A sequence space search engine for computational protein design to modulate molecular functionality

De-novo protein design explores the untapped sequence space that is otherwise less discovered during the evolutionary process. This necessitates an efficient sequence space search engine for effective convergence in computational protein design. We propose a greedy simulated annealing-based Monte-Ca...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomolecular structure & dynamics Vol. 41; no. 7; pp. 2937 - 2946
Main Authors: Malik, Ayush, Banerjee, Anupam, Pal, Abantika, Mitra, Pralay
Format: Journal Article
Language:English
Published: England Taylor & Francis 03.05.2023
Subjects:
ISSN:0739-1102, 1538-0254, 1538-0254
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract De-novo protein design explores the untapped sequence space that is otherwise less discovered during the evolutionary process. This necessitates an efficient sequence space search engine for effective convergence in computational protein design. We propose a greedy simulated annealing-based Monte-Carlo parallel search algorithm for better sequence-structure compatibility probing in protein design. The guidance provided by the evolutionary profile, the greedy approach, and the cooling schedule adopted in the Monte Carlo simulation ensures sufficient exploration and exploitation of the search space leading to faster convergence. On evaluating the proposed algorithm, we find that a dataset of 76 target scaffolds report an average root-mean-square-deviation (RMSD) of 1.07 Å and an average TM-Score of 0.93 with the modeled designed protein sequences. High sequence recapitulation of 48.7% (59.4%) observed in the design sequences for all (hydrophobic) solvent-inaccessible residues again establish the goodness of the proposed algorithm. A high (93.4%) intra-group recapitulation of hydrophobic residues in the solvent-inaccessible region indicates that the proposed protein design algorithm preserves the core residues in the protein and provides alternative residue combinations in the solvent-accessible regions of the target protein. Furthermore, a COFACTOR-based protein functional analysis shows that the design sequences exhibit altered molecular functionality and introduce new molecular functions compared to the target scaffolds. Communicated by Ramaswamy H. Sarma
AbstractList De-novo protein design explores the untapped sequence space that is otherwise less discovered during the evolutionary process. This necessitates an efficient sequence space search engine for effective convergence in computational protein design. We propose a greedy simulated annealing-based Monte-Carlo parallel search algorithm for better sequence-structure compatibility probing in protein design. The guidance provided by the evolutionary profile, the greedy approach, and the cooling schedule adopted in the Monte Carlo simulation ensures sufficient exploration and exploitation of the search space leading to faster convergence. On evaluating the proposed algorithm, we find that a dataset of 76 target scaffolds report an average root-mean-square-deviation (RMSD) of 1.07 Å and an average TM-Score of 0.93 with the modeled designed protein sequences. High sequence recapitulation of 48.7% (59.4%) observed in the design sequences for all (hydrophobic) solvent-inaccessible residues again establish the goodness of the proposed algorithm. A high (93.4%) intra-group recapitulation of hydrophobic residues in the solvent-inaccessible region indicates that the proposed protein design algorithm preserves the core residues in the protein and provides alternative residue combinations in the solvent-accessible regions of the target protein. Furthermore, a COFACTOR-based protein functional analysis shows that the design sequences exhibit altered molecular functionality and introduce new molecular functions compared to the target scaffolds. Communicated by Ramaswamy H. Sarma
De-novo protein design explores the untapped sequence space that is otherwise less discovered during the evolutionary process. This necessitates an efficient sequence space search engine for effective convergence in computational protein design. We propose a greedy simulated annealing-based Monte-Carlo parallel search algorithm for better sequence-structure compatibility probing in protein design. The guidance provided by the evolutionary profile, the greedy approach, and the cooling schedule adopted in the Monte Carlo simulation ensures sufficient exploration and exploitation of the search space leading to faster convergence. On evaluating the proposed algorithm, we find that a dataset of 76 target scaffolds report an average root-mean-square-deviation (RMSD) of 1.07 Å and an average TM-Score of 0.93 with the modeled designed protein sequences. High sequence recapitulation of 48.7% (59.4%) observed in the design sequences for all (hydrophobic) solvent-inaccessible residues again establish the goodness of the proposed algorithm. A high (93.4%) intra-group recapitulation of hydrophobic residues in the solvent-inaccessible region indicates that the proposed protein design algorithm preserves the core residues in the protein and provides alternative residue combinations in the solvent-accessible regions of the target protein. Furthermore, a COFACTOR-based protein functional analysis shows that the design sequences exhibit altered molecular functionality and introduce new molecular functions compared to the target scaffolds.Communicated by Ramaswamy H. Sarma.De-novo protein design explores the untapped sequence space that is otherwise less discovered during the evolutionary process. This necessitates an efficient sequence space search engine for effective convergence in computational protein design. We propose a greedy simulated annealing-based Monte-Carlo parallel search algorithm for better sequence-structure compatibility probing in protein design. The guidance provided by the evolutionary profile, the greedy approach, and the cooling schedule adopted in the Monte Carlo simulation ensures sufficient exploration and exploitation of the search space leading to faster convergence. On evaluating the proposed algorithm, we find that a dataset of 76 target scaffolds report an average root-mean-square-deviation (RMSD) of 1.07 Å and an average TM-Score of 0.93 with the modeled designed protein sequences. High sequence recapitulation of 48.7% (59.4%) observed in the design sequences for all (hydrophobic) solvent-inaccessible residues again establish the goodness of the proposed algorithm. A high (93.4%) intra-group recapitulation of hydrophobic residues in the solvent-inaccessible region indicates that the proposed protein design algorithm preserves the core residues in the protein and provides alternative residue combinations in the solvent-accessible regions of the target protein. Furthermore, a COFACTOR-based protein functional analysis shows that the design sequences exhibit altered molecular functionality and introduce new molecular functions compared to the target scaffolds.Communicated by Ramaswamy H. Sarma.
protein design explores the untapped sequence space that is otherwise less discovered during the evolutionary process. This necessitates an efficient sequence space search engine for effective convergence in computational protein design. We propose a greedy simulated annealing-based Monte-Carlo parallel search algorithm for better sequence-structure compatibility probing in protein design. The guidance provided by the evolutionary profile, the greedy approach, and the cooling schedule adopted in the Monte Carlo simulation ensures sufficient exploration and exploitation of the search space leading to faster convergence. On evaluating the proposed algorithm, we find that a dataset of 76 target scaffolds report an average root-mean-square-deviation (RMSD) of 1.07 Å and an average TM-Score of 0.93 with the modeled designed protein sequences. High sequence recapitulation of 48.7% (59.4%) observed in the design sequences for all (hydrophobic) solvent-inaccessible residues again establish the goodness of the proposed algorithm. A high (93.4%) intra-group recapitulation of hydrophobic residues in the solvent-inaccessible region indicates that the proposed protein design algorithm preserves the core residues in the protein and provides alternative residue combinations in the solvent-accessible regions of the target protein. Furthermore, a COFACTOR-based protein functional analysis shows that the design sequences exhibit altered molecular functionality and introduce new molecular functions compared to the target scaffolds.Communicated by Ramaswamy H. Sarma.
Author Banerjee, Anupam
Pal, Abantika
Mitra, Pralay
Malik, Ayush
Author_xml – sequence: 1
  givenname: Ayush
  surname: Malik
  fullname: Malik, Ayush
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur
– sequence: 2
  givenname: Anupam
  orcidid: 0000-0002-2859-7705
  surname: Banerjee
  fullname: Banerjee, Anupam
  organization: School of Medical Science and Technology, Indian Institute of Technology Kharagpur
– sequence: 3
  givenname: Abantika
  surname: Pal
  fullname: Pal, Abantika
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur
– sequence: 4
  givenname: Pralay
  orcidid: 0000-0003-4119-3788
  surname: Mitra
  fullname: Mitra, Pralay
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35220920$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v2zAMhoWhxZJ-_IQNOu7ilPqwYt8WBP0CCvTSngVFpjsNtpRJMob8-8pI2mMvJEE8JMj3vSBnPngk5AeDFYMGbmAtWsaArzjwOUguGvWNLFktmgp4Lc_IcmaqGVqQi5T-AnDG1uw7WYiac2g5LInd0IT_JvQWadqbOaKJ9g9F_-Y80j5EasO4n7LJLngz0H0MGZ2nHSb35mkOdAzdNJiMpRjQljLSfvL2yLt8uCLnvRkSXp_yJXm9u33ZPlRPz_eP281TZYViuTI1IDDR1ty2YJveKMVhB1J25cWdZK2qO2BG9EIq1pc2KGm5bNfW7lTbgLgkv457y4nlpZT16JLFYTAew5Q0V0LWRYKWF_TnCZ12I3Z6H91o4kF_CFOA-gjYGFKK2H8iDPRsgP4wQM8G6JMBZe73cc75It1o_oc4dDqbwxBiH423Lmnx9Yp3xHCLbw
Cites_doi 10.1073/pnas.0811070106
10.1007/978-3-540-24767-8_41
10.1016/B978-0-12-394292-0.00006-0
10.1093/nar/gks372
10.1002/prot.26263
10.1016/j.bbagen.2019.04.015
10.1109/TCBB.2019.2928809
10.1371/journal.pcbi.1005659
10.1073/pnas.0900266106
10.1006/jmbi.1999.3211
10.1093/bioinformatics/btt055
10.1039/c3cs60137d
10.1126/science.aaf8818
10.1126/science.278.5335.82
10.1038/nmeth.3213
10.1016/j.jmb.2004.11.062
10.1016/j.sbi.2007.03.006
10.1016/j.sbi.2018.04.007
10.1038/356539a0
10.1110/ps.0226603
10.1093/nar/gkl163
10.1093/nar/gkt384
10.1021/ct500864r
10.1126/science.1136782
10.1073/pnas.97.19.10383
10.1093/bioinformatics/btaa234
10.1093/nar/gki387
10.1093/nar/gkl971
10.1038/srep02619
10.1371/journal.pcbi.1003298
10.1126/science.abj8754
10.1002/pro.5560030405
10.1073/pnas.1118082108
10.1021/acs.jproteome.0c00473
10.1021/ja00214a001
10.1016/j.jmb.2011.02.017
10.1016/j.jmb.2018.12.016
10.1038/nature23912
10.1093/bioinformatics/btab496
10.1371/journal.pcbi.0020085
10.1093/nar/gki524
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1080/07391102.2022.2042386
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1538-0254
EndPage 2946
ExternalDocumentID 35220920
10_1080_07391102_2022_2042386
2042386
Genre Research Article
Journal Article
GroupedDBID ---
-~X
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
DGEBU
DKSSO
EBS
EMOBN
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NX0
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
UT5
ZGOLN
~KM
~S~
AAYXX
CITATION
07X
53G
AAGME
AAOAP
ABFMO
ABTAA
ACBBU
ACDHJ
ACQMU
ACZPZ
ADGTR
ADOPC
ADYSH
AFDYB
AFFVI
AI.
AMATQ
APNXG
AURDB
BFWEY
C0.
CGR
CUY
CVF
CWRZV
DLOXE
ECM
EIF
EJD
HGUVV
JEPSP
NPM
NUSFT
OWHGL
PCLFJ
S70
VH1
7X8
ID FETCH-LOGICAL-c361t-a50e013952c90c8fa6620b044d202b41965d01a3f3461f44d064c2497ccb69803
IEDL.DBID TFW
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000762815200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0739-1102
1538-0254
IngestDate Fri Sep 05 12:35:05 EDT 2025
Wed Feb 19 02:25:02 EST 2025
Sat Nov 29 02:07:42 EST 2025
Mon Oct 20 23:46:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Monte-Carlo parallel search algorithm
protein sequence-structure compatibility
high native sequence recapitulation
Protein design
altering molecular functionality
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a50e013952c90c8fa6620b044d202b41965d01a3f3461f44d064c2497ccb69803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4119-3788
0000-0002-2859-7705
OpenAccessLink https://figshare.com/articles/journal_contribution/A_sequence_space_search_engine_for_computational_protein_design_to_modulate_molecular_functionality/19242582
PMID 35220920
PQID 2634521192
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2634521192
crossref_primary_10_1080_07391102_2022_2042386
pubmed_primary_35220920
informaworld_taylorfrancis_310_1080_07391102_2022_2042386
PublicationCentury 2000
PublicationDate 2023-05-03
PublicationDateYYYYMMDD 2023-05-03
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of biomolecular structure & dynamics
PublicationTitleAlternate J Biomol Struct Dyn
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Banerjee A. (CIT0005) 2018; 17
Leaver-Fay A. (CIT0025) 2011; 487
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
CIT0019
CIT0041
CIT0040
CIT0021
CIT0043
CIT0020
CIT0042
CIT0001
CIT0023
CIT0022
CIT0003
CIT0002
CIT0024
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0029
  doi: 10.1073/pnas.0811070106
– ident: CIT0001
  doi: 10.1007/978-3-540-24767-8_41
– ident: CIT0024
  doi: 10.1016/B978-0-12-394292-0.00006-0
– ident: CIT0035
  doi: 10.1093/nar/gks372
– ident: CIT0031
  doi: 10.1002/prot.26263
– ident: CIT0034
  doi: 10.1016/j.bbagen.2019.04.015
– ident: CIT0006
  doi: 10.1109/TCBB.2019.2928809
– ident: CIT0016
  doi: 10.1371/journal.pcbi.1005659
– ident: CIT0011
  doi: 10.1073/pnas.0900266106
– ident: CIT0022
  doi: 10.1006/jmbi.1999.3211
– ident: CIT0033
  doi: 10.1093/bioinformatics/btt055
– ident: CIT0010
  doi: 10.1039/c3cs60137d
– ident: CIT0003
  doi: 10.1126/science.aaf8818
– ident: CIT0013
  doi: 10.1126/science.278.5335.82
– ident: CIT0041
  doi: 10.1038/nmeth.3213
– ident: CIT0036
  doi: 10.1016/j.jmb.2004.11.062
– ident: CIT0009
  doi: 10.1016/j.sbi.2007.03.006
– ident: CIT0017
  doi: 10.1016/j.sbi.2018.04.007
– ident: CIT0014
  doi: 10.1038/356539a0
– volume: 17
  start-page: 392
  issue: 6
  year: 2018
  ident: CIT0005
  publication-title: Briefings in Functional Genomics
– ident: CIT0039
  doi: 10.1110/ps.0226603
– volume: 487
  start-page: 545
  volume-title: Methods in enzymology
  year: 2011
  ident: CIT0025
– ident: CIT0026
  doi: 10.1093/nar/gkl163
– ident: CIT0028
  doi: 10.1093/nar/gkt384
– ident: CIT0030
  doi: 10.1021/ct500864r
– ident: CIT0042
  doi: 10.1126/science.1136782
– ident: CIT0023
  doi: 10.1073/pnas.97.19.10383
– ident: CIT0018
  doi: 10.1093/bioinformatics/btaa234
– ident: CIT0037
  doi: 10.1093/nar/gki387
– ident: CIT0008
  doi: 10.1093/nar/gkl971
– ident: CIT0040
  doi: 10.1038/srep02619
– ident: CIT0027
  doi: 10.1371/journal.pcbi.1003298
– ident: CIT0002
  doi: 10.1126/science.abj8754
– ident: CIT0019
  doi: 10.1002/pro.5560030405
– ident: CIT0032
  doi: 10.1073/pnas.1118082108
– ident: CIT0004
  doi: 10.1021/acs.jproteome.0c00473
– ident: CIT0020
  doi: 10.1021/ja00214a001
– ident: CIT0007
  doi: 10.1016/j.jmb.2011.02.017
– ident: CIT0038
  doi: 10.1016/j.jmb.2018.12.016
– ident: CIT0012
  doi: 10.1038/nature23912
– ident: CIT0021
  doi: 10.1093/bioinformatics/btab496
– ident: CIT0015
  doi: 10.1371/journal.pcbi.0020085
– ident: CIT0043
  doi: 10.1093/nar/gki524
SSID ssj0021171
Score 2.3493843
Snippet De-novo protein design explores the untapped sequence space that is otherwise less discovered during the evolutionary process. This necessitates an efficient...
protein design explores the untapped sequence space that is otherwise less discovered during the evolutionary process. This necessitates an efficient sequence...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 2937
SubjectTerms altering molecular functionality
Amino Acid Sequence
Computer Simulation
high native sequence recapitulation
Monte-Carlo parallel search algorithm
Protein design
protein sequence-structure compatibility
Proteins - chemistry
Search Engine
Solvents
Title A sequence space search engine for computational protein design to modulate molecular functionality
URI https://www.tandfonline.com/doi/abs/10.1080/07391102.2022.2042386
https://www.ncbi.nlm.nih.gov/pubmed/35220920
https://www.proquest.com/docview/2634521192
Volume 41
WOSCitedRecordID wos000762815200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1538-0254
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021171
  issn: 0739-1102
  databaseCode: TFW
  dateStart: 19831001
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagAomF96M8KiOxBvzKw2OFqBhQxVCgWxQ7ttSBBDUpEv8en5NUdKgYYImiKE5sn893Z5-_D6EbFmpnFEMeZEqQQAhNAqVoFnAeMyNzZhsEvteneDxOplP53GYTVm1aJcTQtgGK8HM1KHemqi4j7g42l5zVgmNUDC7OI0gAdNuZflDNyehtGXJR6kMuKBFAke4Mz7qvrFinFezS9R6ot0SjvX9owz7abd1QPGzGzQHaMMUh2m6IKb-OkB7iLscauykHrl4jsPHwhdhVGGvPB9GuJWKP9zArcO4zQnBd4vcyB2ow425aBl4MRrR53_n-x-hl9DC5fwxaOoZA84jWQRYSAw5jyLQkOrFZFDGiiBC5a4MSAE2YE5pxy0VErXvsvB3tortYaxXJhPAT1CvKwpwhrHkehVYqE5JMhIlMrFWS5YYkJlexpH1024kh_WhQN1LagZm2PZdCz6Vtz_WR_CmstPbLHbbhJkn5L2WvO8mmTrdgwyQrTLmoUhZxEQIEHuuj00bky-qA40okI-d_-PMF2gH2ep8_yS9Rr54vzBXa0p_1rJoP0GY8TQZ-PH8D_bru_w
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1RaAUXoEDLAi2uxDXg-COJjwixWtTtnrYtNyt2bIkDSQUBiX9fj5Osdg-IQ3uxoshObI_tmbHH7wGcMWmDUpQ8KY2giRCWJsakZcJ5zpyqmO8Q-H5N89msuL1Vy3dhMKwSfWjfAUXEtRonN25GDyFxF3i6FNQW3qNimASToMjewYYMuhbx8-fj3wunK02j04VFEiwz3OJ57TMr-mkFvfR1GzTqovHO_2jFLmz3lii57IbOR1hz9R586LgpX_bBXpIhzJqEVQfTOCmIiwiGJNSY2EgJ0W8nkgj5cFeTKgaFkLYh902F7GAuPPQkvAT1aJc_mP8H8HN8Pb-aJD0jQ2J5lrZJKalDm1Eyq6gtfJlljBoqRBXaYASiE1Y0LbnnIkt9eB0MHhscvNxak6mC8k-wXje1OwRieZVJr4yTtBSyUIX3RrHK0cJVJlfpCM4HOeg_HfCGTgc8077nNPac7ntuBGpZWrqNOx6-oyfR_I2y3wbR6jC98MykrF3z9KhZxoVEFDw2gs-dzBfVQduVKkaP_uHPp7A5mf-Y6unN7PsxbCGZfQyn5Cew3j48uS_w3j63d48PX-Ow_guG1PJB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH4aHUy7bDBgdAxmJK4Zju248XECqk1U1Q4b9GbFv6QdSKs2m7T_Hj8nqdZDxQEuVhTZie1n-33Pfv4ewGdW2KgUC55VRtBMCEszY_Iq43zEvHIstAx8Pyej6bSczdR150246twq0YYOLVFEWqtxci9c6D3ivuDhUtRaeI2KYRIRQSmfwW6EzhIH-c3419rmyvNkc2GRDMv0l3i2fWZDPW2Ql26HoEkVjQ__QyNewkGHQ8lFO3BewY6vj-BFG5ny8TXYC9I7WZO45mCapgTxib-QxAoTmwJCdJuJJBE-3NXEJZcQ0szJ77nD2GA-PnQheAlq0TZ_BP9v4Hb8_ebrZdbFY8gsl3mTVQX1iBgLZhW1ZaikZNRQIVxsgxHITehoXvHAhcxDfB3hjo3m3chaI1VJ-VsY1PPavwNiuZNFUMYXtBJFqcoQjGLO09I7M1L5EM57MehFS7uh857NtOs5jT2nu54bgnoqLN2k_Y7QBifR_C9lP_WS1XFy4YlJVfv5_UozyUWBHHhsCMetyNfVQeRKFaMn__DnM9i7_jbWk6vpj_ewj5Hsky8lP4VBs7z3H-C5fWjuVsuPaVD_AbGa8PM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sequence+space+search+engine+for+computational+protein+design+to+modulate+molecular+functionality&rft.jtitle=Journal+of+biomolecular+structure+%26+dynamics&rft.au=Malik%2C+Ayush&rft.au=Banerjee%2C+Anupam&rft.au=Pal%2C+Abantika&rft.au=Mitra%2C+Pralay&rft.date=2023-05-03&rft.pub=Taylor+%26+Francis&rft.issn=0739-1102&rft.eissn=1538-0254&rft.volume=41&rft.issue=7&rft.spage=2937&rft.epage=2946&rft_id=info:doi/10.1080%2F07391102.2022.2042386&rft.externalDocID=2042386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-1102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-1102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-1102&client=summon