Optimizing Personalized Recommender Systems for Teachers' Digital Learning Models Using Deep Learning Algorithms
Digital Learning Models for Teachers represent a significant advancement in the education sector, leveraging digital technology to enhance teaching effectiveness by creating personalized and customized learning experiences. These models enable teachers to receive more accurate feedback on their teac...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 13; S. 78461 - 78470 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Digital Learning Models for Teachers represent a significant advancement in the education sector, leveraging digital technology to enhance teaching effectiveness by creating personalized and customized learning experiences. These models enable teachers to receive more accurate feedback on their teaching. However, a current challenge is the need to recommend appropriate learning question types tailored to individual student needs, which can lead to suboptimal learning outcomes. To address this issue, this paper proposes a personalized recommendation algorithm based on Graph Neural Networks (PRAGNN) for teachers' digital learning models. Specifically, the approach integrates DINA cognitive diagnosis and gray partial correlation evaluation to construct a student model that captures students' mastery of knowledge points and cognitive ability levels. Additionally, a graph convolutional neural network (GCN) is employed, leveraging the sequential relationships between subject knowledge points to automatically capture semantic information from the higher-order structure of knowledge points, thereby enabling personalized recommendations. The algorithm achieved an accuracy of 85.7% through comparative experiments. This research presents a novel approach for developing personalized recommendation systems in teachers' digital learning models, with the potential to significantly improve learning outcomes in the educational field. |
|---|---|
| AbstractList | Digital Learning Models for Teachers represent a significant advancement in the education sector, leveraging digital technology to enhance teaching effectiveness by creating personalized and customized learning experiences. These models enable teachers to receive more accurate feedback on their teaching. However, a current challenge is the need to recommend appropriate learning question types tailored to individual student needs, which can lead to suboptimal learning outcomes. To address this issue, this paper proposes a personalized recommendation algorithm based on Graph Neural Networks (PRAGNN) for teachers' digital learning models. Specifically, the approach integrates DINA cognitive diagnosis and gray partial correlation evaluation to construct a student model that captures students' mastery of knowledge points and cognitive ability levels. Additionally, a graph convolutional neural network (GCN) is employed, leveraging the sequential relationships between subject knowledge points to automatically capture semantic information from the higher-order structure of knowledge points, thereby enabling personalized recommendations. The algorithm achieved an accuracy of 85.7% through comparative experiments. This research presents a novel approach for developing personalized recommendation systems in teachers' digital learning models, with the potential to significantly improve learning outcomes in the educational field. |
| Author | Zhong, Jun Zhang, Wenjuan |
| Author_xml | – sequence: 1 givenname: Jun surname: Zhong fullname: Zhong, Jun organization: Wuhan Guanggu Vocational College, Wuhan, China – sequence: 2 givenname: Wenjuan orcidid: 0009-0004-4104-8438 surname: Zhang fullname: Zhang, Wenjuan email: yoyo900418@163.com organization: Hubei Urban Construction Vocational and Technological College, Wuhan, China |
| BookMark | eNpNkU9P3DAQxaOKSqXAJ2gPkXroabf-H_u4WqBFWkTVhbM1a08Wr5I4tcMBPn29DWrxZeyZ93uW5n2sToY4YFV9omRJKTHfVuv11Xa7ZITJJZeKMiPeVaeMKrPgkquTN_cP1UXOB1KOLi3ZnFbj3TiFPryEYV__xJTjAF14QV__Qhf7HgePqd4-5wn7XLcx1fcI7rEIv9aXYR8m6OoNQhqO_G302OX6IR8fl4jj_9Gq28cUpsc-n1fvW-gyXrzWs-rh-up-_WOxuft-s15tFo4rOi0ASMOgRUccMqcFul3jpXGOUi6d5ztJjTcNawmCJFoL7wF0w1UrpEYQ_Ky6mX19hIMdU-ghPdsIwf5txLS3kKbgOrTOgJDKU031TlCAXdlPazQK5oAr2RavL7PXmOLvJ8yTPcSnVDaVLWekcEIoWVR8VrkUc07Y_vuVEntMys5J2WNS9jWpQn2eqYCIbwijlJYN_wOlaJKu |
| CODEN | IAECCG |
| Cites_doi | 10.1109/ICRIS.2019.00031 10.1109/TCSS.2021.3100291 10.3390/app14135667 10.1109/TII.2024.3495785 10.1109/ACCESS.2020.2976884 10.1109/te.2020.2984882 10.1109/ICMTMA54903.2022.00140 10.1109/DISA59116.2023.10308923 10.1109/ECICE55674.2022.10042913 10.1109/te.2019.2899545 10.1109/ICMTMA54903.2022.00244 10.1109/CogInfoCom47531.2019.9089989 10.1109/FIE43999.2019.9028527 10.1109/tlt.2022.3198739 10.1109/TLT.2022.3226523 10.1016/j.eswa.2023.121120 10.1109/TKDE.2020.2985954 10.1016/j.multra.2022.100016 10.1109/FIE.2011.6142794 10.1109/ICASSP39728.2021.9413506 10.1109/TMM.2020.2978618 10.1109/TPWRS.2024.3393017 10.1109/tlt.2023.3244604 10.1109/TMM.2019.2912124 10.1109/ICRIS52159.2020.00037 10.1109/ACAIT56212.2022.10137959 10.23919/CISTI49556.2020.9140896 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3561294 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Education |
| EISSN | 2169-3536 |
| EndPage | 78470 |
| ExternalDocumentID | oai_doaj_org_article_c9a456d1818b41aab000f98e42ca365f 10_1109_ACCESS_2025_3561294 10966857 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Hubei Provincial Construction Science and Technology Plan Project, in 2024 grantid: JK2024127 funderid: 10.13039/501100019030 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-aa072afec0ce2c84ecb7d59cc1135cd3b519d972f0ea50884ddaa8736f458ea43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001483881100047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:25 EDT 2025 Sat Nov 01 15:14:15 EDT 2025 Sat Nov 29 07:56:03 EST 2025 Wed Aug 27 01:53:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-aa072afec0ce2c84ecb7d59cc1135cd3b519d972f0ea50884ddaa8736f458ea43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-4104-8438 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10966857 |
| PQID | 3201814465 |
| PQPubID | 4845423 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c9a456d1818b41aab000f98e42ca365f proquest_journals_3201814465 crossref_primary_10_1109_ACCESS_2025_3561294 ieee_primary_10966857 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref21 doi: 10.1109/ICRIS.2019.00031 – ident: ref12 doi: 10.1109/TCSS.2021.3100291 – ident: ref25 doi: 10.3390/app14135667 – ident: ref5 doi: 10.1109/TII.2024.3495785 – ident: ref24 doi: 10.1109/ACCESS.2020.2976884 – ident: ref4 doi: 10.1109/te.2020.2984882 – ident: ref22 doi: 10.1109/ICMTMA54903.2022.00140 – ident: ref23 doi: 10.1109/DISA59116.2023.10308923 – ident: ref14 doi: 10.1109/ECICE55674.2022.10042913 – ident: ref3 doi: 10.1109/te.2019.2899545 – ident: ref18 doi: 10.1109/ICMTMA54903.2022.00244 – ident: ref26 doi: 10.1109/CogInfoCom47531.2019.9089989 – ident: ref16 doi: 10.1109/FIE43999.2019.9028527 – ident: ref1 doi: 10.1109/tlt.2022.3198739 – ident: ref6 doi: 10.1109/TLT.2022.3226523 – ident: ref27 doi: 10.1016/j.eswa.2023.121120 – ident: ref7 doi: 10.1109/TKDE.2020.2985954 – ident: ref9 doi: 10.1016/j.multra.2022.100016 – ident: ref15 doi: 10.1109/FIE.2011.6142794 – ident: ref17 doi: 10.1109/ICASSP39728.2021.9413506 – ident: ref11 doi: 10.1109/TMM.2020.2978618 – ident: ref8 doi: 10.1109/TPWRS.2024.3393017 – ident: ref2 doi: 10.1109/tlt.2023.3244604 – ident: ref10 doi: 10.1109/TMM.2019.2912124 – ident: ref19 doi: 10.1109/ICRIS52159.2020.00037 – ident: ref20 doi: 10.1109/ACAIT56212.2022.10137959 – ident: ref13 doi: 10.23919/CISTI49556.2020.9140896 |
| SSID | ssj0000816957 |
| Score | 2.3348126 |
| Snippet | Digital Learning Models for Teachers represent a significant advancement in the education sector, leveraging digital technology to enhance teaching... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 78461 |
| SubjectTerms | Accuracy Algorithms Analytical models Artificial neural networks cognitive abilities Customization Data models Deep learning Digital learning models for teachers Education Educational objectives Graph neural networks Knowledge engineering Learning Machine learning Mathematical models Neural networks personalized recommendations Recommender systems Solid modeling Teachers Teaching |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8SgivOQBiYVAHNuxPZYCYgIGkLpZju2USqStmsLAr8d2XAhiYGHMQ3F8l7v7Ljp9HwCnuuIKK0JT42cHiS5FynlhU66oLYgWhBkSxCbY_T0fDsVjR-rLz4S19MCt4S61cE8qjCtEvCRIKV-1KsEtybXCBa189nWop9NMhRzMUSEoizRDKBOX_cHA7cg1hDm9wF4SUpAfpSgw9keJlV95ORSb2y2wGVEi7Ldvtw1W7GQHbHS4A3fB7MEFez3-cAfwcYmoP6yBvqGs66AQByMfOXTIFEbu5uYMXo9HXioERm7VEfSCaK8NDOMD8Nra2fel_utoOh8vXuqmB55vb54Gd2mUT0g1LtAiVSpjuaqszrTNNSdWl8xQoTVCmGqDSwfejGB5lVnlYRoxRinOcFERyq0ieA-sTqYTuw8gwZoQI7QpMCPUoUKOUYmUC2blEgASCThfWlLOWpYMGbqLTMjW8NIbXkbDJ-DKW_vrVk9xHU44x8voePmX4xPQ877qrOc6N05ZAo6WzpMxHhuJc09M5snhDv5j7UOw7vfT_oo5AquL-Zs9Bmv6fTFu5ifhU_wEIRbhVg priority: 102 providerName: Directory of Open Access Journals |
| Title | Optimizing Personalized Recommender Systems for Teachers' Digital Learning Models Using Deep Learning Algorithms |
| URI | https://ieeexplore.ieee.org/document/10966857 https://www.proquest.com/docview/3201814465 https://doaj.org/article/c9a456d1818b41aab000f98e42ca365f |
| Volume | 13 |
| WOSCitedRecordID | wos001483881100047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RigMcoJSibr_kAxIXUjaxHdvHZduKC6UHkHqzHHuyrNT90GbLoYf-9nocbylCHLhE-Y6jF9tvnPF7AO99qx13QhaBcgeFb0yhdY2FdhJr4Y1QQSSzCXV5qa-vzVWerJ7mwiBiSj7DU1pN__LDwt_SUFms4ZGca6m2YEsp1U_WehxQIQcJI1VWFoqnfhqNx_ElYgxYyVNOLpBG_NH7JJH-7KryV1Oc-peL1_9Zsh14lYkkG_XIv4FnON8lD-acr7ELL59IDb6F5bfYNsymd3GDXW0I-B0GRvHnbJYM5ViWL2eRyLIs9dx9YGfTCTmLsCzFOmHkn3bTsZRtwM4Ql78PjW4mi9V0_XPW7cGPi_Pv4y9FdlsoPK_LdeHcUFWuRT_0WHkt0DcqSON9WXLpA28i1wtGVe0QHbE6EYJzWvG6FVKjE_wdbM8Xc9wHJrgXIhgfaq6EjCRS87IpXaz7LrYXpRnAxw0KdtmLatgUjAyN7UGzBJrNoA3gMyH1eCopYqcdEQKbK5j18d6yDpGw6EaUzhG7aY1GUXnHa9kOYI9ge_K8HrEBHG2At7n6dpZXpGNGWnIH_7jsEF5QEfvBmCPYXq9u8Rie-1_rabc6SZF9XH69Pz9JX-kDsHDlAA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgIAEHPkoRCwV8QOJCyiYex_Zx2VIVUZYeitSb5diTZaXuhzZbDv31eBxvKUIcuOXDSRy9jP3sjN9j7K1vtRMOZBEodxB8Ywqtayy0k1iDN6ACJLMJNZno83Nzmherp7UwiJiSz_CANtO__LD0lzRVFiM8knMt1W12RwJUZb9c63pKhTwkjFRZWygW_jAaj-NrxFFgJQ8E-UAa-KP_STL92Vflr8Y49TBHj_6zbo_Zw0wl-ajH_gm7hYtdcmHOGRu77MENscGnbPUttg7z2VXc4adbCn6FgdMIdD5PlnI8C5jzSGV5Fnvu3vHD2ZS8RXgWY51yclC76HjKN-CHiKvfp0YX0-V6tvkx7_bY96NPZ-PjIvstFF7U5aZwbqgq16Ifeqy8BvSNCtJ4X5ZC-iCayPaCUVU7REe8DkJwTitRtyA1OhDP2M5iucDnjIPwAMH4UAsFMtJILcqmdDH6XWwxSjNg77co2FUvq2HTcGRobA-aJdBsBm3APhJS10VJEzsdiBDYHGLWx3vLOkTKohsonSN-0xqNUHknatkO2B7BduN5PWIDtr8F3uYA7qyoSMmM1ORe_OOyN-ze8dnXE3vyefLlJbtP1e2nZvbZzmZ9ia_YXf9zM-vWr9NX-gvxduYh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Personalized+Recommender+Systems+for+Teachers%27+Digital+Learning+Models+Using+Deep+Learning+Algorithms&rft.jtitle=IEEE+access&rft.au=Zhong%2C+Jun&rft.au=Zhang%2C+Wenjuan&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=78461&rft.epage=78470&rft_id=info:doi/10.1109%2FACCESS.2025.3561294&rft.externalDocID=10966857 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |