Multi-Objective Particle Swarm Optimization Algorithm for Multi-Step Electric Load Forecasting
As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stabi...
Gespeichert in:
| Veröffentlicht in: | Energies (Basel) Jg. 13; H. 3; S. 532 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
2020
|
| Schlagworte: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stability of electric load forecasting is a challenging task. Many predecessors have obtained the expected forecasting results by various methods. Considering the stability of time series prediction, a novel combined electric load forecasting, which based on extreme learning machine (ELM), recurrent neural network (RNN), and support vector machines (SVMs), was proposed. The combined model first uses three neural networks to forecast the electric load data separately considering that the single model has inevitable disadvantages, the combined model applies the multi-objective particle swarm optimization algorithm (MOPSO) to optimize the parameters. In order to verify the capacity of the proposed combined model, 1-step, 2-step, and 3-step are used to forecast the electric load data of three Australian states, including New South Wales, Queensland, and Victoria. The experimental results intuitively indicate that for these three datasets, the combined model outperforms all three individual models used for comparison, which demonstrates its superior capability in terms of accuracy and stability. |
|---|---|
| AbstractList | As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stability of electric load forecasting is a challenging task. Many predecessors have obtained the expected forecasting results by various methods. Considering the stability of time series prediction, a novel combined electric load forecasting, which based on extreme learning machine (ELM), recurrent neural network (RNN), and support vector machines (SVMs), was proposed. The combined model first uses three neural networks to forecast the electric load data separately considering that the single model has inevitable disadvantages, the combined model applies the multi-objective particle swarm optimization algorithm (MOPSO) to optimize the parameters. In order to verify the capacity of the proposed combined model, 1-step, 2-step, and 3-step are used to forecast the electric load data of three Australian states, including New South Wales, Queensland, and Victoria. The experimental results intuitively indicate that for these three datasets, the combined model outperforms all three individual models used for comparison, which demonstrates its superior capability in terms of accuracy and stability. |
| Author | Shang, Zhihao Chen, Yao Chen, Yanhua Yang, Yi |
| Author_xml | – sequence: 1 givenname: Yi surname: Yang fullname: Yang, Yi – sequence: 2 givenname: Zhihao surname: Shang fullname: Shang, Zhihao – sequence: 3 givenname: Yao surname: Chen fullname: Chen, Yao – sequence: 4 givenname: Yanhua surname: Chen fullname: Chen, Yanhua |
| BookMark | eNptUU1LAzEQDVLBr178BQFvwmqS2W6zRymtCpUK6tWQZCc1Zbup2VTRX-9qi4o4lxmG9968mTkgvSY0SMgxZ2cAJTvHhgMDNgCxQ_Z5WRYZZ0Po_ar3SL9tF6wLAA4A--TxZl0nn83MAm3yL0hvdUze1kjvXnVc0tkq-aV_18mHhl7U8xB9elpSFyLdMO8Srui47tjRWzoNuqKTENHqNvlmfkR2na5b7G_zIXmYjO9HV9l0dnk9uphmFgqeMi2L0pkBciFN1bm1qHOOGgQvcialAD50ORgDUJWycEZqdFVemqoQBTANcEiuN7pV0Au1in6p45sK2quvRohztd1LDQtwglsjrTa5dFgaMJXlaAYMh5bJTutko7WK4XmNbVKLsI5NZ1-JXHRehJSsQ51uUDaGto3ovqdypj7foX7e0YHZH7D16eumKWpf_0f5APrCjpM |
| CitedBy_id | crossref_primary_10_3390_math12213353 crossref_primary_10_3390_en13236227 crossref_primary_10_3390_en13205464 crossref_primary_10_1016_j_heliyon_2024_e35273 crossref_primary_10_1016_j_aei_2021_101357 crossref_primary_10_1109_ACCESS_2021_3063066 crossref_primary_10_3390_en13092209 crossref_primary_10_1177_09544062251347213 crossref_primary_10_3390_electronics10040448 crossref_primary_10_3390_en16104227 crossref_primary_10_3390_sym17081270 crossref_primary_10_3390_en14134036 crossref_primary_10_3390_en15093364 crossref_primary_10_1016_j_asoc_2023_111007 crossref_primary_10_1016_j_epsr_2022_108837 crossref_primary_10_3390_en13133510 crossref_primary_10_3390_electronics14142820 crossref_primary_10_3390_su14159255 crossref_primary_10_3390_en15072623 |
| Cites_doi | 10.3390/en12081520 10.1016/j.energy.2018.09.090 10.1109/5.58337 10.3390/en12122445 10.1016/j.apenergy.2018.02.140 10.1016/j.procs.2014.08.185 10.3390/en12132574 10.1007/s10618-018-0605-7 10.1016/S0375-9601(00)00015-3 10.1186/s40537-019-0207-2 10.3390/en12101931 10.1016/j.energy.2018.06.012 10.1007/978-3-540-24854-5_20 10.1016/j.epsr.2017.01.035 10.3390/en11020452 10.1016/j.knosys.2018.08.027 10.1109/TEVC.2004.826067 10.2478/mms-2014-0054 10.1016/j.asoc.2016.07.053 10.1016/j.energy.2015.01.063 10.1016/j.apenergy.2019.01.113 10.1016/j.renene.2011.05.033 10.1109/TSMCC.2008.919172 10.1109/ACCESS.2019.2924685 10.1016/j.aei.2017.11.002 10.3390/en12061083 10.3390/en12132532 10.1016/j.jclepro.2019.01.108 10.1016/j.apenergy.2017.10.058 10.1016/j.energy.2009.12.015 10.1007/s40565-017-0365-1 10.3390/en11040712 10.1016/j.epsr.2015.01.002 10.1016/j.simpat.2009.10.007 10.1016/j.rser.2012.02.044 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en13030532 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_763f21cb8cab48fe9b3bdc1eb50e7c08 10_3390_en13030532 |
| GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-a869fb5e128bd199cea41ea321640882317f43bb33d986fb8aefd49bd62630a33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522489000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:51:37 EDT 2025 Mon Jun 30 07:25:08 EDT 2025 Sat Nov 29 07:17:03 EST 2025 Tue Nov 18 21:38:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-a869fb5e128bd199cea41ea321640882317f43bb33d986fb8aefd49bd62630a33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/763f21cb8cab48fe9b3bdc1eb50e7c08 |
| PQID | 2422312880 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_763f21cb8cab48fe9b3bdc1eb50e7c08 proquest_journals_2422312880 crossref_primary_10_3390_en13030532 crossref_citationtrail_10_3390_en13030532 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-00-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Rabinovich (ref_19) 2000; 266 Yixian (ref_9) 2018; 6 Deo (ref_11) 2018; 217 Jin (ref_36) 2008; 38 Johannesen (ref_16) 2019; 218 Koroglu (ref_15) 2010; 18 Yang (ref_20) 2019; 163 Li (ref_28) 2015; 122 Bedi (ref_21) 2019; 238 ref_33 ref_32 Zhang (ref_1) 2018; 158 Meng (ref_3) 2018; 165 Shi (ref_26) 2012; 16 Ceci (ref_18) 2019; 33 ref_17 ref_39 Majkowski (ref_13) 2014; 21 ref_38 Wang (ref_31) 2010; 35 ref_37 Xiao (ref_30) 2015; 82 Corizzo (ref_25) 2019; 6 Yunishafira (ref_4) 2018; 3 Hatori (ref_12) 2014; 35 Eseye (ref_22) 2019; 7 Deo (ref_8) 2018; 35 Yang (ref_10) 2016; 49 ref_24 ref_23 Foley (ref_27) 2012; 37 ref_42 ref_41 Zhang (ref_29) 2017; 146 Coello (ref_40) 2004; 8 Velsink (ref_2) 2016; 10 Sutskever (ref_34) 2013; 28 Werbos (ref_35) 1990; 78 Bento (ref_14) 2018; 210 Verma (ref_5) 2017; 12 ref_7 ref_6 |
| References_xml | – ident: ref_32 doi: 10.3390/en12081520 – volume: 165 start-page: 143 year: 2018 ident: ref_3 article-title: Decomposition and forecasting analysis of China’s household electricity consumption using three-dimensional decomposition and hybrid trend extrapolation models publication-title: Energy doi: 10.1016/j.energy.2018.09.090 – volume: 78 start-page: 1550 year: 1990 ident: ref_35 article-title: Backpropagation through time: What it does and how to do it publication-title: Proc. IEEE doi: 10.1109/5.58337 – ident: ref_23 doi: 10.3390/en12122445 – volume: 217 start-page: 422 year: 2018 ident: ref_11 article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.140 – volume: 35 start-page: 994 year: 2014 ident: ref_12 article-title: A Fuzzy Clustering Method Using the Relative Structure of the Belongingness of Objects to Clusters publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2014.08.185 – ident: ref_6 doi: 10.3390/en12132574 – volume: 33 start-page: 698 year: 2019 ident: ref_18 article-title: Spatial autocorrelation and entropy for renewable energy forecasting publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-018-0605-7 – volume: 266 start-page: 88 year: 2000 ident: ref_19 article-title: Slow regularization through chaotic oscillation transfer in an unidirectional chain of Hindmarsh–Rose models publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(00)00015-3 – volume: 6 start-page: 43 year: 2019 ident: ref_25 article-title: DENCAST: Distributed density-based clustering for multi-target regression publication-title: J. Big Data doi: 10.1186/s40537-019-0207-2 – ident: ref_33 doi: 10.3390/en12101931 – volume: 158 start-page: 774 year: 2018 ident: ref_1 article-title: Short term electricity load forecasting using a hybrid model publication-title: Energy doi: 10.1016/j.energy.2018.06.012 – ident: ref_39 doi: 10.1007/978-3-540-24854-5_20 – ident: ref_37 – volume: 146 start-page: 270 year: 2017 ident: ref_29 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2017.01.035 – ident: ref_42 – ident: ref_24 doi: 10.3390/en11020452 – volume: 163 start-page: 159 year: 2019 ident: ref_20 article-title: Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.08.027 – volume: 8 start-page: 256 year: 2004 ident: ref_40 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826067 – volume: 10 start-page: 5 year: 2016 ident: ref_2 article-title: Time Series Analysis of 3D Coordinates Using Nonstochastic Observations publication-title: J. Appl. Geod. – volume: 21 start-page: 741 year: 2014 ident: ref_13 article-title: Joint Time-Frequency and Wavelet Analysis—An Introduction publication-title: Metrol. Meas. Syst. doi: 10.2478/mms-2014-0054 – volume: 49 start-page: 663 year: 2016 ident: ref_10 article-title: Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.07.053 – volume: 82 start-page: 524 year: 2015 ident: ref_30 article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting publication-title: Energy doi: 10.1016/j.energy.2015.01.063 – volume: 238 start-page: 1312 year: 2019 ident: ref_21 article-title: Deep learning framework to forecast electricity demand publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.113 – volume: 37 start-page: 1 year: 2012 ident: ref_27 article-title: Current methods and advances in forecasting of wind power generation publication-title: Renew. Energy doi: 10.1016/j.renene.2011.05.033 – volume: 3 start-page: 553 year: 2018 ident: ref_4 article-title: Determining the Appropriate Demand Forecasting Using Time Series Method: Study Case at Garment Industry in Indonesia publication-title: KnE Soc. Sci. – volume: 12 start-page: 3102 year: 2017 ident: ref_5 article-title: Analysis of time-series method for demand forecasting publication-title: J. Eng. Appl. Sci. – volume: 38 start-page: 397 year: 2008 ident: ref_36 article-title: Pareto-based multiobjective machine learning: An overview and case studies publication-title: IEEE Trans. Syst. Man Cybern. Part C doi: 10.1109/TSMCC.2008.919172 – volume: 7 start-page: 91463 year: 2019 ident: ref_22 article-title: Machine learning based integrated feature selection approach for improved electricity demand forecasting in decentralized energy systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2924685 – volume: 35 start-page: 1 year: 2018 ident: ref_8 article-title: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2017.11.002 – ident: ref_17 doi: 10.3390/en12061083 – ident: ref_7 doi: 10.3390/en12132532 – volume: 218 start-page: 555 year: 2019 ident: ref_16 article-title: Relative evaluation of regression tools for urban area electrical energy demand forecasting publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.01.108 – volume: 210 start-page: 88 year: 2018 ident: ref_14 article-title: A bat optimized neural network and wavelet transform approach for short-term price forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.10.058 – volume: 35 start-page: 1671 year: 2010 ident: ref_31 article-title: Combined modeling for electric load forecasting with adaptive particle swarm optimization publication-title: Energy doi: 10.1016/j.energy.2009.12.015 – ident: ref_38 – volume: 6 start-page: 763 year: 2018 ident: ref_9 article-title: A vector autoregression weather model for electricity supply and demand modeling publication-title: J. Mod. Power Syst. Clean Energy doi: 10.1007/s40565-017-0365-1 – ident: ref_41 doi: 10.3390/en11040712 – volume: 122 start-page: 96 year: 2015 ident: ref_28 article-title: Short-term load forecasting by wavelet transform and evolutionary extreme learning machine publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2015.01.002 – volume: 18 start-page: 206 year: 2010 ident: ref_15 article-title: Comparison of Analytical, Finite Element and Neural Network Methods to Study Magnetic Shielding publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2009.10.007 – volume: 16 start-page: 3471 year: 2012 ident: ref_26 article-title: Evaluation of hybrid forecasting approaches for wind speed and power generation time series publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.02.044 – volume: 28 start-page: 1139 year: 2013 ident: ref_34 article-title: On the importance of initialization and momentum in deep learning publication-title: Proc. Mach. Learn. Res. |
| SSID | ssj0000331333 |
| Score | 2.3440886 |
| Snippet | As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 532 |
| SubjectTerms | Accuracy electric load forecasting Electricity extreme learning machine Machine learning Mathematical models multi-objective particle swarm optimization algorithm Neural networks Optimization algorithms recurrent neural network Short term Support vector machines Time series Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTiMxELUY4DAcWAYQYZMluMzBott2gn1CgII4oBCxjDjRKm8sIgkkAX6fcrcTBoG4cO12qy1X-bmqbL9HyLbRDQAdHKtbLpiUGhhoBSzjmuN00pCVDHz_TnZbLXV1pdup4DZIxypHmFgCtevZWCPfwaUEQxGO7rb3-MSialTcXU0SGr_IVGQqQz-fOmi22mfjKksmBCZhouIlFZjf7_huRO2oh_BhJSoJ-z_hcbnIHM39tHvzZDaFl3S_8ocFMuG7f8jMf6SDi-S6vHPLTs19hXW0nbyHnr9Cv0NPEUQ66XYm3X-4wb8MbzsUg1tafRkPhtFmKZ9zZ-lJDxyNAp8WBvEI9RK5PGpeHB6zpLLArGjkQwaqoYOpe-y8cbnW1oPMPQiOiVSMvzHACFIYI4TTqhGMAh-c1MZFHpsMhFgmk91e168QqsFZh_EFFzLIzAZtc2V4JjGLdB60rJG_oxEvbKIgj0oYDwWmItE6xbt1amRr3PaxIt74stVBNNy4RSTLLh_0-jdFGr0CITTw3BplwUgVvDbCOJt7U8_8rs1UjayPbFqkGTwo3g26-v3rNfKbxxy8LMusk8lh_9lvkGn7Mrwb9DeTQ74Bkd3r0w priority: 102 providerName: ProQuest |
| Title | Multi-Objective Particle Swarm Optimization Algorithm for Multi-Step Electric Load Forecasting |
| URI | https://www.proquest.com/docview/2422312880 https://doaj.org/article/763f21cb8cab48fe9b3bdc1eb50e7c08 |
| Volume | 13 |
| WOSCitedRecordID | wos000522489000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYq6AEOiBYQoSmy1F44rNi1nWTnSKqgIkFYlYfgwmr8giCSoCSFW397x94FgqjEpZc9WLNa79jz-CzPN4x919BGBG-TlhEyUQowQcgxSQUIMifANDLwnR92-v384gKKuVZf4U5YRQ9cKW6X9r8XmdG5Qa1y70BLbU3mdCt1HVOV-aYdmANT0QdLSeBLVnykknD9rhsFbx36ILyKQJGo_40fjsFlf5Wt1Fkh36tm84l9cKPPbHmOK3CNXcVS2eRY31Yuihf13PnJI06G_Jhsf1gXVfK9u-sxof6bIaeclFdvhvtcvBe73gwMPxyj5aEvp8FpuPm8zs72e6c_fiZ1c4TEyHY2SzBvg9ctR_FF2wzAOFSZQykI_4S0mfICr6TWUlrI217n6LxVoG2gn0lRyg22MBqP3CbjgNZYSguEVF6lxoPJci1SReDPOgTVYDtPCitNzRweGljclYQggnLLF-U22Ldn2fuKL-OfUt2g92eJwHEdB2jly1p75Xsr32DNp1Ura8OblpRx0K8L8kpb_-MbX9iSCAA7nrk02cJs8tt9ZR_Nw2wwnWyzxW6vX_zajnuPnkd_ejRWHBwVl38Bwo7inw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL2qUiRgwRsRKGAJWLAY1WM7qb1AqECrRk3TSBRUNh387ENNUpJAxU_xjdw7jxQEYtcF2xnPSLaPz33YvgfguTNda00KWccLmSllbGaNthkXRuByMpaXFfg-9tcGA72_b4ZL8KO5C0PHKhtOLIk6TDzlyFfRlKArIhBur8--ZKQaRburjYRGBYvt-P0cQ7bZq947nN8XQmxu7L3dympVgczLbj7PrO6a5DoR_-VCboyPVuXRSoGBA_mbaFCTks5JGYzuJqdtTEEZF6huC7eUAEXKX1YE9hYsD3s7w0-LrA6XEoM-WdVBldLw1TgmK0H6C79ZvlIg4A_-L43a5s3_bThuwY3afWbrFd5vw1Ic34HrvxRVvAsH5Z3ibNedVFzOhvXqYO_P7XTEdpEkR_XtU7Z-eoi9mh-NGDrvrPqSDr6xjVIe6Niz_sQGRgKm3s7oiPg9-HApHbwPrfFkHB8AMzb4gP6TkCop7pPxuXaCK4ySQ7RGteFlM8OFr0usk9LHaYGhFqGhuEBDG54t2p5VhUX-2uoNAWXRgoqBlw8m08OiHr0CTUQSuXfaW6d0isZJF3weXYfHNc91G1YaDBU1Q82KCwA9_Pfrp3B1a2-nX_R7g-1HcE1QvqFMQa1Aaz79Gh_DFf9tfjybPqkXA4PPlw24n50fSLc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH6qUoTgwI4IlGIJOHCw4rGd1D6gqrSNiBrSkVhULh28lqImKUloxV_j1_E8SwoCceuB64xnJNvfW_38PoBnVveM0dHTruOCSqkNNVoZyrjmKE7asLID34fhxmikDg50vgI_mrswqayy0YmlovZTl3LkHTQl6IpwhFsn1mUR-U5_8_QrTQxS6aS1odOoILIXvp9j-DZ_OdjBvX7OeX_33fZrWjMMUCd62YIa1dPRdgP-1_pMaxeMzIIRHIOI5HuicY1SWCuE16oXrTIheqmtTz1cmEnJUFT_q-iSS96C1XzwJv-4zPAwITAAFFVPVCE064RJshiJi-E3K1iSBfxhC0oD17_5Py_NLbhRu9Vkq5KD27ASJnfg-i_NFu_CYXnXmO7bL5WOJ3ktNeTtuZmNyT4qz3F9K5VsnRzhrBafxwSdelJ9mQriyG5JG3TsyHBqPEnEps7MU-n4PXh_KRO8D63JdBIeANHGO49-FRcySuaidpmynEmMnn0wWrbhRbPbhatbrycGkJMCQ7CEjOICGW14uhx7WjUc-euoVwk0yxGpSXj5YDo7KurVK9B0RJ45q5yxUsWgrbDeZcF2WdhwTLVhrcFTUWuueXEBpof_fv0EriLKiuFgtPcIrvGUhigzU2vQWsy-hcdwxZ0tjuez9VouCHy6bLz9BIe8UXc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Particle+Swarm+Optimization+Algorithm+for+Multi-Step+Electric+Load+Forecasting&rft.jtitle=Energies+%28Basel%29&rft.au=Yang%2C+Yi&rft.au=Shang%2C+Zhihao&rft.au=Chen%2C+Yao&rft.au=Chen%2C+Yanhua&rft.date=2020&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=13&rft.issue=3&rft.spage=532&rft_id=info:doi/10.3390%2Fen13030532&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en13030532 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |