcom_2023_11_004
crossref_primary_10_1109_JPROC_2019_2957798
crossref_primary_10_1109_TCCN_2022_3168725
crossref_primary_10_1109_COMST_2020_2965856
crossref_primary_10_1109_TCOMM_2019_2903811
crossref_primary_10_1109_TWC_2021_3101364
crossref_primary_10_1049_el_2018_7691
crossref_primary_10_1109_TVT_2023_3237589
crossref_primary_10_1109_TWC_2025_3552836
crossref_primary_10_1109_ACCESS_2025_3584000
crossref_primary_10_1109_COMST_2020_2996032
crossref_primary_10_1109_TCOMM_2020_2998538
crossref_primary_10_3390_s25165048
crossref_primary_10_3390_electronics12020253
crossref_primary_10_1109_TETCI_2018_2868474
crossref_primary_10_1109_ACCESS_2019_2916701
crossref_primary_10_1016_j_rineng_2025_105409
crossref_primary_10_1109_TVLSI_2022_3225505
crossref_primary_10_1109_TCCN_2022_3164901
crossref_primary_10_1016_j_neucom_2022_09_088
crossref_primary_10_1109_COMST_2023_3249835
crossref_primary_10_1109_JSAC_2023_3242701
crossref_primary_10_1109_TWC_2021_3108666
crossref_primary_10_1109_TWC_2020_3034610
crossref_primary_10_1109_TSP_2020_3035832
crossref_primary_10_1186_s13677_020_00168_9
crossref_primary_10_1007_s12243_025_01087_z
crossref_primary_10_1109_ACCESS_2024_3524571
crossref_primary_10_1109_TSP_2019_2899805
crossref_primary_10_1109_ACCESS_2019_2925569
crossref_primary_10_1109_COMST_2023_3243918
crossref_primary_10_1016_j_phycom_2023_102041
crossref_primary_10_1109_TWC_2019_2924220
crossref_primary_10_1109_JIOT_2020_3047613
crossref_primary_10_1109_LCOMM_2022_3207379
crossref_primary_10_1109_JPROC_2021_3053601
crossref_primary_10_1109_ACCESS_2021_3085901
crossref_primary_10_1109_ACCESS_2020_3000599
crossref_primary_10_1109_TCOMM_2020_3002915
crossref_primary_10_1109_MCOM_2019_1800858
crossref_primary_10_1109_TCCN_2021_3118465
crossref_primary_10_1186_s13638_021_01929_z
crossref_primary_10_1016_j_comnet_2025_111531
crossref_primary_10_1007_s11235_021_00806_w
crossref_primary_10_1049_cmu2_12424
crossref_primary_10_1109_TCCN_2024_3382973
crossref_primary_10_1002_ett_4656
crossref_primary_10_1007_s11277_024_11159_3
crossref_primary_10_1109_TSP_2021_3050564
crossref_primary_10_1109_TWC_2021_3087191
crossref_primary_10_1049_cmu2_12669
crossref_primary_10_1002_ett_4773
crossref_primary_10_1016_j_comnet_2021_107930
crossref_primary_10_1109_ACCESS_2022_3185124
crossref_primary_10_1016_j_eswa_2024_124857
crossref_primary_10_3390_s22041416
crossref_primary_10_3390_s24102993
crossref_primary_10_1109_JSAC_2023_3288249
crossref_primary_10_1109_TVT_2024_3441559
crossref_primary_10_1038_s41598_024_84017_8
crossref_primary_10_1109_TWC_2022_3157467
crossref_primary_10_1007_s11277_022_10111_7
crossref_primary_10_1007_s11277_022_10157_7
crossref_primary_10_1016_j_apacoust_2021_108515
crossref_primary_10_1049_cmu2_12655
crossref_primary_10_1002_dac_70132
crossref_primary_10_1109_TCOMM_2022_3180997
crossref_primary_10_1109_LWC_2022_3175091
crossref_primary_10_1109_TIFS_2020_2978620
crossref_primary_10_1109_LWC_2021_3076398
crossref_primary_10_1109_TSP_2020_3043879
crossref_primary_10_1109_ACCESS_2022_3206814
crossref_primary_10_1109_ACCESS_2021_3074350
crossref_primary_10_1109_JSAC_2021_3087224
crossref_primary_10_1109_TCOMM_2020_2968314
crossref_primary_10_1109_JLT_2024_3488121
crossref_primary_10_1109_ACCESS_2020_3041765
crossref_primary_10_1016_j_advwatres_2025_104952
crossref_primary_10_1016_j_asoc_2024_111672
crossref_primary_10_4218_etrij_2022_0462
crossref_primary_10_1109_TVT_2022_3201961
crossref_primary_10_1109_MCOM_001_2000218
crossref_primary_10_1109_TCCN_2020_2990657
crossref_primary_10_1109_TWC_2020_2979138
crossref_primary_10_1109_TCCN_2024_3454264
crossref_primary_10_1364_OL_553826
crossref_primary_10_1109_TSP_2022_3143372
crossref_primary_10_1109_ACCESS_2020_2995633
crossref_primary_10_1109_TCOMM_2022_3213284
crossref_primary_10_1109_TWC_2023_3243212
crossref_primary_10_1109_TVT_2021_3060459
crossref_primary_10_1109_LWC_2019_2933392
crossref_primary_10_1109_TCOMM_2020_3017020
crossref_primary_10_1109_ACCESS_2020_2964103
crossref_primary_10_1109_TCOMM_2019_2951563
crossref_primary_10_1016_j_dsp_2023_104196
crossref_primary_10_1109_JIOT_2025_3542753
crossref_primary_10_4316_AECE_2025_01007
crossref_primary_10_1109_TWC_2022_3158694
crossref_primary_10_1109_JPROC_2019_2941458
crossref_primary_10_1109_ACCESS_2022_3155879
crossref_primary_10_1109_JLT_2024_3519360
crossref_primary_10_1109_ACCESS_2019_2954551
crossref_primary_10_1109_JSAC_2019_2904361
crossref_primary_10_1007_s11432_020_2955_6
crossref_primary_10_1109_TCOMM_2022_3217777
crossref_primary_10_1109_TVT_2023_3278467
crossref_primary_10_1016_j_sysarc_2021_102180
crossref_primary_10_1016_j_optcom_2023_129997
crossref_primary_10_1109_TMAG_2020_3017373
crossref_primary_10_1109_TCCN_2019_2945774
crossref_primary_10_1109_COMST_2023_3315374
crossref_primary_10_1109_COMST_2024_3443193
crossref_primary_10_1109_TWC_2024_3381211
crossref_primary_10_3233_JIFS_219104
crossref_primary_10_3390_mi13010031
crossref_primary_10_1109_TCOMM_2022_3214236
crossref_primary_10_1109_ACCESS_2023_3238099
crossref_primary_10_1109_TCOMM_2019_2924010
crossref_primary_10_1109_LWC_2025_3538017
crossref_primary_10_1109_TCCN_2025_3527689
crossref_primary_10_1109_TNSM_2021_3123216
crossref_primary_10_1109_TWC_2020_2964661
crossref_primary_10_1007_s10922_022_09652_w
crossref_primary_10_1049_cmu2_12588
crossref_primary_10_1109_TCOMM_2022_3228648
crossref_primary_10_1007_s11063_020_10419_0
crossref_primary_10_1109_ACCESS_2021_3070336
crossref_primary_10_1109_JETCAS_2020_2992593
crossref_primary_10_1109_JSAC_2021_3118346
crossref_primary_10_1109_TMC_2022_3153049
crossref_primary_10_1109_TWC_2019_2924424
crossref_primary_10_1109_JLT_2022_3213519
crossref_primary_10_1016_j_phycom_2023_102197
crossref_primary_10_1109_JIOT_2025_3571754
crossref_primary_10_1109_ACCESS_2020_2973318
crossref_primary_10_1117_1_OE_61_12_128101
crossref_primary_10_1109_OJCOMS_2025_3586560
crossref_primary_10_1109_TWC_2019_2956146
crossref_primary_10_1007_s12596_022_00924_x
crossref_primary_10_1109_JSAC_2021_3126087
crossref_primary_10_1109_TCCN_2020_2985371
crossref_primary_10_1109_JSAC_2021_3126088
crossref_primary_10_1109_TR_2022_3148114
crossref_primary_10_3390_app9050852
crossref_primary_10_1016_j_phycom_2023_102199
crossref_primary_10_1016_j_optcom_2020_125272
crossref_primary_10_1109_TVT_2022_3226799
crossref_primary_10_1109_LCOMM_2020_3018260
crossref_primary_10_1109_TCCN_2024_3485648
crossref_primary_10_1109_JLT_2023_3251660
crossref_primary_10_1109_MCOM_001_2000804
crossref_primary_10_1109_JPROC_2024_3437730
crossref_primary_10_1016_j_phycom_2022_101835
crossref_primary_10_1016_j_asoc_2024_111759
crossref_primary_10_1109_ACCESS_2022_3221800
crossref_primary_10_1016_j_icte_2022_12_001
crossref_primary_10_1109_TVT_2021_3064868
crossref_primary_10_1109_ACCESS_2025_3566207
crossref_primary_10_1109_LCOMM_2022_3219382
crossref_primary_10_1109_TVT_2020_3027013
crossref_primary_10_3390_s23198139
crossref_primary_10_1109_TWC_2021_3124202
crossref_primary_10_1088_1742_6596_1617_1_012024
crossref_primary_10_3390_s21227716
crossref_primary_10_1109_COMST_2023_3333342
crossref_primary_10_1109_COMST_2021_3135829
crossref_primary_10_1109_TNET_2024_3444602
crossref_primary_10_1109_ACCESS_2020_2967402
crossref_primary_10_1109_LCOMM_2024_3456823
crossref_primary_10_1109_LWC_2022_3216848
crossref_primary_10_1109_TCOMM_2019_2960361
crossref_primary_10_1002_aisy_202500344
crossref_primary_10_1016_j_comcom_2021_09_033
crossref_primary_10_1016_j_phycom_2024_102585
crossref_primary_10_1109_TCCN_2021_3061464
crossref_primary_10_3390_s19163541
crossref_primary_10_1109_ACCESS_2020_3025597
crossref_primary_10_1109_TVT_2019_2951501
crossref_primary_10_1109_LCOMM_2024_3387286
crossref_primary_10_1109_TWC_2021_3138733
crossref_primary_10_1109_JSAC_2021_3126080
crossref_primary_10_1109_TCOMM_2020_3010964
crossref_primary_10_3390_s20102753
crossref_primary_10_1109_JIOT_2024_3425470
crossref_primary_10_1109_ACCESS_2024_3380203
crossref_primary_10_1049_iet_com_2019_0243
crossref_primary_10_3390_en12224300
crossref_primary_10_3390_electronics14061130
crossref_primary_10_1109_TWC_2019_2950026
crossref_primary_10_1002_dac_5109
crossref_primary_10_1049_2023_6610762
crossref_primary_10_1155_2021_5586029
crossref_primary_10_1109_TCCN_2024_3486168
crossref_primary_10_1109_JIOT_2023_3274209
crossref_primary_10_1109_TVT_2023_3241440
crossref_primary_10_1109_TWC_2021_3085303
crossref_primary_10_1109_ACCESS_2019_2935613
crossref_primary_10_1109_COMST_2019_2904897
crossref_primary_10_1109_COMST_2020_3033748
crossref_primary_10_1109_TCOMM_2022_3225460
crossref_primary_10_1109_JSAC_2019_2933890
crossref_primary_10_1109_JSAC_2019_2933891
crossref_primary_10_1109_COMST_2023_3326399
crossref_primary_10_3390_info14020098
crossref_primary_10_1016_j_phycom_2022_101976
crossref_primary_10_1109_TWC_2019_2962474
crossref_primary_10_23919_cje_2023_00_278
crossref_primary_10_1109_TCCN_2022_3225790
crossref_primary_10_1038_s44172_023_00108_w
crossref_primary_10_1007_s11276_020_02423_y
crossref_primary_10_1109_TCCN_2021_3132609
crossref_primary_10_1109_ACCESS_2019_2914928
crossref_primary_10_1109_TWC_2020_3042074
crossref_primary_10_1109_TCOMM_2024_3394039
crossref_primary_10_1109_TVT_2021_3099640
crossref_primary_10_3390_electronics11071138
crossref_primary_10_1016_j_icte_2022_01_018
crossref_primary_10_1109_TSP_2021_3070186
crossref_primary_10_1109_MWC_012_2200552
crossref_primary_10_1007_s41745_020_00169_2
crossref_primary_10_1109_TWC_2024_3418907
crossref_primary_10_1007_s11277_021_08222_8
crossref_primary_10_1109_MWC_2019_1800601
crossref_primary_10_3390_iot1010003
crossref_primary_10_1109_TVT_2024_3386912
crossref_primary_10_1016_j_yofte_2024_104069
crossref_primary_10_1109_MWC_001_2000005
crossref_primary_10_1109_JLT_2018_2865109
crossref_primary_10_1109_ACCESS_2019_2903130
crossref_primary_10_1109_LCOMM_2021_3108845
crossref_primary_10_1109_LWC_2021_3106039
crossref_primary_10_1007_s12596_024_02006_6
crossref_primary_10_1109_JSYST_2022_3204312
crossref_primary_10_1109_TWC_2024_3412234
crossref_primary_10_3390_make6030084
crossref_primary_10_1109_TCCN_2022_3161936
crossref_primary_10_1145_3494049
crossref_primary_10_1016_j_comnet_2020_107556
crossref_primary_10_1109_ACCESS_2021_3069707
crossref_primary_10_1109_JLT_2022_3148270
crossref_primary_10_1109_JSTSP_2021_3051490
crossref_primary_10_1109_TWC_2024_3462450
crossref_primary_10_3390_s22103666
crossref_primary_10_1109_ACCESS_2019_2909490
crossref_primary_10_1007_s11235_025_01274_2
crossref_primary_10_1016_j_vehcom_2020_100250
crossref_primary_10_1109_JLT_2021_3103339
crossref_primary_10_3390_app13042151
crossref_primary_10_3390_photonics9030190
crossref_primary_10_1109_ACCESS_2022_3208284
crossref_primary_10_1049_cmu2_12258
crossref_primary_10_1109_TCOMM_2019_2957482
crossref_primary_10_1109_JSAC_2019_2933956
crossref_primary_10_1109_JSAC_2019_2934004
crossref_primary_10_1109_JSAC_2025_3559154
crossref_primary_10_1109_JSYST_2022_3232590
crossref_primary_10_1109_TVT_2023_3294756
crossref_primary_10_3390_app10103634
crossref_primary_10_1007_s40012_024_00401_9
crossref_primary_10_1109_ACCESS_2020_3020544
crossref_primary_10_3390_electronics9020294
crossref_primary_10_1109_LWC_2021_3132067
crossref_primary_10_1109_ACCESS_2019_2919983
crossref_primary_10_1109_JETCAS_2020_3000103
crossref_primary_10_1109_TCCN_2020_3018736
crossref_primary_10_1109_TCCN_2021_3067916
crossref_primary_10_3390_s23249848
crossref_primary_10_1007_s11276_020_02412_1
crossref_primary_10_1109_COMST_2022_3223224
crossref_primary_10_3390_make6020057
crossref_primary_10_1016_j_phycom_2021_101402
crossref_primary_10_1109_TVLSI_2023_3274555
crossref_primary_10_1088_1742_6596_1169_1_012060
crossref_primary_10_1109_TCOMM_2020_3007622
crossref_primary_10_1007_s11761_024_00402_1
crossref_primary_10_1109_JSAC_2019_2933964
crossref_primary_10_1109_JLT_2020_3006827
crossref_primary_10_1109_JSAC_2019_2933965
crossref_primary_10_1109_TCSI_2024_3371780
crossref_primary_10_1109_ACCESS_2019_2923321
crossref_primary_10_1109_ACCESS_2019_2891218
crossref_primary_10_1007_s11276_023_03304_w
crossref_primary_10_1109_TVT_2022_3151246
crossref_primary_10_1007_s11235_025_01312_z
crossref_primary_10_1109_JSYST_2018_2870483
crossref_primary_10_1109_LWC_2019_2943466
crossref_primary_10_1109_ACCESS_2020_2984218
crossref_primary_10_1109_ACCESS_2022_3157651
crossref_primary_10_1109_JSAC_2020_3036943
crossref_primary_10_1016_j_nancom_2023_100456
crossref_primary_10_1109_ACCESS_2020_3000601
crossref_primary_10_1109_JSTSP_2022_3221850
crossref_primary_10_1109_TCOMM_2020_2978072
crossref_primary_10_1109_ACCESS_2019_2956211
crossref_primary_10_1007_s13369_021_05552_4
crossref_primary_10_1109_ACCESS_2020_2981745
crossref_primary_10_1109_TWC_2023_3328437
Cites_doi 10.1016/S0165-1684(00)00030-X
10.1109/TKDE.2009.191
10.1109/ISSPIT.2016.7886039
10.1109/26.141453
10.1109/ICASSP.2017.7952561
10.1109/SPAWC.2017.8227772
10.1109/SURV.2012.100412.00017
10.1214/08-PS141
10.1109/LCOMM.2005.09013
10.1109/ICC.2017.7997434
10.1002/j.1538-7305.1948.tb01338.x
10.1109/GlobalSIP.2016.7905837
10.1109/SPLIM.2016.7528397
10.1109/CISS.2017.7926071
10.1109/ACSSC.2016.7869126
10.1109/ALLERTON.2016.7852251
10.1109/ACCESS.2015.2471178
10.1038/nature16961
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2017.2784180
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 143
ExternalDocumentID 10_1109_JSTSP_2017_2784180
8214233
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
H8D
L7M
RIG
ID FETCH-LOGICAL-c361t-b5f77ff5ba5eeb9eaab8e8913d24af6fc4585a3828469d05cc69dc33d85a7eb03
IEDL.DBID RIE
ISICitedReferencesCount 526
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426010500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4553
IngestDate Mon Jun 30 10:33:44 EDT 2025
Tue Nov 18 21:51:28 EST 2025
Sat Nov 29 04:10:31 EST 2025
Wed Aug 27 02:28:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-b5f77ff5ba5eeb9eaab8e8913d24af6fc4585a3828469d05cc69dc33d85a7eb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7614-5156
PQID 2007209730
PQPubID 75721
PageCount 12
ParticipantIDs proquest_journals_2007209730
crossref_citationtrail_10_1109_JSTSP_2017_2784180
crossref_primary_10_1109_JSTSP_2017_2784180
ieee_primary_8214233
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References nachmani (ref17) 2017
ref31
ref30
abadi (ref24) 2016
ref10
wang (ref5) 2016
ref2
goodfellow (ref26) 2016
ref1
ref16
ref19
ref18
rumelhart (ref28) 1986; 1
harris (ref32) 2004
collobert (ref15) 0
ref25
ref20
al-rfou (ref11) 2016
o’shea (ref4) 2017
ref22
ref21
kingma (ref33) 2014
ref27
chen (ref14) 2015
ref29
ref8
ref7
george (ref6) 2016
ref9
farsad (ref23) 2017
ref3
abadi (ref12) 2016
chollet (ref13) 2015
References_xml – ident: ref8
  doi: 10.1016/S0165-1684(00)00030-X
– year: 2004
  ident: ref32
  publication-title: Multirate Signal Processing for Communication Systems
– year: 2014
  ident: ref33
  article-title: Adam: A method for stochastic optimization
– ident: ref29
  doi: 10.1109/TKDE.2009.191
– year: 2015
  ident: ref14
  article-title: MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems
– ident: ref3
  doi: 10.1109/ISSPIT.2016.7886039
– ident: ref2
  doi: 10.1109/26.141453
– ident: ref20
  doi: 10.1109/ICASSP.2017.7952561
– volume: 1
  start-page: 318
  year: 1986
  ident: ref28
  article-title: Parallel distributed processing: Explorations in the microstructure of cognition
– ident: ref21
  doi: 10.1109/SPAWC.2017.8227772
– year: 0
  ident: ref15
  article-title: Torch7: A MATLAB-like environment for machine learning
  publication-title: Proc BigLearn Neural Inf Process Syst Workshop
– ident: ref9
  doi: 10.1109/SURV.2012.100412.00017
– year: 2016
  ident: ref26
  publication-title: Deep Learning
– ident: ref31
  doi: 10.1214/08-PS141
– year: 2015
  ident: ref13
  article-title: Keras
– ident: ref27
  doi: 10.1109/LCOMM.2005.09013
– year: 2017
  ident: ref23
  article-title: Detection algorithms for communication systems using deep learning
– year: 2016
  ident: ref11
  article-title: Theano: A python framework for fast computation of mathematical expressions
– year: 2016
  ident: ref5
  article-title: Deep learning for identifying metastatic breast cancer
– ident: ref22
  doi: 10.1109/ICC.2017.7997434
– ident: ref1
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref19
  doi: 10.1109/GlobalSIP.2016.7905837
– ident: ref25
  doi: 10.1109/SPLIM.2016.7528397
– year: 2016
  ident: ref6
  article-title: Deep neural networks to enable real-time multimessenger astrophysics
– year: 2017
  ident: ref4
  article-title: An introduction to machine learning communications systems
– ident: ref18
  doi: 10.1109/CISS.2017.7926071
– ident: ref30
  doi: 10.1109/ACSSC.2016.7869126
– year: 2016
  ident: ref12
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
– ident: ref16
  doi: 10.1109/ALLERTON.2016.7852251
– year: 2017
  ident: ref17
  article-title: RNN decoding of linear block codes
– ident: ref10
  doi: 10.1109/ACCESS.2015.2471178
– ident: ref7
  doi: 10.1038/nature16961
– year: 2016
  ident: ref24
  article-title: Learning to protect communications with adversarial neural cryptography
SSID ssj0057614
Score 2.6736963
Snippet End-to-end learning of communications systems is a fascinating novel concept that has so far only been validated by simulations for block-based transmissions....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 132
SubjectTerms Artificial neural networks
Autoencoder
communication
Communication systems
Communications systems
Computer simulation
Data transmission
Deep learning
end-to-end learning
Hardware
modulation
neural network
Neural networks
over-the-air
Receivers
software-defined radio
Source code
Synchronism
Synchronization
Training
Transmitters
Title Deep Learning Based Communication Over the Air
URI https://ieeexplore.ieee.org/document/8214233
https://www.proquest.com/docview/2007209730
Volume 12
WOSCitedRecordID wos000426010500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057614
  issn: 1932-4553
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_m8EEf_JridEoefNNu7ZI07eP8GD7IHKiwt9IkFxnINvbh32-StmOiCD61lKSUX665u9zd7wCuFMu7nMow4HnkHJQkDtJYsgBDRCUMMwY9Zf6TGAyS0Sgd1uBmXQuDiD75DNvu1sfy9VSt3FFZJ3H8YJRuwZYQcVGrVe261myOyghyN2Cc06pAJkw7VsRfhi6LS7R9mM1RQG4oId9V5cdW7PVLf_9_X3YAe6UdSXrFwh9CDSdHsLvBLtiA9j3ijJQEqu_k1uorTb4VhJBnK8jEmoCkN54fw1v_4fXuMSjbIwSKxtEykNwIYQyXOUeUKea5TNBFHXWX5SY2illXIKfWpbIusA65UvaiKNX2qUAZ0hOoT6YTPAUSxYprgZHBRDFEq8ONjE1OBdMpVUI3IarwylTJHe5aWHxk3ocI08xjnDmMsxLjJlyv58wK5ow_RzccquuRJaBNaFXLkpU_18J1zhRdRzMUnv0-6xx27LuTIrm6BfXlfIUXsK0-l-PF_NLLzRfvd78o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv6Y4ndoH37Rb2iRN-zg_xsQ5B07YW2nTiwxkjn3495uk3Zgogk8tJaHll2vuLnf3O4BLyRKf05S4PPGMgxIGbhSkzEWCKIViSqGlzO-IbjccDKJeCa6XtTCIaJPPsG5ubSw_-5Bzc1TWCA0_GKVrsM4Z80lerbXYd7Xh7BUxZN9lnNNFiQyJGlrIX3omj0vUbaDNkECuqCHbV-XHZmw1TGv3f9-2BzuFJek086XfhxKODmB7hV-wAvU7xLFTUKi-OTdaY2XOt5IQ51mLsqONQKc5nBzCa-u-f9t2iwYJrqSBN3NTroRQiqcJR0wjTJI0RBN3zHyWqEBJpp2BhGqnSjvBGeFS6oukNNNPBaaEHkF59DHCY3C8QPJMoKcwlAxRa3GVBiqhgmURlSKrgrfAK5YFe7hpYvEeWy-CRLHFODYYxwXGVbhazhnn3Bl_jq4YVJcjC0CrUFssS1z8XlPTO1P4hmiInPw-6wI22_2nTtx56D6ewpZ-T5inWtegPJvM8Qw25OdsOJ2cWxn6Ag7Iwm8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Communication+Over+the+Air&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Dorner%2C+Sebastian&rft.au=Cammerer%2C+Sebastian&rft.au=Hoydis%2C+Jakob&rft.au=Brink%2C+Stephan+ten&rft.date=2018-02-01&rft.pub=IEEE&rft.issn=1932-4553&rft.volume=12&rft.issue=1&rft.spage=132&rft.epage=143&rft_id=info:doi/10.1109%2FJSTSP.2017.2784180&rft.externalDocID=8214233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon