Multi-Objective Particle Swarm Optimization Algorithm for Multi-Step Electric Load Forecasting

As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 13; H. 3; S. 532
Hauptverfasser: Yang, Yi, Shang, Zhihao, Chen, Yao, Chen, Yanhua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 2020
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stability of electric load forecasting is a challenging task. Many predecessors have obtained the expected forecasting results by various methods. Considering the stability of time series prediction, a novel combined electric load forecasting, which based on extreme learning machine (ELM), recurrent neural network (RNN), and support vector machines (SVMs), was proposed. The combined model first uses three neural networks to forecast the electric load data separately considering that the single model has inevitable disadvantages, the combined model applies the multi-objective particle swarm optimization algorithm (MOPSO) to optimize the parameters. In order to verify the capacity of the proposed combined model, 1-step, 2-step, and 3-step are used to forecast the electric load data of three Australian states, including New South Wales, Queensland, and Victoria. The experimental results intuitively indicate that for these three datasets, the combined model outperforms all three individual models used for comparison, which demonstrates its superior capability in terms of accuracy and stability.
AbstractList As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stability of electric load forecasting is a challenging task. Many predecessors have obtained the expected forecasting results by various methods. Considering the stability of time series prediction, a novel combined electric load forecasting, which based on extreme learning machine (ELM), recurrent neural network (RNN), and support vector machines (SVMs), was proposed. The combined model first uses three neural networks to forecast the electric load data separately considering that the single model has inevitable disadvantages, the combined model applies the multi-objective particle swarm optimization algorithm (MOPSO) to optimize the parameters. In order to verify the capacity of the proposed combined model, 1-step, 2-step, and 3-step are used to forecast the electric load data of three Australian states, including New South Wales, Queensland, and Victoria. The experimental results intuitively indicate that for these three datasets, the combined model outperforms all three individual models used for comparison, which demonstrates its superior capability in terms of accuracy and stability.
Author Shang, Zhihao
Chen, Yao
Chen, Yanhua
Yang, Yi
Author_xml – sequence: 1
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
– sequence: 2
  givenname: Zhihao
  surname: Shang
  fullname: Shang, Zhihao
– sequence: 3
  givenname: Yao
  surname: Chen
  fullname: Chen, Yao
– sequence: 4
  givenname: Yanhua
  surname: Chen
  fullname: Chen, Yanhua
BookMark eNptUU1LAzEQDVLBr178BQFvwmqS2W6zRymtCpUK6tWQZCc1Zbup2VTRX-9qi4o4lxmG9968mTkgvSY0SMgxZ2cAJTvHhgMDNgCxQ_Z5WRYZZ0Po_ar3SL9tF6wLAA4A--TxZl0nn83MAm3yL0hvdUze1kjvXnVc0tkq-aV_18mHhl7U8xB9elpSFyLdMO8Srui47tjRWzoNuqKTENHqNvlmfkR2na5b7G_zIXmYjO9HV9l0dnk9uphmFgqeMi2L0pkBciFN1bm1qHOOGgQvcialAD50ORgDUJWycEZqdFVemqoQBTANcEiuN7pV0Au1in6p45sK2quvRohztd1LDQtwglsjrTa5dFgaMJXlaAYMh5bJTutko7WK4XmNbVKLsI5NZ1-JXHRehJSsQ51uUDaGto3ovqdypj7foX7e0YHZH7D16eumKWpf_0f5APrCjpM
CitedBy_id crossref_primary_10_3390_math12213353
crossref_primary_10_3390_en13236227
crossref_primary_10_3390_en13205464
crossref_primary_10_1016_j_heliyon_2024_e35273
crossref_primary_10_1016_j_aei_2021_101357
crossref_primary_10_1109_ACCESS_2021_3063066
crossref_primary_10_3390_en13092209
crossref_primary_10_1177_09544062251347213
crossref_primary_10_3390_electronics10040448
crossref_primary_10_3390_en16104227
crossref_primary_10_3390_sym17081270
crossref_primary_10_3390_en14134036
crossref_primary_10_3390_en15093364
crossref_primary_10_1016_j_asoc_2023_111007
crossref_primary_10_1016_j_epsr_2022_108837
crossref_primary_10_3390_en13133510
crossref_primary_10_3390_electronics14142820
crossref_primary_10_3390_su14159255
crossref_primary_10_3390_en15072623
Cites_doi 10.3390/en12081520
10.1016/j.energy.2018.09.090
10.1109/5.58337
10.3390/en12122445
10.1016/j.apenergy.2018.02.140
10.1016/j.procs.2014.08.185
10.3390/en12132574
10.1007/s10618-018-0605-7
10.1016/S0375-9601(00)00015-3
10.1186/s40537-019-0207-2
10.3390/en12101931
10.1016/j.energy.2018.06.012
10.1007/978-3-540-24854-5_20
10.1016/j.epsr.2017.01.035
10.3390/en11020452
10.1016/j.knosys.2018.08.027
10.1109/TEVC.2004.826067
10.2478/mms-2014-0054
10.1016/j.asoc.2016.07.053
10.1016/j.energy.2015.01.063
10.1016/j.apenergy.2019.01.113
10.1016/j.renene.2011.05.033
10.1109/TSMCC.2008.919172
10.1109/ACCESS.2019.2924685
10.1016/j.aei.2017.11.002
10.3390/en12061083
10.3390/en12132532
10.1016/j.jclepro.2019.01.108
10.1016/j.apenergy.2017.10.058
10.1016/j.energy.2009.12.015
10.1007/s40565-017-0365-1
10.3390/en11040712
10.1016/j.epsr.2015.01.002
10.1016/j.simpat.2009.10.007
10.1016/j.rser.2012.02.044
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en13030532
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_763f21cb8cab48fe9b3bdc1eb50e7c08
10_3390_en13030532
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-a869fb5e128bd199cea41ea321640882317f43bb33d986fb8aefd49bd62630a33
IEDL.DBID DOA
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522489000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:51:37 EDT 2025
Mon Jun 30 07:25:08 EDT 2025
Sat Nov 29 07:17:03 EST 2025
Tue Nov 18 21:38:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a869fb5e128bd199cea41ea321640882317f43bb33d986fb8aefd49bd62630a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/763f21cb8cab48fe9b3bdc1eb50e7c08
PQID 2422312880
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_763f21cb8cab48fe9b3bdc1eb50e7c08
proquest_journals_2422312880
crossref_primary_10_3390_en13030532
crossref_citationtrail_10_3390_en13030532
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rabinovich (ref_19) 2000; 266
Yixian (ref_9) 2018; 6
Deo (ref_11) 2018; 217
Jin (ref_36) 2008; 38
Johannesen (ref_16) 2019; 218
Koroglu (ref_15) 2010; 18
Yang (ref_20) 2019; 163
Li (ref_28) 2015; 122
Bedi (ref_21) 2019; 238
ref_33
ref_32
Zhang (ref_1) 2018; 158
Meng (ref_3) 2018; 165
Shi (ref_26) 2012; 16
Ceci (ref_18) 2019; 33
ref_17
ref_39
Majkowski (ref_13) 2014; 21
ref_38
Wang (ref_31) 2010; 35
ref_37
Xiao (ref_30) 2015; 82
Corizzo (ref_25) 2019; 6
Yunishafira (ref_4) 2018; 3
Hatori (ref_12) 2014; 35
Eseye (ref_22) 2019; 7
Deo (ref_8) 2018; 35
Yang (ref_10) 2016; 49
ref_24
ref_23
Foley (ref_27) 2012; 37
ref_42
ref_41
Zhang (ref_29) 2017; 146
Coello (ref_40) 2004; 8
Velsink (ref_2) 2016; 10
Sutskever (ref_34) 2013; 28
Werbos (ref_35) 1990; 78
Bento (ref_14) 2018; 210
Verma (ref_5) 2017; 12
ref_7
ref_6
References_xml – ident: ref_32
  doi: 10.3390/en12081520
– volume: 165
  start-page: 143
  year: 2018
  ident: ref_3
  article-title: Decomposition and forecasting analysis of China’s household electricity consumption using three-dimensional decomposition and hybrid trend extrapolation models
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.090
– volume: 78
  start-page: 1550
  year: 1990
  ident: ref_35
  article-title: Backpropagation through time: What it does and how to do it
  publication-title: Proc. IEEE
  doi: 10.1109/5.58337
– ident: ref_23
  doi: 10.3390/en12122445
– volume: 217
  start-page: 422
  year: 2018
  ident: ref_11
  article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.140
– volume: 35
  start-page: 994
  year: 2014
  ident: ref_12
  article-title: A Fuzzy Clustering Method Using the Relative Structure of the Belongingness of Objects to Clusters
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2014.08.185
– ident: ref_6
  doi: 10.3390/en12132574
– volume: 33
  start-page: 698
  year: 2019
  ident: ref_18
  article-title: Spatial autocorrelation and entropy for renewable energy forecasting
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-018-0605-7
– volume: 266
  start-page: 88
  year: 2000
  ident: ref_19
  article-title: Slow regularization through chaotic oscillation transfer in an unidirectional chain of Hindmarsh–Rose models
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(00)00015-3
– volume: 6
  start-page: 43
  year: 2019
  ident: ref_25
  article-title: DENCAST: Distributed density-based clustering for multi-target regression
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0207-2
– ident: ref_33
  doi: 10.3390/en12101931
– volume: 158
  start-page: 774
  year: 2018
  ident: ref_1
  article-title: Short term electricity load forecasting using a hybrid model
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.012
– ident: ref_39
  doi: 10.1007/978-3-540-24854-5_20
– ident: ref_37
– volume: 146
  start-page: 270
  year: 2017
  ident: ref_29
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2017.01.035
– ident: ref_42
– ident: ref_24
  doi: 10.3390/en11020452
– volume: 163
  start-page: 159
  year: 2019
  ident: ref_20
  article-title: Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.08.027
– volume: 8
  start-page: 256
  year: 2004
  ident: ref_40
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826067
– volume: 10
  start-page: 5
  year: 2016
  ident: ref_2
  article-title: Time Series Analysis of 3D Coordinates Using Nonstochastic Observations
  publication-title: J. Appl. Geod.
– volume: 21
  start-page: 741
  year: 2014
  ident: ref_13
  article-title: Joint Time-Frequency and Wavelet Analysis—An Introduction
  publication-title: Metrol. Meas. Syst.
  doi: 10.2478/mms-2014-0054
– volume: 49
  start-page: 663
  year: 2016
  ident: ref_10
  article-title: Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.07.053
– volume: 82
  start-page: 524
  year: 2015
  ident: ref_30
  article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.063
– volume: 238
  start-page: 1312
  year: 2019
  ident: ref_21
  article-title: Deep learning framework to forecast electricity demand
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.113
– volume: 37
  start-page: 1
  year: 2012
  ident: ref_27
  article-title: Current methods and advances in forecasting of wind power generation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.05.033
– volume: 3
  start-page: 553
  year: 2018
  ident: ref_4
  article-title: Determining the Appropriate Demand Forecasting Using Time Series Method: Study Case at Garment Industry in Indonesia
  publication-title: KnE Soc. Sci.
– volume: 12
  start-page: 3102
  year: 2017
  ident: ref_5
  article-title: Analysis of time-series method for demand forecasting
  publication-title: J. Eng. Appl. Sci.
– volume: 38
  start-page: 397
  year: 2008
  ident: ref_36
  article-title: Pareto-based multiobjective machine learning: An overview and case studies
  publication-title: IEEE Trans. Syst. Man Cybern. Part C
  doi: 10.1109/TSMCC.2008.919172
– volume: 7
  start-page: 91463
  year: 2019
  ident: ref_22
  article-title: Machine learning based integrated feature selection approach for improved electricity demand forecasting in decentralized energy systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924685
– volume: 35
  start-page: 1
  year: 2018
  ident: ref_8
  article-title: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2017.11.002
– ident: ref_17
  doi: 10.3390/en12061083
– ident: ref_7
  doi: 10.3390/en12132532
– volume: 218
  start-page: 555
  year: 2019
  ident: ref_16
  article-title: Relative evaluation of regression tools for urban area electrical energy demand forecasting
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.01.108
– volume: 210
  start-page: 88
  year: 2018
  ident: ref_14
  article-title: A bat optimized neural network and wavelet transform approach for short-term price forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.10.058
– volume: 35
  start-page: 1671
  year: 2010
  ident: ref_31
  article-title: Combined modeling for electric load forecasting with adaptive particle swarm optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.015
– ident: ref_38
– volume: 6
  start-page: 763
  year: 2018
  ident: ref_9
  article-title: A vector autoregression weather model for electricity supply and demand modeling
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.1007/s40565-017-0365-1
– ident: ref_41
  doi: 10.3390/en11040712
– volume: 122
  start-page: 96
  year: 2015
  ident: ref_28
  article-title: Short-term load forecasting by wavelet transform and evolutionary extreme learning machine
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2015.01.002
– volume: 18
  start-page: 206
  year: 2010
  ident: ref_15
  article-title: Comparison of Analytical, Finite Element and Neural Network Methods to Study Magnetic Shielding
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2009.10.007
– volume: 16
  start-page: 3471
  year: 2012
  ident: ref_26
  article-title: Evaluation of hybrid forecasting approaches for wind speed and power generation time series
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.02.044
– volume: 28
  start-page: 1139
  year: 2013
  ident: ref_34
  article-title: On the importance of initialization and momentum in deep learning
  publication-title: Proc. Mach. Learn. Res.
SSID ssj0000331333
Score 2.3440886
Snippet As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 532
SubjectTerms Accuracy
electric load forecasting
Electricity
extreme learning machine
Machine learning
Mathematical models
multi-objective particle swarm optimization algorithm
Neural networks
Optimization algorithms
recurrent neural network
Short term
Support vector machines
Time series
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTiMxELUY4DAcWAYQYZMluMzBott2gn1CgII4oBCxjDjRKm8sIgkkAX6fcrcTBoG4cO12qy1X-bmqbL9HyLbRDQAdHKtbLpiUGhhoBSzjmuN00pCVDHz_TnZbLXV1pdup4DZIxypHmFgCtevZWCPfwaUEQxGO7rb3-MSialTcXU0SGr_IVGQqQz-fOmi22mfjKksmBCZhouIlFZjf7_huRO2oh_BhJSoJ-z_hcbnIHM39tHvzZDaFl3S_8ocFMuG7f8jMf6SDi-S6vHPLTs19hXW0nbyHnr9Cv0NPEUQ66XYm3X-4wb8MbzsUg1tafRkPhtFmKZ9zZ-lJDxyNAp8WBvEI9RK5PGpeHB6zpLLArGjkQwaqoYOpe-y8cbnW1oPMPQiOiVSMvzHACFIYI4TTqhGMAh-c1MZFHpsMhFgmk91e168QqsFZh_EFFzLIzAZtc2V4JjGLdB60rJG_oxEvbKIgj0oYDwWmItE6xbt1amRr3PaxIt74stVBNNy4RSTLLh_0-jdFGr0CITTw3BplwUgVvDbCOJt7U8_8rs1UjayPbFqkGTwo3g26-v3rNfKbxxy8LMusk8lh_9lvkGn7Mrwb9DeTQ74Bkd3r0w
  priority: 102
  providerName: ProQuest
Title Multi-Objective Particle Swarm Optimization Algorithm for Multi-Step Electric Load Forecasting
URI https://www.proquest.com/docview/2422312880
https://doaj.org/article/763f21cb8cab48fe9b3bdc1eb50e7c08
Volume 13
WOSCitedRecordID wos000522489000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYq6AEOiBYQoSmy1F44rNi1nWTnSKqgIkFYlYfgwmr8giCSoCSFW397x94FgqjEpZc9WLNa79jz-CzPN4x919BGBG-TlhEyUQowQcgxSQUIMifANDLwnR92-v384gKKuVZf4U5YRQ9cKW6X9r8XmdG5Qa1y70BLbU3mdCt1HVOV-aYdmANT0QdLSeBLVnykknD9rhsFbx36ILyKQJGo_40fjsFlf5Wt1Fkh36tm84l9cKPPbHmOK3CNXcVS2eRY31Yuihf13PnJI06G_Jhsf1gXVfK9u-sxof6bIaeclFdvhvtcvBe73gwMPxyj5aEvp8FpuPm8zs72e6c_fiZ1c4TEyHY2SzBvg9ctR_FF2wzAOFSZQykI_4S0mfICr6TWUlrI217n6LxVoG2gn0lRyg22MBqP3CbjgNZYSguEVF6lxoPJci1SReDPOgTVYDtPCitNzRweGljclYQggnLLF-U22Ldn2fuKL-OfUt2g92eJwHEdB2jly1p75Xsr32DNp1Ura8OblpRx0K8L8kpb_-MbX9iSCAA7nrk02cJs8tt9ZR_Nw2wwnWyzxW6vX_zajnuPnkd_ejRWHBwVl38Bwo7inw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL2qUiRgwRsRKGAJWLAY1WM7qb1AqECrRk3TSBRUNh387ENNUpJAxU_xjdw7jxQEYtcF2xnPSLaPz33YvgfguTNda00KWccLmSllbGaNthkXRuByMpaXFfg-9tcGA72_b4ZL8KO5C0PHKhtOLIk6TDzlyFfRlKArIhBur8--ZKQaRburjYRGBYvt-P0cQ7bZq947nN8XQmxu7L3dympVgczLbj7PrO6a5DoR_-VCboyPVuXRSoGBA_mbaFCTks5JGYzuJqdtTEEZF6huC7eUAEXKX1YE9hYsD3s7w0-LrA6XEoM-WdVBldLw1TgmK0H6C79ZvlIg4A_-L43a5s3_bThuwY3afWbrFd5vw1Ic34HrvxRVvAsH5Z3ibNedVFzOhvXqYO_P7XTEdpEkR_XtU7Z-eoi9mh-NGDrvrPqSDr6xjVIe6Niz_sQGRgKm3s7oiPg9-HApHbwPrfFkHB8AMzb4gP6TkCop7pPxuXaCK4ySQ7RGteFlM8OFr0usk9LHaYGhFqGhuEBDG54t2p5VhUX-2uoNAWXRgoqBlw8m08OiHr0CTUQSuXfaW6d0isZJF3weXYfHNc91G1YaDBU1Q82KCwA9_Pfrp3B1a2-nX_R7g-1HcE1QvqFMQa1Aaz79Gh_DFf9tfjybPqkXA4PPlw24n50fSLc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH6qUoTgwI4IlGIJOHCw4rGd1D6gqrSNiBrSkVhULh28lqImKUloxV_j1_E8SwoCceuB64xnJNvfW_38PoBnVveM0dHTruOCSqkNNVoZyrjmKE7asLID34fhxmikDg50vgI_mrswqayy0YmlovZTl3LkHTQl6IpwhFsn1mUR-U5_8_QrTQxS6aS1odOoILIXvp9j-DZ_OdjBvX7OeX_33fZrWjMMUCd62YIa1dPRdgP-1_pMaxeMzIIRHIOI5HuicY1SWCuE16oXrTIheqmtTz1cmEnJUFT_q-iSS96C1XzwJv-4zPAwITAAFFVPVCE064RJshiJi-E3K1iSBfxhC0oD17_5Py_NLbhRu9Vkq5KD27ASJnfg-i_NFu_CYXnXmO7bL5WOJ3ktNeTtuZmNyT4qz3F9K5VsnRzhrBafxwSdelJ9mQriyG5JG3TsyHBqPEnEps7MU-n4PXh_KRO8D63JdBIeANHGO49-FRcySuaidpmynEmMnn0wWrbhRbPbhatbrycGkJMCQ7CEjOICGW14uhx7WjUc-euoVwk0yxGpSXj5YDo7KurVK9B0RJ45q5yxUsWgrbDeZcF2WdhwTLVhrcFTUWuueXEBpof_fv0EriLKiuFgtPcIrvGUhigzU2vQWsy-hcdwxZ0tjuez9VouCHy6bLz9BIe8UXc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Particle+Swarm+Optimization+Algorithm+for+Multi-Step+Electric+Load+Forecasting&rft.jtitle=Energies+%28Basel%29&rft.au=Yang%2C+Yi&rft.au=Shang%2C+Zhihao&rft.au=Chen%2C+Yao&rft.au=Chen%2C+Yanhua&rft.date=2020&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=13&rft.issue=3&rft.spage=532&rft_id=info:doi/10.3390%2Fen13030532&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en13030532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon