Comparison of Machine Learning Regression Algorithms for Cotton Leaf Area Index Retrieval Using Sentinel-2 Spectral Bands

Leaf area index (LAI) is a crucial crop biophysical parameter that has been widely used in a variety of fields. Five state-of-the-art machine learning regression algorithms (MLRAs), namely, artificial neural network (ANN), support vector regression (SVR), Gaussian process regression (GPR), random fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 9; číslo 7; s. 1459
Hlavní autoři: Mao, Huihui, Meng, Jihua, Ji, Fujiang, Zhang, Qiankun, Fang, Huiting
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.04.2019
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Leaf area index (LAI) is a crucial crop biophysical parameter that has been widely used in a variety of fields. Five state-of-the-art machine learning regression algorithms (MLRAs), namely, artificial neural network (ANN), support vector regression (SVR), Gaussian process regression (GPR), random forest (RF) and gradient boosting regression tree (GBRT), have been used in the retrieval of cotton LAI with Sentinel-2 spectral bands. The performances of the five machine learning models are compared for better applications of MLRAs in remote sensing, since challenging problems remain in the selection of MLRAs for crop LAI retrieval, as well as the decision as to the optimal number for the training sample size and spectral bands to different MLRAs. A comprehensive evaluation was employed with respect to model accuracy, computational efficiency, sensitivity to training sample size and sensitivity to spectral bands. We conducted the comparison of five MLRAs in an agricultural area of Northwest China over three cotton seasons with the corresponding field campaigns for modeling and validation. Results show that the GBRT model outperforms the other models with respect to model accuracy in average ( R 2 ¯ = 0.854, R M S E ¯ = 0.674 and M A E ¯ = 0.456). SVR achieves the best performance in computational efficiency, which means it is fast to train, and to validate that it has great potentials to deliver near-real-time operational products for crop management. As for sensitivity to training sample size, GBRT behaves as the most robust model, and provides the best model accuracy on the average among the variations of training sample size, compared with other models ( R 2 ¯ = 0.884, R M S E ¯ = 0.615 and M A E ¯ = 0.452). Spectral bands sensitivity analysis with dCor (distance correlation), combined with the backward elimination approach, indicates that SVR, GPR and RF provide relatively robust performance to the spectral bands, while ANN outperforms the other models in terms of model accuracy on the average among the reduction of spectral bands ( R 2 ¯ = 0.881, R M S E ¯ = 0.625 and M A E ¯ = 0.480). A comprehensive evaluation indicates that GBRT is an appealing alternative for cotton LAI retrieval, except for its computational efficiency. Despite the different performance of the ML models, all models exhibited considerable potential for cotton LAI retrieval, which could offer accurate crop parameters information timely and accurately for crop fields management and agricultural production decisions.
AbstractList Leaf area index (LAI) is a crucial crop biophysical parameter that has been widely used in a variety of fields. Five state-of-the-art machine learning regression algorithms (MLRAs), namely, artificial neural network (ANN), support vector regression (SVR), Gaussian process regression (GPR), random forest (RF) and gradient boosting regression tree (GBRT), have been used in the retrieval of cotton LAI with Sentinel-2 spectral bands. The performances of the five machine learning models are compared for better applications of MLRAs in remote sensing, since challenging problems remain in the selection of MLRAs for crop LAI retrieval, as well as the decision as to the optimal number for the training sample size and spectral bands to different MLRAs. A comprehensive evaluation was employed with respect to model accuracy, computational efficiency, sensitivity to training sample size and sensitivity to spectral bands. We conducted the comparison of five MLRAs in an agricultural area of Northwest China over three cotton seasons with the corresponding field campaigns for modeling and validation. Results show that the GBRT model outperforms the other models with respect to model accuracy in average ( R 2 ¯ = 0.854, R M S E ¯ = 0.674 and M A E ¯ = 0.456). SVR achieves the best performance in computational efficiency, which means it is fast to train, and to validate that it has great potentials to deliver near-real-time operational products for crop management. As for sensitivity to training sample size, GBRT behaves as the most robust model, and provides the best model accuracy on the average among the variations of training sample size, compared with other models ( R 2 ¯ = 0.884, R M S E ¯ = 0.615 and M A E ¯ = 0.452). Spectral bands sensitivity analysis with dCor (distance correlation), combined with the backward elimination approach, indicates that SVR, GPR and RF provide relatively robust performance to the spectral bands, while ANN outperforms the other models in terms of model accuracy on the average among the reduction of spectral bands ( R 2 ¯ = 0.881, R M S E ¯ = 0.625 and M A E ¯ = 0.480). A comprehensive evaluation indicates that GBRT is an appealing alternative for cotton LAI retrieval, except for its computational efficiency. Despite the different performance of the ML models, all models exhibited considerable potential for cotton LAI retrieval, which could offer accurate crop parameters information timely and accurately for crop fields management and agricultural production decisions.
According to Figure 7, different sensitivity performances of the sample size variation are found among the ML models. ANN and SVR are very sensitive to the training samples. [...]all models behave more robust with the growth of training sample size according to the variation of standard error. [...]some other crop biophysical parameters (e.g., Chlorophyll content and FVC) demand evaluation as well as ML regression methods, as different results may appear with different ML algorithms and different crop biophysical parameters. [...]the performance of five MLRAs has not yet been evaluated for large amounts of data (e.g., tens of thousands of data) due to the limited number of samples in our study, however, it remains to be seen whether a favorable performance can be obtained.
Author Fang, Huiting
Zhang, Qiankun
Mao, Huihui
Ji, Fujiang
Meng, Jihua
Author_xml – sequence: 1
  givenname: Huihui
  orcidid: 0000-0001-7397-5181
  surname: Mao
  fullname: Mao, Huihui
– sequence: 2
  givenname: Jihua
  surname: Meng
  fullname: Meng, Jihua
– sequence: 3
  givenname: Fujiang
  surname: Ji
  fullname: Ji, Fujiang
– sequence: 4
  givenname: Qiankun
  surname: Zhang
  fullname: Zhang, Qiankun
– sequence: 5
  givenname: Huiting
  surname: Fang
  fullname: Fang, Huiting
BookMark eNptkVFrHCEQx6Wk0DTNSz-B0LfCprrquvt4Pdrm4EKhaZ5l1hsvHnu6UROSbx_TK0ko9UGH__zmr868J0chBiTkI2dnQgzsC8zzwDSXanhDjlumu0ZIro9exe_Iac47VtfARc_ZMXlYxv0MyecYaHT0Auy1D0jXCCn4sKW_cJswZ1_Ti2kbky_X-0xdTHQZS6lqJR1dJAS6Chu8rwUlebyDiV7lJ4NLDKU6Tk1LL2e0JdXMVwib_IG8dTBlPP17npCr799-L8-b9c8fq-Vi3VjR8dJA54RibMPrzjuJvVUW1KhH4WSLMHIAXlVh6x9RghvQIdeW67FVI3ImTsjq4LuJsDNz8ntIDyaCN3-EmLYGUvF2QqN0x_XghFCgJDAJPTI7dgqtRtf3unp9OnjNKd7cYi5mF29TqM83reBScqGHvlKfD5RNMeeE7vlWzszTpMzLpCrM_oGtL1Bqw2ur_PS_kkcVR5gn
CitedBy_id crossref_primary_10_1007_s11119_022_09893_4
crossref_primary_10_1080_07038992_2021_2011180
crossref_primary_10_1109_TGRS_2022_3219981
crossref_primary_10_3390_rs14153776
crossref_primary_10_3390_app9122446
crossref_primary_10_3390_rs14061392
crossref_primary_10_3390_rs14235977
crossref_primary_10_3390_rs16122250
crossref_primary_10_1007_s00704_023_04779_5
crossref_primary_10_1016_j_jhydrol_2024_132423
crossref_primary_10_1155_2022_4214332
crossref_primary_10_1016_j_asr_2024_02_031
crossref_primary_10_3390_app11167208
crossref_primary_10_1080_01431161_2021_1998714
crossref_primary_10_3390_rs14225633
crossref_primary_10_1016_j_fcr_2022_108655
crossref_primary_10_1016_j_rsase_2025_101493
crossref_primary_10_1080_01431161_2019_1674461
crossref_primary_10_1002_agj2_21504
crossref_primary_10_3390_agronomy11071363
crossref_primary_10_3390_ijgi12090361
crossref_primary_10_3390_su15043278
crossref_primary_10_1007_s12524_024_01901_6
crossref_primary_10_3390_rs17122014
crossref_primary_10_3390_rs14020331
crossref_primary_10_1080_15481603_2022_2163046
crossref_primary_10_3390_agronomy11050915
crossref_primary_10_1007_s11356_024_33939_x
crossref_primary_10_1016_j_eja_2025_127632
crossref_primary_10_1007_s11119_024_10129_w
crossref_primary_10_1080_10106049_2022_2037730
crossref_primary_10_3390_land13111840
crossref_primary_10_1007_s11269_019_02357_x
crossref_primary_10_1186_s12302_020_00397_4
crossref_primary_10_1080_01431161_2020_1823043
crossref_primary_10_1080_10106049_2021_1959654
crossref_primary_10_1016_j_scitotenv_2020_139486
crossref_primary_10_3390_agriengineering6030134
crossref_primary_10_1029_2024EA003554
crossref_primary_10_3390_rs13214314
crossref_primary_10_3390_rs14051066
crossref_primary_10_1117_1_JRS_18_046511
crossref_primary_10_1016_j_agwat_2022_108056
crossref_primary_10_3390_s21082861
crossref_primary_10_3390_rs13142841
Cites_doi 10.1109/TNN.2003.809401
10.3390/rs9040309
10.1002/9780470748992
10.1109/TIT.2016.2514489
10.1016/j.mcm.2012.12.013
10.1007/s10462-016-9506-6
10.1080/13504851.2014.907468
10.1109/TGRS.2003.812910
10.1080/01431161.2018.1433343
10.1007/978-3-319-65633-5
10.1016/j.rse.2012.12.027
10.1016/j.gsf.2015.07.003
10.1029/2007JG000635
10.1016/j.eja.2012.12.001
10.1016/j.rser.2014.07.108
10.1046/j.1466-822X.2003.00026.x
10.1175/1520-0442(2001)014<3536:EOTUOS>2.0.CO;2
10.3390/s140815348
10.3390/s17010081
10.1016/j.ijrmms.2005.06.007
10.3389/fnbot.2013.00021
10.1177/0309133307084626
10.1002/jgrg.20051
10.1016/j.isprsjprs.2010.11.001
10.1080/01621459.2012.695654
10.1016/j.rse.2011.01.001
10.1016/j.rse.2006.07.014
10.1109/TCYB.2016.2609408
10.1038/nature14539
10.2747/1548-1603.45.2.229
10.1111/j.1365-3040.1992.tb00992.x
10.1023/A:1010933404324
10.1214/aos/1013203451
10.3390/rs10050763
10.1016/j.agrformet.2008.07.014
10.1080/00949655.2014.928820
10.1109/JSTARS.2015.2461136
10.3390/app7101046
10.1016/j.compag.2017.12.007
10.1038/323533a0
10.3390/rs8040303
10.3390/ijgi6020057
10.1016/j.fcr.2018.02.002
10.1016/0893-6080(89)90020-8
10.1007/s10712-018-9478-y
10.1080/01431161.2015.1084438
10.1016/j.rse.2006.09.031
10.1016/j.rse.2011.11.002
10.1016/j.scitotenv.2018.04.251
10.1109/TGRS.2011.2168962
10.1080/10106049.2014.997303
10.1214/009053607000000505
10.1016/j.fcr.2012.02.012
10.1109/ICMLA.2016.0182
10.1016/j.isprsjprs.2015.05.005
10.3390/s18010018
10.1007/BF00994018
10.2134/agronj2005.0418
10.1080/00207720601051463
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app9071459
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_576179f335a54a04a8e0cb65ec7ef887
10_3390_app9071459
GeographicLocations Beijing China
United States--US
China
GeographicLocations_xml – name: China
– name: Beijing China
– name: United States--US
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-a6f3500d1350164e8c5ca5b7b3f42eab1aa14e83c076e4af9efe17c17b25be103
IEDL.DBID DOA
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466547500194&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Mon Nov 10 04:35:22 EST 2025
Mon Jun 30 11:17:57 EDT 2025
Sat Nov 29 07:10:53 EST 2025
Tue Nov 18 21:36:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a6f3500d1350164e8c5ca5b7b3f42eab1aa14e83c076e4af9efe17c17b25be103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7397-5181
OpenAccessLink https://doaj.org/article/576179f335a54a04a8e0cb65ec7ef887
PQID 2314413798
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_576179f335a54a04a8e0cb65ec7ef887
proquest_journals_2314413798
crossref_primary_10_3390_app9071459
crossref_citationtrail_10_3390_app9071459
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Yuan (ref_5) 2011; 115
Kiniry (ref_11) 2005; 97
Verrelst (ref_55) 2012; 118
ref_14
ref_57
Friedman (ref_73) 2001; 29
Adelabu (ref_52) 2015; 30
Li (ref_78) 2012; 107
Rumelhart (ref_58) 1986; 323
Kundu (ref_80) 2017; 47
ref_19
ref_16
Chen (ref_21) 2018; 636
ref_15
(ref_56) 2017; 11
Ramedani (ref_68) 2014; 39
Szekely (ref_77) 2007; 35
Madhiarasan (ref_61) 2017; 48
Baret (ref_47) 2013; 137
Basak (ref_66) 2007; 11
Durbha (ref_25) 2007; 107
Wang (ref_34) 2018; 219
Liang (ref_12) 2007; 31
ref_69
Guyon (ref_81) 2003; 3
ref_24
ref_23
Twele (ref_39) 2008; 45
ref_67
ref_22
ref_20
ref_64
Chen (ref_1) 1992; 15
Hornik (ref_59) 1989; 2
ref_29
Dong (ref_9) 2013; 58
Verrelst (ref_27) 2012; 50
Cortes (ref_63) 1995; 20
Viterbo (ref_6) 2003; 108
LeCun (ref_85) 2015; 521
ref_70
Sonmez (ref_60) 2006; 43
Zhong (ref_79) 2015; 85
Verrelst (ref_13) 2015; 108
ref_36
ref_35
Lary (ref_18) 2016; 7
Gong (ref_38) 2003; 41
Dube (ref_54) 2014; 14
ref_76
ref_31
ref_75
Hong (ref_82) 2007; 38
Asner (ref_3) 2003; 12
Scornet (ref_71) 2016; 62
Siegmann (ref_84) 2015; 36
Pedregosa (ref_51) 2011; 12
Jego (ref_10) 2012; 131
Buermann (ref_4) 2001; 14
Fang (ref_43) 2013; 118
Martinez (ref_32) 2009; 149
Bacour (ref_28) 2006; 105
ref_83
Natekin (ref_74) 2013; 7
Guneralp (ref_30) 2014; 33
Huang (ref_62) 2003; 14
Maxwell (ref_17) 2018; 39
Delegido (ref_37) 2013; 46
ref_46
ref_45
ref_44
ref_42
ref_41
ref_40
Mountrakis (ref_65) 2011; 66
ref_2
ref_49
ref_48
Omer (ref_53) 2015; 8
Breiman (ref_72) 2001; 45
ref_8
Karimi (ref_26) 2018; 144
ref_7
(ref_33) 2014; 21
References_xml – volume: 14
  start-page: 274
  year: 2003
  ident: ref_62
  article-title: Learning capability and storage capacity of two-hidden-layer feedforward networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2003.809401
– ident: ref_49
– ident: ref_83
  doi: 10.3390/rs9040309
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_51
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_57
  doi: 10.1002/9780470748992
– volume: 62
  start-page: 1485
  year: 2016
  ident: ref_71
  article-title: Random forests and Kernel methods
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2016.2514489
– volume: 58
  start-page: 871
  year: 2013
  ident: ref_9
  article-title: Integrating a very fast simulated annealing optimization algorithm for crop leaf area index variational assimilation
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2012.12.013
– volume: 48
  start-page: 449
  year: 2017
  ident: ref_61
  article-title: Comparative analysis on hidden neurons estimation in multi layer perceptron neural networks for wind speed forecasting
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-016-9506-6
– ident: ref_16
– volume: 21
  start-page: 1031
  year: 2014
  ident: ref_33
  article-title: Assessing the impact of China net imports on the world cotton price
  publication-title: Appl. Econ. Lett.
  doi: 10.1080/13504851.2014.907468
– volume: 41
  start-page: 1355
  year: 2003
  ident: ref_38
  article-title: Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.812910
– volume: 39
  start-page: 2784
  year: 2018
  ident: ref_17
  article-title: Implementation of machine-learning classification in remote sensing: An applied review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1433343
– ident: ref_42
– ident: ref_22
  doi: 10.1007/978-3-319-65633-5
– ident: ref_35
– volume: 137
  start-page: 299
  year: 2013
  ident: ref_47
  article-title: GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.027
– volume: 7
  start-page: 3
  year: 2016
  ident: ref_18
  article-title: Machine learning in geosciences and remote sensing
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2015.07.003
– ident: ref_2
  doi: 10.1029/2007JG000635
– volume: 46
  start-page: 42
  year: 2013
  ident: ref_37
  article-title: A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2012.12.001
– volume: 39
  start-page: 1005
  year: 2014
  ident: ref_68
  article-title: Potential of radial basis function based support vector regression for global solar radiation prediction
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2014.07.108
– volume: 12
  start-page: 191
  year: 2003
  ident: ref_3
  article-title: Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1046/j.1466-822X.2003.00026.x
– volume: 14
  start-page: 3536
  year: 2001
  ident: ref_4
  article-title: Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2001)014<3536:EOTUOS>2.0.CO;2
– ident: ref_8
– volume: 14
  start-page: 15348
  year: 2014
  ident: ref_54
  article-title: Intra-and-inter species biomass prediction in a plantation forest: Testing the utility of high spatial resolution spaceborne multispectral rapideye sensor and advanced machine learning algorithms
  publication-title: Sensors
  doi: 10.3390/s140815348
– ident: ref_19
  doi: 10.3390/s17010081
– ident: ref_48
– ident: ref_69
– volume: 43
  start-page: 224
  year: 2006
  ident: ref_60
  article-title: Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2005.06.007
– volume: 7
  start-page: 21
  year: 2013
  ident: ref_74
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2013.00021
– volume: 31
  start-page: 501
  year: 2007
  ident: ref_12
  article-title: Recent developments in estimating land surface biogeophysical variables from optical remote sensing
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/0309133307084626
– ident: ref_41
– volume: 33
  start-page: 119
  year: 2014
  ident: ref_30
  article-title: Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 118
  start-page: 529
  year: 2013
  ident: ref_43
  article-title: Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties
  publication-title: J. Geophys. Res.-Biogeosci.
  doi: 10.1002/jgrg.20051
– volume: 66
  start-page: 247
  year: 2011
  ident: ref_65
  article-title: Support vector machines in remote sensing: A review
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume: 108
  start-page: 4191
  year: 2003
  ident: ref_6
  article-title: Impact of leaf area index seasonality on the annual land surface evaporation in a global circulation model
  publication-title: J. Geophys. Res.-Atmos.
– ident: ref_45
– volume: 107
  start-page: 1129
  year: 2012
  ident: ref_78
  article-title: Feature screening via distance correlation learning
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2012.695654
– volume: 115
  start-page: 1171
  year: 2011
  ident: ref_5
  article-title: Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.001
– volume: 11
  start-page: 7
  year: 2017
  ident: ref_56
  article-title: Computational foundations of natural intelligence
  publication-title: Front. Comput. Neurosci.
– ident: ref_76
– volume: 105
  start-page: 313
  year: 2006
  ident: ref_28
  article-title: Neural network estimation of LAI, fAPAR, fCover and LAIxC(ab), from top of canopy MERIS reflectance data: Principles and validation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.07.014
– volume: 47
  start-page: 4356
  year: 2017
  ident: ref_80
  article-title: Feature selection through message passing
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2609408
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref_81
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– ident: ref_24
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_85
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 45
  start-page: 229
  year: 2008
  ident: ref_39
  article-title: Spatially explicit estimation of leaf area index using EO-1 hyperion and landsat ETM+ data: Implications of spectral bandwidth and shortwave infrared data on prediction accuracy in a tropical montane environment
  publication-title: GISci. Remote Sens.
  doi: 10.2747/1548-1603.45.2.229
– ident: ref_40
– volume: 15
  start-page: 421
  year: 1992
  ident: ref_1
  article-title: Defining leaf-area index for non-flat leaves
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.1992.tb00992.x
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_72
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_67
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_73
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– ident: ref_15
  doi: 10.3390/rs10050763
– volume: 149
  start-page: 130
  year: 2009
  ident: ref_32
  article-title: Derivation of high-resolution leaf area index maps in support of validation activities: Application to the cropland Barrax site
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2008.07.014
– ident: ref_44
– volume: 85
  start-page: 2331
  year: 2015
  ident: ref_79
  article-title: An iterative approach to distance correlation-based sure independence screening
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2014.928820
– volume: 8
  start-page: 4825
  year: 2015
  ident: ref_53
  article-title: Performance of support vector machines and artificial neural network for mapping endangered tree species using WorldView-2 data in Dukuduku Forest, South Africa
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2015.2461136
– ident: ref_23
  doi: 10.3390/app7101046
– volume: 144
  start-page: 232
  year: 2018
  ident: ref_26
  article-title: Generalizability of gene expression programming and random forest methodologies in estimating cropland and grassland leaf area index
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.12.007
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_58
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: ref_7
  doi: 10.3390/rs8040303
– ident: ref_31
  doi: 10.3390/ijgi6020057
– volume: 219
  start-page: 169
  year: 2018
  ident: ref_34
  article-title: Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2018.02.002
– volume: 2
  start-page: 359
  year: 1989
  ident: ref_59
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref_75
– ident: ref_50
– ident: ref_14
  doi: 10.1007/s10712-018-9478-y
– ident: ref_46
– volume: 36
  start-page: 4519
  year: 2015
  ident: ref_84
  article-title: Comparison of different regression models and validation techniques for the assessment of wheat leaf area index from hyperspectral data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1084438
– volume: 107
  start-page: 348
  year: 2007
  ident: ref_25
  article-title: Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.09.031
– ident: ref_64
– volume: 118
  start-page: 127
  year: 2012
  ident: ref_55
  article-title: Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.002
– volume: 636
  start-page: 52
  year: 2018
  ident: ref_21
  article-title: A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.251
– volume: 50
  start-page: 1832
  year: 2012
  ident: ref_27
  article-title: Retrieval of vegetation biophysical parameters using Gaussian process techniques
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2168962
– volume: 30
  start-page: 810
  year: 2015
  ident: ref_52
  article-title: Testing the reliability and stability of the internal accuracy assessment of random forest for classifying tree defoliation levels using different validation methods
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2014.997303
– ident: ref_36
– ident: ref_70
– volume: 35
  start-page: 2769
  year: 2007
  ident: ref_77
  article-title: Measuring and testing dependence by correlation of distances
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000505
– volume: 11
  start-page: 203
  year: 2007
  ident: ref_66
  article-title: Support vector regression
  publication-title: Neural Inf. Process. Lett. Rev.
– volume: 131
  start-page: 63
  year: 2012
  ident: ref_10
  article-title: Using Leaf Area Index, retrieved from optical imagery, in the STICS crop model for predicting yield and biomass of field crops
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2012.02.012
– ident: ref_29
  doi: 10.1109/ICMLA.2016.0182
– volume: 108
  start-page: 273
  year: 2015
  ident: ref_13
  article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.05.005
– ident: ref_20
  doi: 10.3390/s18010018
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_63
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 97
  start-page: 418
  year: 2005
  ident: ref_11
  article-title: Large-area maize yield forecasting using leaf area index based yield model
  publication-title: Agron. J.
  doi: 10.2134/agronj2005.0418
– volume: 38
  start-page: 101
  year: 2007
  ident: ref_82
  article-title: Backward elimination model construction for regression and classification using leave-one-out criteria
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207720601051463
SSID ssj0000913810
Score 2.3867955
Snippet Leaf area index (LAI) is a crucial crop biophysical parameter that has been widely used in a variety of fields. Five state-of-the-art machine learning...
According to Figure 7, different sensitivity performances of the sample size variation are found among the ML models. ANN and SVR are very sensitive to the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1459
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Cotton
International conferences
leaf area index (LAI)
Machine learning
Remote sensing
Satellites
sensitivity analysis
Sentinel-2
spectral bands
Statistical methods
Studies
training sample size
Vegetation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELWg5UAPhRYQ2xZkCQ70YBHHdhyfqu6qFRxYVQWk3iLbsbdIS9JuAhJ_z0zi3VYCceFqT-RIMx7PjMfvEfK2sHkUXlqmg9dM1iZjLtaGeallVloNc_VANqHn8_LqylykgluX2irXPnFw1HXrsUb-HuIQOLmFNuXJzS1D1ii8XU0UGg_JNiKVgZ1vT8_mF5ebKguiXpY8G3FJBeT3eC9s8NEOgpPeO4kGwP4__PFwyJw_-d_fe0p2U3hJT0d72CMPQrNPdu6BDu6TvbSdO_ouYU4fPyO_Zhs-QtpG-mlosQw0oa8u6GVYjA2zDT1dLmDh_vp7RyHgpbO2h_ARJSMsGyz9iPiL8AEydYEZ06EpgX7GrqQmLFlOkfIe6yt0is-Mn5Ov52dfZh9YYmVgXhS8Z7aIQmVZzfFKspCh9Mpb5bQTUebBOm4th1HhM10EaaMJMXDtuXa5coFn4gXZatomvCTUBiM4vsV1QUkNuYoTpoy5KIxTEPQXE3K81lDlE2Q5MmcsK0hdUJvVnTYn5M1G9mYE6vir1BQVvZFAcO1hoF0tqrRXK0jBwE1FIZRV0mbSliHzrlBgzSGCU56Qo7UNVGnHd9WdARz8e_qQPIagy4zdP0dkq1_9CK_II_-z_9atXicD_g1P-fuD
  priority: 102
  providerName: ProQuest
Title Comparison of Machine Learning Regression Algorithms for Cotton Leaf Area Index Retrieval Using Sentinel-2 Spectral Bands
URI https://www.proquest.com/docview/2314413798
https://doaj.org/article/576179f335a54a04a8e0cb65ec7ef887
Volume 9
WOSCitedRecordID wos000466547500194&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl7SE9hHzSTdIgaA_JwSBZkmUds0tCc8iypA0kJyNpR5vA1lt23UL_fWdsZ7vQQi89Wh5bRjOSZqyZ9xj7WPg8qah9ZiHaTE-dyEKauixqq0XpLd6btmQTdjwuHx7cZIPqi3LCOnjgbuAwYMc91iWljDfaC-1LEDEUBl8NCWcIrb7Cuo1gql2DnSToqg6PVGFcT-fBjop1CJR0Ywdqgfr_WIfbzeV6l-30XiG_7L5mj72Cep-93cAK3Gd7_Sxc8fMeKvrigP0crWkE-SLx2zYzEngPmjrjdzDr8lxrfjmfLZbPzdPXFUc_lY8WDXp9JJmwW_D8hmAT8QEi2ELr420uAf9MyUQ1zLOcE1M9_RbhQ6oOPmT311dfRp-ynkwhi6qQTeaLpIwQU0kniYWGMproTbBBJZ2DD9J7ia0qCluA9slBAmmjtCE3AaRQR2yrXtTwjnEPTkkqoQ1gtMUQIyhXplwVLhj01YsBu3gZ4Cr2SONEeDGvMOIgZVS_lTFgH9ay3zp8jb9KDUlPawnCxG4b0FKq3lKqf1nKgJ2-aLnqJ-qqQvcWHUJlXXn8P_o4YdvoUbkuteeUbTXL7_CevYk_mufV8oy9Hl6NJ3dnra3i1eTmdvL4C0Zf70g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwAFpALBSwBEj0EJHEThwfEGoXqq7aXa1okdpTcBx7QVqSsgmg_il-IzN5bCuBuPXA1XZixfk8D3vmG4AXsQ4dN0J70hrpiVz5XuZy5RkhhZ9oiX15U2xCTqfJyYmarcGvPheGwip7mdgI6rw0dEb-Gu0Q1NxcquTt2TePqkbR7WpfQqOFxYE9_4kuW_Vm_A7_78sw3Ht_PNr3uqoCnuFxUHs6djzy_TygK7VY2MRERkeZzLgTodVZoHWArdygh2-Fdso6G0gTyCyMMhv4HN97DdYFgX0A67PxZHa6OtUhls0k8FseVM6VT_fQipKEiAz1kuZrCgT8If8bpbZ3539bjrtwuzOf2U6L9w1Ys8Um3LpEqrgJG524qtirjlN7-x6cj1b1Flnp2KQJIbWsY5edsw923gYEF2xnMccPrT9_rRga9GxU1mge00iH01rNxsQviQ9QJTLcpqwJumBHFHVV2IUXsiNKXsVp2S6lUd-Hj1eyIA9gUJSFfQhMW8UDyjXObCQk-mIZV4kLeayyCJ2aeAjbPSJS01GyU2WQRYquGaEnvUDPEJ6vxp61RCR_HbVLwFqNIPLwpqFcztNOFqXoYqIYdpxHOhLaFzqxvsniCHerdah0hrDVYy7tJFqVXgDu0b-7n8GN_ePJYXo4nh48hptoYKo20mkLBvXyu30C182P-ku1fNptHgafrhqgvwErqVmi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUJwAFpAXShgCZDoIWoSO3F8QKjdsmJVulpRkMop2I69VFqSsgmg_jV-HePE2VYCceuBq-3EivM8H_bMG4DnqYwt1UwG3GgesEKEgbKFCDTjLMwkx76iLTbBp9Ps5ETM1uBXnwvjwip7mdgK6qLS7ox8F-0Q1NyUi2zX-rCI2cH49dm3wFWQcjetfTmNDiKH5vwnum_1q8kB_usXcTx-82H0NvAVBgJN06gJZGppEoZF5K7XUmYynWiZKK6oZbGRKpIywlaq0ds3TFphrIm4jriKE2WikOJ7r8E6muQsHsD6bHI0-7Q64XGMm1kUdpyolIrQ3UkLlzDkiFEvacG2WMAfuqBVcOM7__PS3IXb3qwme90-2IA1U27CrUtki5uw4cVYTV56ru2de3A-WtVhJJUlR21oqSGedXZO3pt5Fyhckr3FHD-0-fK1Jmjok1HVoNnsRlqc1kgycbyT-ICrUIbbl7TBGOTYRWOVZhHE5NglteK0ZN-lV9-Hj1eyIA9gUFal2QIijaCRy0FWJmEcfTRFRWZjmgqVoLOTDmGnR0euPVW7qxiyyNFlc0jKL5A0hGersWcdQclfR-07kK1GOFLxtqFaznMvo3J0PVE8W0oTmTAZMpmZUKs0wV1sLCqjIWz3-Mu9pKvzC_A9_Hf3U7iBqMzfTaaHj-Am2p2iC4DahkGz_G4ew3X9ozmtl0_8PiLw-arx-RvKcmJi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Machine+Learning+Regression+Algorithms+for+Cotton+Leaf+Area+Index+Retrieval+Using+Sentinel-2+Spectral+Bands&rft.jtitle=Applied+sciences&rft.au=Mao%2C+Huihui&rft.au=Meng%2C+Jihua&rft.au=Ji%2C+Fujiang&rft.au=Zhang%2C+Qiankun&rft.date=2019-04-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=9&rft.issue=7&rft.spage=1459&rft_id=info:doi/10.3390%2Fapp9071459&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app9071459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon