FedDAR: Federated Learning With Data-Quantity Aware Regularization for Heterogeneous Distributed Data

Federated learning (FL) has emerged as a promising approach for collaboratively training global models and classifiers without sharing private data. However, existing studies primarily focus on distinct methodologies for typical and personalized FL (tFL and pFL), representing a challenge in explorin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 133208 - 133217
Hlavní autoři: Kwak, Youngjun, Jung, Minyoung
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.