Enhancing Multi-Objective Optimization with Automatic Construction of Parallel Algorithm Portfolios

It has been widely observed that there exists no universal best Multi-Objective Evolutionary Algorithm (MOEA) dominating all other MOEAs on all possible Multi-Objective Optimization Problems (MOPs). In this work, we advocate using the Parallel Algorithm Portfolio (PAP), which runs multiple MOEAs ind...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) Vol. 12; no. 22; p. 4639
Main Authors: Ma, Xiasheng, Liu, Shengcai, Hong, Wenjing
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2023
Subjects:
ISSN:2079-9292, 2079-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has been widely observed that there exists no universal best Multi-Objective Evolutionary Algorithm (MOEA) dominating all other MOEAs on all possible Multi-Objective Optimization Problems (MOPs). In this work, we advocate using the Parallel Algorithm Portfolio (PAP), which runs multiple MOEAs independently in parallel and gets the best out of them, to combine the advantages of different MOEAs. Since the manual construction of PAPs is non-trivial and tedious, we propose to automatically construct high-performance PAPs for solving MOPs. Specifically, we first propose a variant of PAPs, namely MOEAs/PAP, which can better determine the output solution set for MOPs than conventional PAPs. Then, we present an automatic construction approach for MOEAs/PAP with a novel performance metric for evaluating the performance of MOEAs across multiple MOPs. Finally, we use the proposed approach to construct an MOEAs/PAP based on a training set of MOPs and an algorithm configuration space defined by several variants of NSGA-II. Experimental results show that the automatically constructed MOEAs/PAP can even rival the state-of-the-art multi-operator-based MOEAs designed by human experts, demonstrating the huge potential of the automatic construction of PAPs in multi-objective optimization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12224639