Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors

Photovoltaic (PV) power fluctuations caused by weather changes can lead to short-term mismatches in power demand and supply. Therefore, to operate the power grid efficiently and reliably, short-term PV power forecasts are required against these fluctuations. In this paper, we propose a deep RNN-base...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 14; no. 2; p. 436
Main Authors: Ahn, Hyung Keun, Park, Neungsoo
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.01.2021
Subjects:
ISSN:1996-1073, 1996-1073
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photovoltaic (PV) power fluctuations caused by weather changes can lead to short-term mismatches in power demand and supply. Therefore, to operate the power grid efficiently and reliably, short-term PV power forecasts are required against these fluctuations. In this paper, we propose a deep RNN-based PV power short-term forecast. To reflect the impact of weather changes, the proposed model utilizes the on-site weather IoT dataset and power data, collected in real-time. We investigated various parameters of the proposed deep RNN-based forecast model and the combination of weather parameters to find an accurate prediction model. Experimental results showed that accuracies of 5 and 15 min ahead PV power generation forecast, using 3 RNN layers with 12 time-step, were 98.0% and 96.6% based on the normalized RMSE, respectively. Their R2-scores were 0.988 and 0.949. In experiments for 1 and 3 h ahead of PV power generation forecasts, their accuracies were 94.8% and 92.9%, respectively. Also, their R2-scores were 0.963 and 0.927. These experimental results showed that the proposed deep RNN-based short-term forecast algorithm achieved higher prediction accuracy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1996-1073
1996-1073
DOI:10.3390/en14020436