FedDAR: Federated Learning With Data-Quantity Aware Regularization for Heterogeneous Distributed Data

Federated learning (FL) has emerged as a promising approach for collaboratively training global models and classifiers without sharing private data. However, existing studies primarily focus on distinct methodologies for typical and personalized FL (tFL and pFL), representing a challenge in explorin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 13; S. 133208 - 133217
Hauptverfasser: Kwak, Youngjun, Jung, Minyoung
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!