An Efficient Encoding Algorithm Using Local Path on Huffman Encoding Algorithm for Compression

Huffman encoding and arithmetic coding algorithms have shown great potential in the field of image compression. These algorithms are the origin of current image compression techniques. Nevertheless, there are some deficiencies in both algorithms that use the frequencies of the characters in the data...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 9; no. 4; p. 782
Main Authors: Erdal, Erdal, Ergüzen, Atilla
Format: Journal Article
Language:English
Published: Basel MDPI AG 22.02.2019
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Huffman encoding and arithmetic coding algorithms have shown great potential in the field of image compression. These algorithms are the origin of current image compression techniques. Nevertheless, there are some deficiencies in both algorithms that use the frequencies of the characters in the data. They aim to represent the symbols used in the data in the shortest bit sequence. However, they represent data that has a low frequency of use with very long bit sequences. The arithmetic coding algorithm was developed to address the shortcomings of the Huffman encoding algorithm. This paper proposes an efficient, alternative encoding algorithm that uses the Huffman encoding algorithm. The main objective of the proposed algorithm is to reduce the number of bits that are symbolized with long bit codewords by the Huffman encoding algorithm. Initially, the Huffman encoding algorithm is applied to the data. The characters that are represented by the short bit sequence from the Huffman encoding algorithm are ignored. Flag bits are then added according to whether the successive symbols are on the same leaf. If the next character is not on the same leaf, flag bit “0” is added, otherwise flag bit “1” is added between the characters. In other words, the key significance of this algorithm is that it uses the effective aspects of the Huffman encoding algorithm, and it also proposes a solution to long bit sequences that cannot be efficiently represented. Most importantly, the validity of the algorithm is meticulously evaluated with three different groups of images. Randomly selected images from the USC-SIPI and STARE databases, and randomly selected standard images on internet, are used. The algorithm encodes compressing operations for images successfully. Some images that have a balanced tree structure have yielded close results compared to other algorithms. However, when the total results are inspected, the proposed encoding algorithm achieved excellent results.
AbstractList Huffman encoding and arithmetic coding algorithms have shown great potential in the field of image compression. These algorithms are the origin of current image compression techniques. Nevertheless, there are some deficiencies in both algorithms that use the frequencies of the characters in the data. They aim to represent the symbols used in the data in the shortest bit sequence. However, they represent data that has a low frequency of use with very long bit sequences. The arithmetic coding algorithm was developed to address the shortcomings of the Huffman encoding algorithm. This paper proposes an efficient, alternative encoding algorithm that uses the Huffman encoding algorithm. The main objective of the proposed algorithm is to reduce the number of bits that are symbolized with long bit codewords by the Huffman encoding algorithm. Initially, the Huffman encoding algorithm is applied to the data. The characters that are represented by the short bit sequence from the Huffman encoding algorithm are ignored. Flag bits are then added according to whether the successive symbols are on the same leaf. If the next character is not on the same leaf, flag bit “0” is added, otherwise flag bit “1” is added between the characters. In other words, the key significance of this algorithm is that it uses the effective aspects of the Huffman encoding algorithm, and it also proposes a solution to long bit sequences that cannot be efficiently represented. Most importantly, the validity of the algorithm is meticulously evaluated with three different groups of images. Randomly selected images from the USC-SIPI and STARE databases, and randomly selected standard images on internet, are used. The algorithm encodes compressing operations for images successfully. Some images that have a balanced tree structure have yielded close results compared to other algorithms. However, when the total results are inspected, the proposed encoding algorithm achieved excellent results.
The lossless image compression approach is suitable in a wide range of uses, from medical images [6,7] to business documents [8], in areas where any loss of information on the image would lead to inaccurate results [9]. According to the Young–Helmholtz theory of color vision, color images are represented by the master colors red, green, and blue [28]. [...]there is a need for a new encoding algorithm that is more efficient and offers more successful compression results. After modification, a group of process is applied to the image to achieve a higher compression ratio and a lower number of bits per pixel. Since the deficiencies in the coding algorithms are addressed in this new algorithm, it will bridge the gap in the literature.
Author Erdal, Erdal
Ergüzen, Atilla
Author_xml – sequence: 1
  givenname: Erdal
  orcidid: 0000-0003-1174-1974
  surname: Erdal
  fullname: Erdal, Erdal
– sequence: 2
  givenname: Atilla
  orcidid: 0000-0003-4562-2578
  surname: Ergüzen
  fullname: Ergüzen, Atilla
BookMark eNptkU1LAzEQhoNUsGov_oIFb8LqJNnuZo-lVFso6MFeDdl8tCnbZE3Sg__erRUV6Vzmg2feGWYu0cB5pxG6wXBPaQ0PoutqKKBi5AwNCVRlTgtcDf7EF2gU4xZ6qzFlGIbobeKymTFWWu1SNnPSK-vW2aRd-2DTZpet4iFfeina7EWkTeZdNt8bsxPuFG58yKZ-1wUdo_XuGp0b0UY9-vZXaPU4e53O8-Xz02I6WeaSljjlQuFCV-MGSsG00rgiBjNJqATKGtYoGKuxbJSRhjW4bsCUmjCQrGRVI0vA9AotjrrKiy3vgt2J8MG9sPyr4MOai5CsbDUvldGV1kTiuiiwUIyBIKLSQExREkx7rdujVhf8-17HxLd-H1y_PieUYjqu64L01N2RksHHGLT5mYqBH97Bf9_Rw_APljaJ1B8oBWHbUy2flouOng
CitedBy_id crossref_primary_10_1007_s11042_022_13250_y
crossref_primary_10_4316_AECE_2021_01010
crossref_primary_10_1109_JSEN_2022_3195501
crossref_primary_10_3390_app15062964
crossref_primary_10_1109_ACCESS_2025_3600813
crossref_primary_10_3390_s25082491
crossref_primary_10_3390_s25164913
crossref_primary_10_3390_computers14040127
crossref_primary_10_3390_e24070951
Cites_doi 10.1109/MCE.2017.2743239
10.1016/j.sigpro.2016.11.003
10.1016/j.cageo.2016.04.009
10.1166/jmihi.2017.2212
10.1109/PROC.1981.11971
10.1109/26.61469
10.1049/el:20073756
10.1109/TIT.1977.1055739
10.1109/JRPROC.1952.273898
10.1147/rd.203.0198
10.1016/j.neucom.2018.02.094
10.1109/TCSVT.2007.905532
10.1016/j.ijleo.2017.08.007
10.1016/j.irbm.2017.06.007
10.1111/cgf.12326
10.1016/j.protcy.2016.08.081
10.1016/S0923-5965(01)00024-8
10.1109/5.286189
10.1016/j.dsp.2008.03.003
10.1109/TIT.1978.1055934
10.1147/rd.282.0135
10.1147/rd.232.0149
10.1111/cgf.12625
10.1109/TIT.1977.1055714
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app9040782
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_6dfe7ee2c19441ad880a2a7e02f46213
10_3390_app9040782
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-ad14e75b06a8ede172f18c23c038b8bd05d5cbdfcf8b19b0f6e280c8687bc6013
IEDL.DBID BENPR
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460696500168&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:08:27 EDT 2025
Mon Jun 30 11:06:53 EDT 2025
Sat Nov 29 07:09:51 EST 2025
Tue Nov 18 21:40:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-ad14e75b06a8ede172f18c23c038b8bd05d5cbdfcf8b19b0f6e280c8687bc6013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1174-1974
0000-0003-4562-2578
OpenAccessLink https://www.proquest.com/docview/2331359942?pq-origsite=%requestingapplication%
PQID 2331359942
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_6dfe7ee2c19441ad880a2a7e02f46213
proquest_journals_2331359942
crossref_primary_10_3390_app9040782
crossref_citationtrail_10_3390_app9040782
PublicationCentury 2000
PublicationDate 2019-02-22
PublicationDateYYYYMMDD 2019-02-22
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-22
  day: 22
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hussain (ref_13) 2007; 43
Howard (ref_31) 1994; 82
Narmatha (ref_7) 2017; 7
Alaitz (ref_18) 2011; 13
David (ref_29) 1952; 40
Jacob (ref_23) 1978; 24
ref_36
ref_12
ref_10
Rissanen (ref_34) 1979; 23
Moffat (ref_32) 1990; 38
Haddad (ref_8) 2017; 38
Anirban (ref_11) 2018; 7
Ayman (ref_16) 2016; 7
Pasco (ref_33) 1976; 23
ref_39
ref_38
ref_37
Brunnett (ref_4) 2014; 33
Kasmeera (ref_25) 2016; 25
Hussain (ref_1) 2018; 300
Majid (ref_21) 2002; 17
Schwarz (ref_2) 2007; 17
Wang (ref_3) 2015; 34
Jain (ref_14) 1981; 69
(ref_19) 2017; 133
ref_20
Ashoka (ref_24) 2008; 58
Sanjay (ref_15) 2009; 19
ref_28
ref_27
ref_9
Jacob (ref_22) 1977; 23
Rissanen (ref_35) 1976; 20
Ernawan (ref_5) 2017; 148
Rajarshi (ref_26) 2014; 64
Langdon (ref_30) 1984; 28
ref_6
Peter (ref_17) 2016; 93
References_xml – ident: ref_28
– ident: ref_9
– volume: 7
  start-page: 119
  year: 2018
  ident: ref_11
  article-title: Intellectual Property-Based Lossless Image Compression for Camera Systems [Hardware Matters]
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2017.2743239
– volume: 133
  start-page: 135
  year: 2017
  ident: ref_19
  article-title: A separable reversible data hiding scheme for encrypted JPEG bitstreams
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.11.003
– volume: 93
  start-page: 45
  year: 2016
  ident: ref_17
  article-title: Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.04.009
– volume: 7
  start-page: 1196
  year: 2017
  ident: ref_7
  article-title: A Lossless Compression Scheme for Grayscale Medical Images Using a P2-Bit Short Technique
  publication-title: J. Med. Imaging Health Inform.
  doi: 10.1166/jmihi.2017.2212
– volume: 69
  start-page: 349
  year: 1981
  ident: ref_14
  article-title: Image data compression: A review
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1981.11971
– volume: 38
  start-page: 1917
  year: 1990
  ident: ref_32
  article-title: Implementing the PPM data compression scheme
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/26.61469
– volume: 64
  start-page: 975
  year: 2014
  ident: ref_26
  article-title: Lossless Compression Technique for Real-Time Photoplethysmographic Measurements
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_39
– volume: 43
  start-page: 385
  year: 2007
  ident: ref_13
  article-title: Image compression using improved hybrid classified vector quantisation
  publication-title: Electron. Lett.
  doi: 10.1049/el:20073756
– ident: ref_37
– volume: 23
  start-page: 548
  year: 1976
  ident: ref_33
  article-title: Source Coding Algorithms for Fast Data Compression
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1977.1055739
– volume: 40
  start-page: 1098
  year: 1952
  ident: ref_29
  article-title: A Method for the Construction of Minimum-Redundancy Codes
  publication-title: Proc. IRE
  doi: 10.1109/JRPROC.1952.273898
– volume: 20
  start-page: 198
  year: 1976
  ident: ref_35
  article-title: Generalized Kraft Inequality and Arithmetic Coding
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.203.0198
– volume: 300
  start-page: 44
  year: 2018
  ident: ref_1
  article-title: Image compression techniques: A survey in lossless and lossy algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.094
– volume: 17
  start-page: 1103
  year: 2007
  ident: ref_2
  article-title: Overview of the Scalable Video Coding Extension of the H.264/AVC Standard
  publication-title: IEEE Trans. Circuits Syst Video Technol.
  doi: 10.1109/TCSVT.2007.905532
– volume: 148
  start-page: 106
  year: 2017
  ident: ref_5
  article-title: An efficient image compression technique using Tchebichef bit allocation
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.08.007
– volume: 38
  start-page: 198
  year: 2017
  ident: ref_8
  article-title: Joint Watermarking and Lossless JPEG-LS Compression for Medical Image Security
  publication-title: Irbm
  doi: 10.1016/j.irbm.2017.06.007
– ident: ref_6
– volume: 33
  start-page: 283
  year: 2014
  ident: ref_4
  article-title: Rate-distortion optimized compression of motion capture data
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12326
– volume: 25
  start-page: 60
  year: 2016
  ident: ref_25
  article-title: Efficient Compression of Secured Images Using Subservient Data and Huffman Coding
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2016.08.081
– ident: ref_27
– volume: 7
  start-page: 149
  year: 2016
  ident: ref_16
  article-title: Comparison Study of Different Lossy Compression Techniques Applied on Digital Mammogram Images
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_12
– ident: ref_10
– volume: 17
  start-page: 3
  year: 2002
  ident: ref_21
  article-title: An overview of the JPEG 2000 still image compression standard
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/S0923-5965(01)00024-8
– volume: 13
  start-page: 43
  year: 2011
  ident: ref_18
  article-title: Effects of lossy compression on remote sensing image classification of forest areas
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 82
  start-page: 857
  year: 1994
  ident: ref_31
  article-title: Arithmetic coding for data compression
  publication-title: Proc. IEEE
  doi: 10.1109/5.286189
– volume: 19
  start-page: 59
  year: 2009
  ident: ref_15
  article-title: Lossy compression through segmentation on low depth-of-field images
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2008.03.003
– volume: 24
  start-page: 530
  year: 1978
  ident: ref_23
  article-title: Compression of individual sequences via variable-rate coding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1978.1055934
– volume: 28
  start-page: 135
  year: 1984
  ident: ref_30
  article-title: An Introduction to Arithmetic Coding
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.282.0135
– ident: ref_38
– ident: ref_36
– volume: 58
  start-page: 1706
  year: 2008
  ident: ref_24
  article-title: Use of Fourier Series Analysis for Motion Artifact Reduction and Data Compression of Photoplethysmographic Signals
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 23
  start-page: 149
  year: 1979
  ident: ref_34
  article-title: Arithmetic Coding
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.232.0149
– ident: ref_20
– volume: 34
  start-page: 131
  year: 2015
  ident: ref_3
  article-title: Distilled Collections from Textual Image Queries
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12625
– volume: 23
  start-page: 337
  year: 1977
  ident: ref_22
  article-title: A universal algorithm for sequential data compression
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1977.1055714
SSID ssj0000913810
Score 2.2053306
Snippet Huffman encoding and arithmetic coding algorithms have shown great potential in the field of image compression. These algorithms are the origin of current...
The lossless image compression approach is suitable in a wide range of uses, from medical images [6,7] to business documents [8], in areas where any loss of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 782
SubjectTerms Algorithms
arithmetic coding algorithm
compression
Data compression
Digitization
encoding algorithm
Huffman encoding algorithm
Medical research
Printing industry
Satellites
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA0iHvQgtipWqwT0YA-L2SSbTY5VWnqQ0oNCTy6bLxXaXemHv98ku60VC168hoEsk8nMe2T2DQA3nBimkVWRNYRGVDARiZzLSLIktpwzqqQKwybS4ZCPx2K0MerL94RV8sCV4-6YtiY1BivHtmmcaxdvOc5Tg7ClDId5tRilYoNMhRwsYi9dVemREsfr_XuwQP7RCv-oQEGo_1ceDsWlfwQOa1QIu9XXNMCOKZrgYEMrsAka9S2cw9taKrpzDF66BewFEQhXO2CvUKUvRbA7eS0d6X-bwtARAB99wYIjB_ZgWcDB0tppXmwzdwgW-gxRNccWJ-C533t6GET1xIRIERYvolzH1KSJRCznRhsHTmzMFSYKES651CjRiZLaKstlLCSyzGCOFGc8lcpRM3IKdouyMGcA0pQYSoXLy9RQr1FDuePRHp5pkzvY1gKdlRczVcuJ-6kWk8zRCu_x7NvjLXC9tv2oRDS2Wt37w1hbeOHrsODCIavDIfsrHFqgvTrKrL6N8wwTEpNECIrP_2OPC7DvYJMIP7bjNthdzJbmEuypz8X7fHYVAvELksjisQ
  priority: 102
  providerName: Directory of Open Access Journals
Title An Efficient Encoding Algorithm Using Local Path on Huffman Encoding Algorithm for Compression
URI https://www.proquest.com/docview/2331359942
https://doaj.org/article/6dfe7ee2c19441ad880a2a7e02f46213
Volume 9
WOSCitedRecordID wos000460696500168&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9RAFH9B8KAHBdS4CmQSOMihcb46nTmZhSyBRDcNwQQvNp0vMIEWdxf_fmdmZxcNhAvHti9pk_f1e-9Nfw9gTzInLPam8I7xgiuhCtVKXWhREi-l4EabtGyiGo_l-bmqc8Ntmo9VLmJiCtS2N7FH_pkyRlipFKdfbn4XcWtUnK7mFRrPYC0ylQU7XzsYjevTZZclsl5Kgue8pCzU93EurHAcXtH_MlEi7L8Xj1OSOXr91M9bh1cZXqLh3B42YMV1m_DyH9LBTdjI7jxFnzLn9P4b-Dns0CixSYQkhEad6WNOQ8Ori_CS2eU1SkcL0NeY-VAdUCPqO3R86_112z0kHqAwiqFmfsq2ewvfj0Znh8dFXr1QGCbIrGgt4a4qNRatdNYFlOOJNJQZzKSW2uLSlkZbb7zURGnshaMSGylkpU2o8dg7WO36zr0HxCvmOFchwHPHI9kNl6EgjzjPujbgvwHsL9TQmMxLHtdjXDWhPokqa-5UNoDdpezNnI3jQamDqM2lRGTQTjf6yUWTHbIR1rvKOWqICoiwtSGOtbStHKaeC0rYALYWim6yW0-bOy1_ePzxR3gRkJVK_77TLVidTW7dNjw3f2a_ppOdbKU7qQEQruqTb_WPv7RZ9Ko
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL0qKRKwAFpADRSwBEh0McKv8dgLhAKkStQ0yqJIZcMwfpVK7UxJUhA_xTdizyMFUbHrgu3M1UgeH597_DoX4LlkTljsTeId4wlXQiWqkDrRIiVeSsGNNnWxiWw6lYeHarYGP7u7MPFYZceJNVHbysQ18leUMcJSpTh9c_Y1iVWj4u5qV0KjgcWe-_E9TNkWr8fvQ_--oHR3ePBulLRVBRLDBFkmhSXcZanGopDOupDAPZGGMoOZ1FJbnNrUaOuNl5oojb1wVGIjhcy0CdMXFr57DdZ5BHsP1mfj_dnH1apOdNmUBDc-qIwpHPehFY6bZfSPzFcXCPiL_-uktnvnf_sdd-F2K5_RoMH7Bqy5chNu_WaquAkbLV0t0MvWU3vnHnwalGhYu2WEJIuGpalizkaDk6PQqOWXU1QfnUCTmNnRLKhiVJVodO79aVFeFh6kPopU2pwiLu_Dhytp9QPolVXptgDxjDnOVUhg3PFo5sOlCjos6FjriqBv-7DTdXtuWt_1WP7jJA_zrwiR_AIifXi2ij1r3EYujXob0bOKiA7h9YNqfpS3hJML613mHDVEBcVb2MDTBS0yh6nnghLWh-0OWHlLW4v8AlUP__36KdwYHexP8sl4uvcIbgYVqep7_nQbesv5uXsM18235fFi_qQdIQg-XzUKfwFM7FEA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU4RgAbSAGChgCZDoIqpfcewFQgOdUUctoyxAKhtC_CpIbVJmpiB-ja_DzmMKomLXBdvEiuTk-J5z4-tzAZ5J5oTF3iTeMZ5wJVSiSqkTLVLipRTcaNM0m8hmM3l4qPI1-NmfhYlllX1MbAK1rU38R75DGSMsVYrTHd-VReS7k1enX5PYQSrutPbtNFqI7Lsf30P6tng53Q3f-jmlk_G7N3tJ12EgMUyQZVJawl2WaixK6awLZO6JNJQZzKSW2uLUpkZbb7zURGnshaMSGylkpk1IZVh47hVYD5Kc0wGs59O3-YfVH57ouCkJbj1RGVM47kkrHDfO6B8s2DQL-IsLGoKb3PqfX81tuNnJajRq18EGrLlqE278Zra4CRtdGFugF53X9vYd-Diq0Lhx0Qjki8aVqSOXo9HxUZjU8vMJakoq0EFkfJQHtYzqCu2deX9SVhcNDykAiiG2rS6u7sL7S5n1PRhUdeXuA-IZc5yrQGzc8Wjyw6UK-izoW-vKoHuHsN1DoDCdH3tsC3JchLwswqU4h8sQnq7GnrYuJBeOeh2RtBoRncObC_X8qOgCUSGsd5lz1BAVlHBpQ_wuaZk5TD0XlLAhbPUgK7pwtijOEfbg37efwLUAveJgOtt_CNeDuFTN8X-6BYPl_Mw9gqvm2_LLYv64WywIPl02CH8B_y9ZwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Encoding+Algorithm+Using+Local+Path+on+Huffman+Encoding+Algorithm+for+Compression&rft.jtitle=Applied+sciences&rft.au=Erdal%2C+Erdal&rft.au=Erg%C3%BCzen%2C+Atilla&rft.date=2019-02-22&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=4&rft_id=info:doi/10.3390%2Fapp9040782&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon