Optimizing Personalized Recommender Systems for Teachers' Digital Learning Models Using Deep Learning Algorithms

Digital Learning Models for Teachers represent a significant advancement in the education sector, leveraging digital technology to enhance teaching effectiveness by creating personalized and customized learning experiences. These models enable teachers to receive more accurate feedback on their teac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 13; S. 78461 - 78470
Hauptverfasser: Zhong, Jun, Zhang, Wenjuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Digital Learning Models for Teachers represent a significant advancement in the education sector, leveraging digital technology to enhance teaching effectiveness by creating personalized and customized learning experiences. These models enable teachers to receive more accurate feedback on their teaching. However, a current challenge is the need to recommend appropriate learning question types tailored to individual student needs, which can lead to suboptimal learning outcomes. To address this issue, this paper proposes a personalized recommendation algorithm based on Graph Neural Networks (PRAGNN) for teachers' digital learning models. Specifically, the approach integrates DINA cognitive diagnosis and gray partial correlation evaluation to construct a student model that captures students' mastery of knowledge points and cognitive ability levels. Additionally, a graph convolutional neural network (GCN) is employed, leveraging the sequential relationships between subject knowledge points to automatically capture semantic information from the higher-order structure of knowledge points, thereby enabling personalized recommendations. The algorithm achieved an accuracy of 85.7% through comparative experiments. This research presents a novel approach for developing personalized recommendation systems in teachers' digital learning models, with the potential to significantly improve learning outcomes in the educational field.
AbstractList Digital Learning Models for Teachers represent a significant advancement in the education sector, leveraging digital technology to enhance teaching effectiveness by creating personalized and customized learning experiences. These models enable teachers to receive more accurate feedback on their teaching. However, a current challenge is the need to recommend appropriate learning question types tailored to individual student needs, which can lead to suboptimal learning outcomes. To address this issue, this paper proposes a personalized recommendation algorithm based on Graph Neural Networks (PRAGNN) for teachers' digital learning models. Specifically, the approach integrates DINA cognitive diagnosis and gray partial correlation evaluation to construct a student model that captures students' mastery of knowledge points and cognitive ability levels. Additionally, a graph convolutional neural network (GCN) is employed, leveraging the sequential relationships between subject knowledge points to automatically capture semantic information from the higher-order structure of knowledge points, thereby enabling personalized recommendations. The algorithm achieved an accuracy of 85.7% through comparative experiments. This research presents a novel approach for developing personalized recommendation systems in teachers' digital learning models, with the potential to significantly improve learning outcomes in the educational field.
Author Zhong, Jun
Zhang, Wenjuan
Author_xml – sequence: 1
  givenname: Jun
  surname: Zhong
  fullname: Zhong, Jun
  organization: Wuhan Guanggu Vocational College, Wuhan, China
– sequence: 2
  givenname: Wenjuan
  orcidid: 0009-0004-4104-8438
  surname: Zhang
  fullname: Zhang, Wenjuan
  email: yoyo900418@163.com
  organization: Hubei Urban Construction Vocational and Technological College, Wuhan, China
BookMark eNpNkU9P3DAQxaOKSqXAJ2gPkXroabf-H_u4WqBFWkTVhbM1a08Wr5I4tcMBPn29DWrxZeyZ93uW5n2sToY4YFV9omRJKTHfVuv11Xa7ZITJJZeKMiPeVaeMKrPgkquTN_cP1UXOB1KOLi3ZnFbj3TiFPryEYV__xJTjAF14QV__Qhf7HgePqd4-5wn7XLcx1fcI7rEIv9aXYR8m6OoNQhqO_G302OX6IR8fl4jj_9Gq28cUpsc-n1fvW-gyXrzWs-rh-up-_WOxuft-s15tFo4rOi0ASMOgRUccMqcFul3jpXGOUi6d5ztJjTcNawmCJFoL7wF0w1UrpEYQ_Ky6mX19hIMdU-ghPdsIwf5txLS3kKbgOrTOgJDKU031TlCAXdlPazQK5oAr2RavL7PXmOLvJ8yTPcSnVDaVLWekcEIoWVR8VrkUc07Y_vuVEntMys5J2WNS9jWpQn2eqYCIbwijlJYN_wOlaJKu
CODEN IAECCG
Cites_doi 10.1109/ICRIS.2019.00031
10.1109/TCSS.2021.3100291
10.3390/app14135667
10.1109/TII.2024.3495785
10.1109/ACCESS.2020.2976884
10.1109/te.2020.2984882
10.1109/ICMTMA54903.2022.00140
10.1109/DISA59116.2023.10308923
10.1109/ECICE55674.2022.10042913
10.1109/te.2019.2899545
10.1109/ICMTMA54903.2022.00244
10.1109/CogInfoCom47531.2019.9089989
10.1109/FIE43999.2019.9028527
10.1109/tlt.2022.3198739
10.1109/TLT.2022.3226523
10.1016/j.eswa.2023.121120
10.1109/TKDE.2020.2985954
10.1016/j.multra.2022.100016
10.1109/FIE.2011.6142794
10.1109/ICASSP39728.2021.9413506
10.1109/TMM.2020.2978618
10.1109/TPWRS.2024.3393017
10.1109/tlt.2023.3244604
10.1109/TMM.2019.2912124
10.1109/ICRIS52159.2020.00037
10.1109/ACAIT56212.2022.10137959
10.23919/CISTI49556.2020.9140896
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3561294
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
EISSN 2169-3536
EndPage 78470
ExternalDocumentID oai_doaj_org_article_c9a456d1818b41aab000f98e42ca365f
10_1109_ACCESS_2025_3561294
10966857
Genre orig-research
GrantInformation_xml – fundername: Hubei Provincial Construction Science and Technology Plan Project, in 2024
  grantid: JK2024127
  funderid: 10.13039/501100019030
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-aa072afec0ce2c84ecb7d59cc1135cd3b519d972f0ea50884ddaa8736f458ea43
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001483881100047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:25 EDT 2025
Sat Nov 01 15:14:15 EDT 2025
Sat Nov 29 07:56:03 EST 2025
Wed Aug 27 01:53:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-aa072afec0ce2c84ecb7d59cc1135cd3b519d972f0ea50884ddaa8736f458ea43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-4104-8438
OpenAccessLink https://ieeexplore.ieee.org/document/10966857
PQID 3201814465
PQPubID 4845423
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_c9a456d1818b41aab000f98e42ca365f
proquest_journals_3201814465
crossref_primary_10_1109_ACCESS_2025_3561294
ieee_primary_10966857
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref21
  doi: 10.1109/ICRIS.2019.00031
– ident: ref12
  doi: 10.1109/TCSS.2021.3100291
– ident: ref25
  doi: 10.3390/app14135667
– ident: ref5
  doi: 10.1109/TII.2024.3495785
– ident: ref24
  doi: 10.1109/ACCESS.2020.2976884
– ident: ref4
  doi: 10.1109/te.2020.2984882
– ident: ref22
  doi: 10.1109/ICMTMA54903.2022.00140
– ident: ref23
  doi: 10.1109/DISA59116.2023.10308923
– ident: ref14
  doi: 10.1109/ECICE55674.2022.10042913
– ident: ref3
  doi: 10.1109/te.2019.2899545
– ident: ref18
  doi: 10.1109/ICMTMA54903.2022.00244
– ident: ref26
  doi: 10.1109/CogInfoCom47531.2019.9089989
– ident: ref16
  doi: 10.1109/FIE43999.2019.9028527
– ident: ref1
  doi: 10.1109/tlt.2022.3198739
– ident: ref6
  doi: 10.1109/TLT.2022.3226523
– ident: ref27
  doi: 10.1016/j.eswa.2023.121120
– ident: ref7
  doi: 10.1109/TKDE.2020.2985954
– ident: ref9
  doi: 10.1016/j.multra.2022.100016
– ident: ref15
  doi: 10.1109/FIE.2011.6142794
– ident: ref17
  doi: 10.1109/ICASSP39728.2021.9413506
– ident: ref11
  doi: 10.1109/TMM.2020.2978618
– ident: ref8
  doi: 10.1109/TPWRS.2024.3393017
– ident: ref2
  doi: 10.1109/tlt.2023.3244604
– ident: ref10
  doi: 10.1109/TMM.2019.2912124
– ident: ref19
  doi: 10.1109/ICRIS52159.2020.00037
– ident: ref20
  doi: 10.1109/ACAIT56212.2022.10137959
– ident: ref13
  doi: 10.23919/CISTI49556.2020.9140896
SSID ssj0000816957
Score 2.3348126
Snippet Digital Learning Models for Teachers represent a significant advancement in the education sector, leveraging digital technology to enhance teaching...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 78461
SubjectTerms Accuracy
Algorithms
Analytical models
Artificial neural networks
cognitive abilities
Customization
Data models
Deep learning
Digital learning models for teachers
Education
Educational objectives
Graph neural networks
Knowledge engineering
Learning
Machine learning
Mathematical models
Neural networks
personalized recommendations
Recommender systems
Solid modeling
Teachers
Teaching
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8SgivOQBiYVAHNuxPZYCYgIGkLpZju2USqStmsLAr8d2XAhiYGHMQ3F8l7v7Ljp9HwCnuuIKK0JT42cHiS5FynlhU66oLYgWhBkSxCbY_T0fDsVjR-rLz4S19MCt4S61cE8qjCtEvCRIKV-1KsEtybXCBa189nWop9NMhRzMUSEoizRDKBOX_cHA7cg1hDm9wF4SUpAfpSgw9keJlV95ORSb2y2wGVEi7Ldvtw1W7GQHbHS4A3fB7MEFez3-cAfwcYmoP6yBvqGs66AQByMfOXTIFEbu5uYMXo9HXioERm7VEfSCaK8NDOMD8Nra2fel_utoOh8vXuqmB55vb54Gd2mUT0g1LtAiVSpjuaqszrTNNSdWl8xQoTVCmGqDSwfejGB5lVnlYRoxRinOcFERyq0ieA-sTqYTuw8gwZoQI7QpMCPUoUKOUYmUC2blEgASCThfWlLOWpYMGbqLTMjW8NIbXkbDJ-DKW_vrVk9xHU44x8voePmX4xPQ877qrOc6N05ZAo6WzpMxHhuJc09M5snhDv5j7UOw7vfT_oo5AquL-Zs9Bmv6fTFu5ifhU_wEIRbhVg
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimizing Personalized Recommender Systems for Teachers' Digital Learning Models Using Deep Learning Algorithms
URI https://ieeexplore.ieee.org/document/10966857
https://www.proquest.com/docview/3201814465
https://doaj.org/article/c9a456d1818b41aab000f98e42ca365f
Volume 13
WOSCitedRecordID wos001483881100047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RigMcoJSibr_kAxIXUjaxHdvHZduKC6UHkHqzHHuyrNT90GbLoYf-9nocbylCHLhE-Y6jF9tvnPF7AO99qx13QhaBcgeFb0yhdY2FdhJr4Y1QQSSzCXV5qa-vzVWerJ7mwiBiSj7DU1pN__LDwt_SUFms4ZGca6m2YEsp1U_WehxQIQcJI1VWFoqnfhqNx_ElYgxYyVNOLpBG_NH7JJH-7KryV1Oc-peL1_9Zsh14lYkkG_XIv4FnON8lD-acr7ELL59IDb6F5bfYNsymd3GDXW0I-B0GRvHnbJYM5ViWL2eRyLIs9dx9YGfTCTmLsCzFOmHkn3bTsZRtwM4Ql78PjW4mi9V0_XPW7cGPi_Pv4y9FdlsoPK_LdeHcUFWuRT_0WHkt0DcqSON9WXLpA28i1wtGVe0QHbE6EYJzWvG6FVKjE_wdbM8Xc9wHJrgXIhgfaq6EjCRS87IpXaz7LrYXpRnAxw0KdtmLatgUjAyN7UGzBJrNoA3gMyH1eCopYqcdEQKbK5j18d6yDpGw6EaUzhG7aY1GUXnHa9kOYI9ge_K8HrEBHG2At7n6dpZXpGNGWnIH_7jsEF5QEfvBmCPYXq9u8Rie-1_rabc6SZF9XH69Pz9JX-kDsHDlAA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgIAEHPkoRCwV8QOJCyiYex_Zx2VIVUZYeitSb5diTZaXuhzZbDv31eBxvKUIcuOXDSRy9jP3sjN9j7K1vtRMOZBEodxB8Ywqtayy0k1iDN6ACJLMJNZno83Nzmherp7UwiJiSz_CANtO__LD0lzRVFiM8knMt1W12RwJUZb9c63pKhTwkjFRZWygW_jAaj-NrxFFgJQ8E-UAa-KP_STL92Vflr8Y49TBHj_6zbo_Zw0wl-ajH_gm7hYtdcmHOGRu77MENscGnbPUttg7z2VXc4adbCn6FgdMIdD5PlnI8C5jzSGV5Fnvu3vHD2ZS8RXgWY51yclC76HjKN-CHiKvfp0YX0-V6tvkx7_bY96NPZ-PjIvstFF7U5aZwbqgq16Ifeqy8BvSNCtJ4X5ZC-iCayPaCUVU7REe8DkJwTitRtyA1OhDP2M5iucDnjIPwAMH4UAsFMtJILcqmdDH6XWwxSjNg77co2FUvq2HTcGRobA-aJdBsBm3APhJS10VJEzsdiBDYHGLWx3vLOkTKohsonSN-0xqNUHknatkO2B7BduN5PWIDtr8F3uYA7qyoSMmM1ORe_OOyN-ze8dnXE3vyefLlJbtP1e2nZvbZzmZ9ia_YXf9zM-vWr9NX-gvxduYh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Personalized+Recommender+Systems+for+Teachers%27+Digital+Learning+Models+Using+Deep+Learning+Algorithms&rft.jtitle=IEEE+access&rft.au=Zhong%2C+Jun&rft.au=Zhang%2C+Wenjuan&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=78461&rft.epage=78470&rft_id=info:doi/10.1109%2FACCESS.2025.3561294&rft.externalDocID=10966857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon