Rule-Based System with Machine Learning Support for Detecting Anomalies in 5G WLANs
The purpose of this paper is to design and implement a complete system for monitoring and detecting attacks and anomalies in 5G wireless local area networks. Regrettably, the development of most open source systems has been stopped, making them unable to detect emerging forms of threats. The system...
Uložené v:
| Vydané v: | Electronics (Basel) Ročník 12; číslo 11; s. 2355 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
23.05.2023
|
| Predmet: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The purpose of this paper is to design and implement a complete system for monitoring and detecting attacks and anomalies in 5G wireless local area networks. Regrettably, the development of most open source systems has been stopped, making them unable to detect emerging forms of threats. The system provides a modular framework to create and add new detection rules as new attacks emerge. The system is based on packet analysis modules and rules and incorporates machine learning models to enhance its efficiency. The use of rule-based detection establishes a strong basis for the identification of recognized threats, whereas the additional implementation of machine learning models enables the detection of new and emerging attacks at an early stage. Therefore, the ultimate aim is to create a tool that constantly evolves by integrating novel attack detection techniques. The efficiency of the system is proven experimentally with accuracy levels up to 98.57% and precision as well as recall scores as high as 92%. |
|---|---|
| AbstractList | The purpose of this paper is to design and implement a complete system for monitoring and detecting attacks and anomalies in 5G wireless local area networks. Regrettably, the development of most open source systems has been stopped, making them unable to detect emerging forms of threats. The system provides a modular framework to create and add new detection rules as new attacks emerge. The system is based on packet analysis modules and rules and incorporates machine learning models to enhance its efficiency. The use of rule-based detection establishes a strong basis for the identification of recognized threats, whereas the additional implementation of machine learning models enables the detection of new and emerging attacks at an early stage. Therefore, the ultimate aim is to create a tool that constantly evolves by integrating novel attack detection techniques. The efficiency of the system is proven experimentally with accuracy levels up to 98.57% and precision as well as recall scores as high as 92%. |
| Audience | Academic |
| Author | Natkaniec, Marek Chołda, Piotr Uszko, Krzysztof Kasprzyk, Maciej |
| Author_xml | – sequence: 1 givenname: Krzysztof surname: Uszko fullname: Uszko, Krzysztof – sequence: 2 givenname: Maciej surname: Kasprzyk fullname: Kasprzyk, Maciej – sequence: 3 givenname: Marek orcidid: 0000-0002-8230-773X surname: Natkaniec fullname: Natkaniec, Marek – sequence: 4 givenname: Piotr orcidid: 0000-0003-2018-4057 surname: Chołda fullname: Chołda, Piotr |
| BookMark | eNp9kE1LAzEQhoNUsNb-Ai8Bz6v52HQ3x1q1ClXBKh6XbDrbpmyTmmSR_ntT6kFEnDnMB_PMC-8p6llnAaFzSi45l-QKWtDRO2t0oIxSxoU4Qn1GCplJJlnvR3-ChiGsSQpJeclJH81fuhayaxVggee7EGGDP01c4UelV8YCnoHy1tglnnfbrfMRN87jG4hJcr8dW7dRrYGAjcViit9n46dwho4b1QYYftcBeru7fZ3cZ7Pn6cNkPMs0H9GYKVErJXNWKgKFLJWuayV1SUcNK5o0QEFqLjmrtaA1EQtFhaw5pRTKeiHznA_QxeHv1ruPDkKs1q7zNklWrGRcyoLnNF1dHq6WqoXK2MZFr3TKBWyMTlY2Ju3HhWB5waUQCeAHQHsXgoem2nqzUX5XUVLtHa_-cDxR8helTVTROJvkTPsv-wU6H4ul |
| CitedBy_id | crossref_primary_10_1007_s43681_024_00529_z crossref_primary_10_3390_app13148000 crossref_primary_10_1016_j_cose_2023_103560 crossref_primary_10_1016_j_comnet_2025_111594 crossref_primary_10_1109_ACCESS_2024_3445261 crossref_primary_10_1007_s10462_025_11108_x crossref_primary_10_1109_ACCESS_2025_3546338 crossref_primary_10_1007_s11227_024_06022_y crossref_primary_10_3390_s23125507 |
| Cites_doi | 10.1109/TIFS.2012.2207383 10.3390/electronics12081757 10.1109/TIFS.2017.2762828 10.1109/ACCESS.2021.3126834 10.1109/ICVRIS.2018.00138 10.1109/INDCON.2013.6726015 10.1109/MINES.2012.96 10.1109/BigData47090.2019.9005507 10.1109/JSEN.2020.3007809 10.1109/WCNC.2017.7925567 10.1109/CSNT.2014.158 10.1145/3507657.3528548 10.1109/ARES.2008.130 10.1109/ACCESS.2022.3183597 10.1016/j.horiz.2022.100017 10.3390/electronics12030643 10.1109/TIFS.2015.2433898 10.1109/SMC.2015.55 10.1109/ICITCS.2015.7293037 10.1109/VTCSpring.2019.8746576 10.1109/ICCC51575.2020.9345293 10.1145/3133956.3134027 10.1109/MSN48538.2019.00079 10.1109/ACCESS.2021.3061609 10.3390/electronics9101689 10.30534/ijatcse/2020/1391.32020 10.1109/COMST.2015.2402161 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.3390/electronics12112355 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | A752473955 10_3390_electronics12112355 |
| GeographicLocations | Poland |
| GeographicLocations_xml | – name: Poland |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c361t-a5baa9428a0e798acbba9c816f27fcbbe70b3932bc51b05da159b3111e8bd9443 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001005482600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sat Jul 26 00:29:39 EDT 2025 Tue Nov 04 18:41:07 EST 2025 Sat Nov 29 07:10:40 EST 2025 Tue Nov 18 21:30:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-a5baa9428a0e798acbba9c816f27fcbbe70b3932bc51b05da159b3111e8bd9443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8230-773X 0000-0003-2018-4057 |
| OpenAccessLink | https://www.proquest.com/docview/2823997341?pq-origsite=%requestingapplication% |
| PQID | 2823997341 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2823997341 gale_infotracacademiconefile_A752473955 crossref_primary_10_3390_electronics12112355 crossref_citationtrail_10_3390_electronics12112355 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-23 |
| PublicationDateYYYYMMDD | 2023-05-23 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_34 ref_11 ref_33 ref_10 ref_31 Wang (ref_35) 2021; 9 ref_30 Yang (ref_29) 2012; 7 ref_19 ref_18 ref_17 ref_39 ref_38 ref_15 ref_37 Lin (ref_16) 2022; 2 Chatzoglou (ref_21) 2021; 9 Chen (ref_14) 2020; 20 Aminanto (ref_6) 2018; 13 ref_25 ref_24 ref_23 ref_22 ref_44 ref_43 ref_20 ref_42 ref_41 ref_40 ref_1 ref_3 ref_2 ref_28 Kolias (ref_12) 2016; 18 ref_27 ref_26 Baharudin (ref_32) 2020; 9 ref_9 ref_8 Chatzoglou (ref_13) 2022; 10 Alipour (ref_36) 2015; 10 ref_5 ref_4 ref_7 |
| References_xml | – volume: 7 start-page: 1638 year: 2012 ident: ref_29 article-title: Active User-Side Evil Twin Access Point Detection Using Statistical Techniques publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2012.2207383 – ident: ref_2 doi: 10.3390/electronics12081757 – volume: 13 start-page: 621 year: 2018 ident: ref_6 article-title: Deep Abstraction and Weighted Feature Selection for Wi-Fi Impersonation Detection publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2762828 – ident: ref_26 – ident: ref_34 – volume: 9 start-page: 152379 year: 2021 ident: ref_35 article-title: Machine Learning in Network Anomaly Detection: A Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3126834 – ident: ref_8 doi: 10.1109/ICVRIS.2018.00138 – ident: ref_30 doi: 10.1109/INDCON.2013.6726015 – ident: ref_15 doi: 10.1109/MINES.2012.96 – ident: ref_7 doi: 10.1109/BigData47090.2019.9005507 – ident: ref_11 – volume: 20 start-page: 14317 year: 2020 ident: ref_14 article-title: Sensing Data Supported Traffic Flow Prediction via Denoising Schemes and ANN: A Comparison publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3007809 – ident: ref_19 doi: 10.1109/WCNC.2017.7925567 – ident: ref_39 – ident: ref_40 – ident: ref_37 – ident: ref_42 – ident: ref_1 – ident: ref_44 – ident: ref_27 doi: 10.1109/CSNT.2014.158 – ident: ref_23 doi: 10.1145/3507657.3528548 – ident: ref_28 doi: 10.1109/ARES.2008.130 – volume: 10 start-page: 64761 year: 2022 ident: ref_13 article-title: Pick Quality Over Quantity: Expert Feature Selection and Data Preprocessing for 802.11 Intrusion Detection Systems publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3183597 – volume: 2 start-page: 100017 year: 2022 ident: ref_16 article-title: Energy Sources Evaluation Based on Multi-Criteria Decision Support Approach in China publication-title: Sustain. Horizons doi: 10.1016/j.horiz.2022.100017 – ident: ref_25 – ident: ref_3 doi: 10.3390/electronics12030643 – ident: ref_4 – volume: 10 start-page: 2158 year: 2015 ident: ref_36 article-title: Wireless Anomaly Detection Based on IEEE 802.11 Behavior Analysis publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2015.2433898 – ident: ref_33 – ident: ref_24 doi: 10.1109/SMC.2015.55 – ident: ref_31 doi: 10.1109/ICITCS.2015.7293037 – ident: ref_10 – ident: ref_17 doi: 10.1109/VTCSpring.2019.8746576 – ident: ref_20 doi: 10.1109/ICCC51575.2020.9345293 – ident: ref_41 – ident: ref_9 doi: 10.1145/3133956.3134027 – ident: ref_5 doi: 10.1109/MSN48538.2019.00079 – ident: ref_38 – ident: ref_43 – volume: 9 start-page: 34188 year: 2021 ident: ref_21 article-title: Empirical Evaluation of Attacks against IEEE 802.11 Enterprise Networks: The AWID3 Dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061609 – ident: ref_18 doi: 10.3390/electronics9101689 – ident: ref_22 – volume: 9 start-page: 92 year: 2020 ident: ref_32 article-title: DARMA: Defeating and Reconnaissance Manna-karma Attacks in 802.11 with Multiple Detections and Prevention publication-title: Int. J. Adv. Trends Comput. Sci. Eng. doi: 10.30534/ijatcse/2020/1391.32020 – volume: 18 start-page: 184 year: 2016 ident: ref_12 article-title: Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset publication-title: IEEE Commun. Surv. Tutori. doi: 10.1109/COMST.2015.2402161 |
| SSID | ssj0000913830 |
| Score | 2.3242314 |
| Snippet | The purpose of this paper is to design and implement a complete system for monitoring and detecting attacks and anomalies in 5G wireless local area networks.... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2355 |
| SubjectTerms | 5G mobile communication Accuracy Anomalies Connectivity Data security Efficiency Intrusion detection systems Local area networks Machine learning Methods Modular systems Network security Safety and security measures Wide area networks Wireless local area networks (Computer networks) Wireless networks |
| Title | Rule-Based System with Machine Learning Support for Detecting Anomalies in 5G WLANs |
| URI | https://www.proquest.com/docview/2823997341 |
| Volume | 12 |
| WOSCitedRecordID | wos001005482600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb64AAHKI-qhbLyAYkLVhM7ie0T2sL2IbGrqIAoXCJ77K0qlWxpthz57cxkvW0PVS89xnGiKGPPfDO2v4-xd4jJKwBvRRWCFEWMWjhrQUgwhYSKag3Qi03oycScnNg6Fdy6tK1y6RN7Rx1mQDXyXUwNMJZqdLofL_4IUo2i1dUkobHK1oklgSZmXf66rrEQ56VR2YJsSGF2v3ujLdMRt5lUdMTvVkC62y33sWb_2UO_coM9TSiTDxfD4jlbie0L9uQW9-BL9vX46jyKPQxigS9oyznVZPm4310ZeSJePeWk-4kYnSO65Z8jrTlQ67Cd_UYIHzt-1vLygP_4Mpx0r9j3_dG3T4ciKSwIUFU-F670zlnMQFwWtTUOvHcWTF5NpZ7iRdSZV4jwPJS5z8rgEPx4he4xGh9sUahNttbO2rjFeMgra7Q3IB0UIViXT7XNrcsUVHnuzTaTy9_cQKIfJxWM8wbTELJNc4dtttmH64cuFuwb93d_T_ZraG7iu8GlIwb4hcRy1Qx1KQtamcSeO0v7NWnSds2N8V7ff_sNe0yq87SJQKodtja_vIpv2SP4Oz_rLgdsfW80qY8HbHX8bzToRyS21Ufj-ud_qErsSw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9VAFD5BNFEXvo0o4Cw0bpzQzrSdmYUxl5cQLjdEMRI2dV7XkGAv0gvEP-Vv5Jw-gAVhx8Jl2-mk7Xw9r5n5PoB3GJMX3jvDixAEz2JU3BrjufA6E76gWoNvxCbUaKT39szODPzr98LQssreJjaGOkw81ciXMDVAX6rQ6H4--sNJNYpmV3sJjRYWW_HvGaZs9afNVRzf90Ksr-2ubPBOVYB7WaRTbnNnrcGo2yZRGW29c9Z4nRZjocZ4EFXiJEY1zuepS_Jg0eE7iSYhahdMlkns9w7czTJMlvD_2cn3L2o6xLGpZdKSG0lpkqVLLZuauNSEpC2FVxzg9W6g8W3rj_-3r_IEHnVRNBu0sH8KM7F6Bg-vcCs-h29fTw4jX0YnHVhLy86o5sy2m9WjkXXEsr8Y6ZpiDsIwemerkeZU6OygmvzGFCXW7KBi-Rf2YzgY1S_g-6281UuYrSZVfAUspIXRymkvrM9CMDYdK5Mam0hfpKnTcyD6YS19R69OKh-HJaZZhIXyGizMwceLm45adpGbm38gvJRke7Bvb7stFPiExOJVDlQuMpp5xZbzPV7KzijV5SVYXt98-S3c39jdHpbDzdHWG3ggMK6jBRNCzsPs9PgkLsA9fzo9qI8XG_wz-Hnb0DoHc69Gcg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglA58EYUCvgA6gVrEzuJ7QNCC8tC1bJaFRArLsGvrSqVbGm2IP4av46ZPNoeqt564JjEseL487w8_gbgOdrkhffO8CIEwbMYFbfGeC68zoQvKNbgm2ITajLRs5mZrsDf_iwMpVX2MrER1GHhKUY-QNcAdalCoTuYd2kR09H49eFPThWkaKe1L6fRQmQ7_vmN7lv9amuEc_1CiPG7z28_8K7CAPeySJfc5s5agxa4TaIy2nrnrPE6LeZCzfEiqsRJtHCcz1OX5MGi8ncSxUPULpgsk9jvFbiq0Mckx2-afzuJ7xDfppZJS3QkpUkGp3VtauJVE5KOF55RhuerhEbPjW_9z3_oNtzsrGs2bJfDHViJ1V24cYZz8R582j0-iPwNKu_AWrp2RrFo9rHJKo2sI5zdY1TvFH0ThlY9G0Xaa6G7w2rxA12XWLP9iuXv2ded4aS-D18uZVQPYLVaVPEhsJAWRiunvbA-C8HYdK5MamwifZGmTq-D6Ke49B3tOlX_OCjR_SJclOfgYh1enrx02LKOXNx8k7BTkkzCvr3tjlbgFxK7VzlUuchoRxZbbvTYKTthVZenwHl08eNncB0RVe5sTbYfw5pAc4_yKITcgNXl0XF8Atf8r-V-ffS0WQoMvl82sv4BKulPRg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rule-Based+System+with+Machine+Learning+Support+for+Detecting+Anomalies+in+5G+WLANs&rft.jtitle=Electronics+%28Basel%29&rft.au=Uszko%2C+Krzysztof&rft.au=Kasprzyk%2C+Maciej&rft.au=Natkaniec%2C+Marek&rft.au=Cho%C5%82da%2C+Piotr&rft.date=2023-05-23&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=12&rft.issue=11&rft.spage=2355&rft_id=info:doi/10.3390%2Felectronics12112355&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |