FedDAR: Federated Learning With Data-Quantity Aware Regularization for Heterogeneous Distributed Data
Federated learning (FL) has emerged as a promising approach for collaboratively training global models and classifiers without sharing private data. However, existing studies primarily focus on distinct methodologies for typical and personalized FL (tFL and pFL), representing a challenge in explorin...
Uloženo v:
| Vydáno v: | IEEE access Ročník 13; s. 133208 - 133217 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Federated learning (FL) has emerged as a promising approach for collaboratively training global models and classifiers without sharing private data. However, existing studies primarily focus on distinct methodologies for typical and personalized FL (tFL and pFL), representing a challenge in exploring cross-applicable training methods. Moreover, previous approaches often rely on data and feature augmentation branches, overlooking data-quantity considerations, leading to suboptimal performance and inefficient communication costs, particularly in multi-class classification tasks. To address these challenges, we propose a novel add-on regularization technique for existing FL methods, named Data-quantity Aware Regularization (FedDAR), seamlessly integrating with existing tFL and pFL frameworks. This network-agnostic methodology reformulates the local training procedure by incorporating two crucial components: 1) enriched-feature augmentation, where features of the local model are coordinated with pre-initialized features to ensure unbiased-representations with efficient global communication rounds for unbalanced data distribution, and 2) data-quantity aware branch, which associates with local data size to improve the optimization of the local model using both supervised and self-supervised labels. We demonstrate significant performance improvements in tFL and pFL, achieving state-of-the-art results across MNIST, F-MNIST, CIFAR-10/100, and Tiny-ImageNet benchmarks. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2025.3591839 |