Multiscale Spectral-Spatial Unmixing Network With Boltzmann-Inspired Adaptive Temperature

Hyperspectral unmixing aims to decompose mixed pixels into endmembers with corresponding abundances. However, while several existing convolutional autoencoder methods usually use fixed convolutional kernels, making it difficult to capture the global context. In addition, due to the huge solution spa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 20085 - 20097
Main Authors: Wang, Zhixiang, Xu, Jindong, Wei, Guangyi, Wang, Jie, Yan, Yu
Format: Journal Article
Language:English
Published: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1939-1404, 2151-1535
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hyperspectral unmixing aims to decompose mixed pixels into endmembers with corresponding abundances. However, while several existing convolutional autoencoder methods usually use fixed convolutional kernels, making it difficult to capture the global context. In addition, due to the huge solution space of unmixing, existing methods usually adopt a consistent sparsity constraint and lack adaptivity. To overcome the above-mentioned limitations, we propose a multiscale spectral-spatial unmixing network with Boltzmann-inspired adaptive temperature. First, the spectral attention block and spatial attention block are designed to capture the dependence between spectral bands and enhance spatial feature extraction, respectively. These are integrated into multiscale spectral-spatial attention blocks with varying convolution kernels, which enable the network to focus on local and global image structures at the same time. Moreover, inspired by the Boltzmann distribution, we introduce a temperature matrix T in the softmax activation to regulate the output sparsity, similar to the effect of temperature on the particle energy distribution. The Euclidean distance and cosine distance between adjacent pixels are used to construct the similarity matrix to capture the spectral difference caused by the amplitude change, and then the T matrix is constructed. The softmax layer is divided by the resulting T matrix, so as to impose sparsity constraints of varying strengths on different areas. Evaluations on simulated and real datasets demonstrate the proposed approach's superiority over state-of-the-art methods.
AbstractList Hyperspectral unmixing aims to decompose mixed pixels into endmembers with corresponding abundances. However, while several existing convolutional autoencoder methods usually use fixed convolutional kernels, making it difficult to capture the global context. In addition, due to the huge solution space of unmixing, existing methods usually adopt a consistent sparsity constraint and lack adaptivity. To overcome the above-mentioned limitations, we propose a multiscale spectral–spatial unmixing network with Boltzmann-inspired adaptive temperature. First, the spectral attention block and spatial attention block are designed to capture the dependence between spectral bands and enhance spatial feature extraction, respectively. These are integrated into multiscale spectral–spatial attention blocks with varying convolution kernels, which enable the network to focus on local and global image structures at the same time. Moreover, inspired by the Boltzmann distribution, we introduce a temperature matrix T in the softmax activation to regulate the output sparsity, similar to the effect of temperature on the particle energy distribution. The Euclidean distance and cosine distance between adjacent pixels are used to construct the similarity matrix to capture the spectral difference caused by the amplitude change, and then the T matrix is constructed. The softmax layer is divided by the resulting T matrix, so as to impose sparsity constraints of varying strengths on different areas. Evaluations on simulated and real datasets demonstrate the proposed approach’s superiority over state-of-the-art methods.
Author Wei, Guangyi
Wang, Zhixiang
Xu, Jindong
Yan, Yu
Wang, Jie
Author_xml – sequence: 1
  givenname: Zhixiang
  orcidid: 0009-0008-6044-5622
  surname: Wang
  fullname: Wang, Zhixiang
  email: wangzhixiang@s.ytu.edu.cn
  organization: School of Computer and Control Engineering, YanTai University, Yantai, China
– sequence: 2
  givenname: Jindong
  orcidid: 0000-0001-6688-5014
  surname: Xu
  fullname: Xu, Jindong
  email: xujindong@ytu.edu.cn
  organization: School of Computer and Control Engineering, YanTai University, Yantai, China
– sequence: 3
  givenname: Guangyi
  orcidid: 0009-0001-6307-8273
  surname: Wei
  fullname: Wei, Guangyi
  email: weiguangyi@s.ytu.edu.cn
  organization: School of Computer and Control Engineering, YanTai University, Yantai, China
– sequence: 4
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  email: wangjie103120@163.com
  organization: School of Computer and Control Engineering, YanTai University, Yantai, China
– sequence: 5
  givenname: Yu
  orcidid: 0009-0006-4410-4444
  surname: Yan
  fullname: Yan, Yu
  email: 100781134@s.ytu.edu.cn
  organization: School of Computer and Control Engineering, YanTai University, Yantai, China
BookMark eNpFkctu2zAQRYkiAeo8vqBZCOhaLt8Sl27Qh4MkBWoHQVfEmBwldGVRpei2yddHiYJ2NcDg3jMDnCNy0MUOCXnH6Jwxaj5crNaL76s5p1zNhTKSKfWGzDhTrGRKqAMyY0aYkkkq35KjYdhSqnllxIz8uNq3OQwOWixWPbqcoC1XPeQAbXHT7cLf0N0V15j_xPSzuA35vvgY2_y4g64rl93Qh4S-WHjoc_iNxRp3PSbI-4Qn5LCBdsDT13lMbj5_Wp9_LS-_fVmeLy5LJzTLJdSVr2jFwSgP6B3faKC1VF5grVXDvKiE5syDkOjRmNpIjpVDw2qHUjbimCwnro-wtX0KO0gPNkKwL4uY7iykHFyLdtNo12ipUTIpNeO1UEpRqKpab5Qwm5H1fmL1Kf7a45DtNu5TN75vBZcvj1A5psSUcikOQ8Lm31VG7bMPO_mwzz7sq4-xdTa1AiL-b4z5kVqLJ4WtiPU
CODEN IJSTHZ
Cites_doi 10.1109/JSTARS.2024.3450856
10.1109/TNNLS.2023.3300903
10.1109/TGRS.2018.2890633
10.1109/TCSVT.2024.3418610
10.1109/TGRS.2024.3353259
10.1080/10408347.2022.2073433
10.1109/JSTARS.2022.3175257
10.1016/j.ophoto.2024.100062
10.1016/j.ins.2013.03.014
10.1109/IGARSS46834.2022.9883117
10.1016/j.asoc.2018.05.012
10.1016/j.inffus.2024.102417
10.1109/ICWAPR48189.2019.8946465
10.1109/TGRS.2005.844293
10.1016/0166-1280(88)80133-7
10.1016/j.jag.2024.103864
10.1109/TGRS.2023.3321839
10.1109/IGARSS.2019.8898427
10.1109/WHISPERS.2015.8075378
10.1002/int.22108
10.1109/JSTARS.2012.2192472
10.1109/TGRS.2021.3069845
10.1016/j.inffus.2024.102419
10.1109/TGRS.2021.3064958
10.1016/j.jag.2024.103850
10.1080/01431161.2020.1854893
10.1109/TGRS.2019.2916296
10.3389/fpls.2022.810546
10.1016/j.neunet.2021.01.001
10.1109/CVPR42600.2020.01155
10.1109/TGRS.2024.3505292
10.1109/TIP.2014.2363423
10.1109/36.911111
10.1016/j.rse.2022.113448
10.1109/TCSVT.2025.3586282
10.1109/TGRS.2024.3393931
10.1109/IGARSS.2019.8900297
10.1109/TGRS.2021.3121799
10.1109/TGRS.2018.2868690
10.1016/j.jag.2022.102981
10.1109/TGRS.2024.3434427
10.2307/143141
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2025.3594155
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Xplore Digital Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 20097
ExternalDocumentID oai_doaj_org_article_bf6cf646e4144612835550a7786b539b
10_1109_JSTARS_2025_3594155
11106218
Genre orig-research
GrantInformation_xml – fundername: Basic Research Key Project of Yantai Science and Technology Innovation Development Plan
  grantid: 2024JCYJ037
– fundername: National Natural Science Foundation of China
  grantid: 62072391; 62066013
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c361t-a87d7072a95daedc2b6a0845d3e865f1d373621da34ede998942e7ce918ce44f3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001554469500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:46:35 EDT 2025
Sat Nov 29 13:42:12 EST 2025
Sat Nov 29 07:39:40 EST 2025
Wed Aug 27 07:36:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a87d7072a95daedc2b6a0845d3e865f1d373621da34ede998942e7ce918ce44f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-4410-4444
0000-0001-6688-5014
0009-0008-6044-5622
0009-0001-6307-8273
OpenAccessLink https://ieeexplore.ieee.org/document/11106218
PQID 3247362104
PQPubID 75722
PageCount 13
ParticipantIDs crossref_primary_10_1109_JSTARS_2025_3594155
proquest_journals_3247362104
ieee_primary_11106218
doaj_primary_oai_doaj_org_article_bf6cf646e4144612835550a7786b539b
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref11
ref33
ref10
ref32
ref2
Hernandez (ref31) 2017; 2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Otsu (ref35) 1975; 11
ref24
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
Liu (ref23) 2025
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref16
  doi: 10.1109/JSTARS.2024.3450856
– ident: ref21
  doi: 10.1109/TNNLS.2023.3300903
– ident: ref12
  doi: 10.1109/TGRS.2018.2890633
– ident: ref3
  doi: 10.1109/TCSVT.2024.3418610
– ident: ref18
  doi: 10.1109/TGRS.2024.3353259
– ident: ref4
  doi: 10.1080/10408347.2022.2073433
– ident: ref25
  doi: 10.1109/JSTARS.2022.3175257
– ident: ref7
  doi: 10.1016/j.ophoto.2024.100062
– ident: ref37
  doi: 10.1016/j.ins.2013.03.014
– ident: ref45
  doi: 10.1109/IGARSS46834.2022.9883117
– ident: ref38
  doi: 10.1016/j.asoc.2018.05.012
– ident: ref8
  doi: 10.1016/j.inffus.2024.102417
– ident: ref13
  doi: 10.1109/ICWAPR48189.2019.8946465
– ident: ref41
  doi: 10.1109/TGRS.2005.844293
– ident: ref30
  doi: 10.1016/0166-1280(88)80133-7
– volume: 11
  start-page: 23
  issue: 285/296
  year: 1975
  ident: ref35
  article-title: A threshold selection method from gray-level histograms
  publication-title: Automatica
– ident: ref36
  doi: 10.1016/j.jag.2024.103864
– ident: ref20
  doi: 10.1109/TGRS.2023.3321839
– ident: ref26
  doi: 10.1109/IGARSS.2019.8898427
– ident: ref10
  doi: 10.1109/WHISPERS.2015.8075378
– ident: ref40
  doi: 10.1002/int.22108
– ident: ref27
  doi: 10.1109/JSTARS.2012.2192472
– ident: ref43
  doi: 10.1109/TGRS.2021.3069845
– ident: ref6
  doi: 10.1016/j.inffus.2024.102419
– ident: ref15
  doi: 10.1109/TGRS.2021.3064958
– ident: ref1
  doi: 10.1016/j.jag.2024.103850
– ident: ref9
  doi: 10.1080/01431161.2020.1854893
– ident: ref28
  doi: 10.1109/TGRS.2019.2916296
– year: 2025
  ident: ref23
  article-title: Dual classification head self-training network for cross-scene hyperspectral image classification
– ident: ref32
  doi: 10.3389/fpls.2022.810546
– ident: ref33
  doi: 10.1016/j.neunet.2021.01.001
– volume: 2
  start-page: 2017
  year: 2017
  ident: ref31
  article-title: Standard Maxwell-Boltzmann distribution: Definition and properties
  publication-title: ForsChem Res. Rep.
– ident: ref34
  doi: 10.1109/CVPR42600.2020.01155
– ident: ref17
  doi: 10.1109/TGRS.2024.3505292
– ident: ref29
  doi: 10.1109/TIP.2014.2363423
– ident: ref42
  doi: 10.1109/36.911111
– ident: ref2
  doi: 10.1016/j.rse.2022.113448
– ident: ref24
  doi: 10.1109/TCSVT.2025.3586282
– ident: ref5
  doi: 10.1109/TGRS.2024.3393931
– ident: ref14
  doi: 10.1109/IGARSS.2019.8900297
– ident: ref44
  doi: 10.1109/TGRS.2021.3121799
– ident: ref11
  doi: 10.1109/TGRS.2018.2868690
– ident: ref19
  doi: 10.1016/j.jag.2022.102981
– ident: ref22
  doi: 10.1109/TGRS.2024.3434427
– ident: ref39
  doi: 10.2307/143141
SSID ssj0062793
Score 2.3751976
Snippet Hyperspectral unmixing aims to decompose mixed pixels into endmembers with corresponding abundances. However, while several existing convolutional autoencoder...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 20085
SubjectTerms Autoencoders
Boltzmann distribution
Constraints
convolutional autoencoder (AE)
Convolutional codes
Decoding
Distance
Energy distribution
Euclidean geometry
Feature extraction
Hyperspectral imaging
hyperspectral unmixing (HU)
Image reconstruction
Kernel
multiscale spectral–spatial attention
Particle energy
Pixels
Representation learning
Solution space
Sparsity
Spectral bands
Temperature distribution
Temperature effects
temperature matrix
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqRCUuiLYgtt0iHzjWECd2HB-XCmgltKrK-2Q5fggkCIhdEPTXd8bO8hAHLlwjS46_mcx849jfELLuQm098ABW2AoKFCAETHsXmYJcL710Mqa7MEd7ajxuTk70n2etvvBMWJYHzsBttrF2sRZ1EFi5cJQHA1JtUfaslZVuMfoWSs-KqRyD61IluV1gJ5qhgEyvN8QLvQkOP_q7D5VhKTcqqTGhvshJSbq_77XyKkCnrLOzRBZ7ukhH-TU_kQ-h-0w-7qZ2vA9fyGm6PzsBnAPFTvK4bcGwyzB4FT3sLs_vITPRcT7qTY_Pp2d06-pi-u_Sdh373eFf9uDpyNtrjHr0IACJziLLy-RwZ_vg5y_WN0tgrqr5lNlGeVWo0mrpbfCubGtbNEL6KjS1jNxXCnIV97YSwQeNuutlUC5o3rggRKxWyFx31YVVQgPYyLfeeR6j0Dw2AoYCMynL6LQt-YD8mMFlrrMmhkm1RKFNRtcguqZHd0C2ENLHoShonR6AmU1vZvOWmQdkGQ3yNB_MBstpBmQ4s5Dpv76JAZKYFluIr-8x9zeygOvJGy9DMje9uQ3fyby7AwPfrCXH-w_Tytfj
  priority: 102
  providerName: Directory of Open Access Journals
Title Multiscale Spectral-Spatial Unmixing Network With Boltzmann-Inspired Adaptive Temperature
URI https://ieeexplore.ieee.org/document/11106218
https://www.proquest.com/docview/3247362104
https://doaj.org/article/bf6cf646e4144612835550a7786b539b
Volume 18
WOSCitedRecordID wos001554469500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVoBRIXPovYUiofOOI2TvwRH7eIAhJaIWihnCzHHotKNFu12wr49cw4XhBCHLhFUaI4fmO_GdvzhrFnEUxI6AeIJnQYoKBDIFyKWVjkep101Lnkwnx8axeL_uTEvavJ6iUXBgDK4TPYo8uyl5-W8YqWyvZxXDYGOWmDbVhrpmSt9bRrWlsUdtEhcYI0Y6rEkGzcPtr4_P0HDAZbvddpRxz6Bw0Vtf5aXuWvObkQzeHd_2ziPXanepR8PpnAfXYDxgfs1qtSsff7Q_a5pNheIhTAqdg8rWwIKkSMhsePx7PTb0hefDGdBuefTldf-MHy6-rHWRhH8WakjXhIfJ7COU2M_AjQz550mLfY8eHLoxevRa2nIGJn5EqE3ibb2DY4nQKk2A4mNL3SqYPe6CxTZ5HOZAqdggSOpNlbsBGc7CMolbtHbHNcjvCYcUAY05BikjkrJ3Ov8FF0Xto2RxdaOWPP193rzyfZDF_Cjcb5CQ1PaPiKxowdEAS_HiXN63ID-9bXIeSHbGI2yoCiGFaSUByGV4EE8AbduWHGtgiP39-rUMzYzhpRXwfopUc_svxso7b_8doTdpuaOC237LDN1cUVPGU34zVidrFbYvfdYoE_AZsX16s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BAcGFzyIWCuTAEbexYzvxcYsorVhWCLZQTpZjj0Ulmq3aLQJ-PWPHC0KIA7coShTHb-x5Y3veADzzqF0gHsBq11CAQoSAmeAja8nXq6C8ijkX5sOsnc-7oyPztiSr51wYRMyHz3A7Xea9_LD0F2mpbIfGZa3JJ12GK0pKUY_pWuuJV4s2a-wSJTEsqcYUkSFemx2y8um79xQOCrXdKJO86B-OKOv1lwIrf83K2dXs3frPRt6Gm4VTVtPRCO7AJRzuwrVXuWbv93vwKSfZnhMYWKVy82ltg6VSxGR61eFwcvyN3Fc1H8-DVx-PV5-r3eWX1Y8TNwzsYEhb8RiqaXCnaWqsFkhMe1Ri3oTDvZeLF_usVFRgvtF8xVzXhrZuhTMqOAxe9NrVnVShwU6ryEPTkkPjwTUSA5okzi6w9Wh451HK2NyHjWE54AOokIAMffCBxygNjx0BgkRfhIjeOMEn8HzdvfZ0FM6wOeCojR3RsAkNW9CYwG6C4NejSfU636C-tWUQ2T5qH7XUKFMUy5NUHAVYLkng9aox_QQ2Ex6_v1egmMDWGlFbhui5JSaZf7aWD__x2lO4vr94M7Ozg_nrR3AjNXdcfNmCjdXZBT6Gq_4r4Xf2JNvhT-Lo2f0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Spectral%E2%80%93Spatial+Unmixing+Network+With+Boltzmann-Inspired+Adaptive+Temperature&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Zhixiang&rft.au=Xu%2C+Jindong&rft.au=Wei%2C+Guangyi&rft.au=Wang%2C+Jie&rft.date=2025&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=18&rft.spage=20085&rft.epage=20097&rft_id=info:doi/10.1109%2FJSTARS.2025.3594155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2025_3594155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon