DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor
Traditional camera sensors rely on human eyes for observation. However, human eyes are prone to fatigue when observing objects of different sizes for a long time in complex scenes, and human cognition is limited, which often leads to judgment errors and greatly reduces efficiency. Object recognition...
Saved in:
| Published in: | Electronics (Basel) Vol. 12; no. 10; p. 2323 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
21.05.2023
|
| Subjects: | |
| ISSN: | 2079-9292, 2079-9292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Traditional camera sensors rely on human eyes for observation. However, human eyes are prone to fatigue when observing objects of different sizes for a long time in complex scenes, and human cognition is limited, which often leads to judgment errors and greatly reduces efficiency. Object recognition technology is an important technology used to judge the object’s category on a camera sensor. In order to solve this problem, a small-size object detection algorithm for special scenarios was proposed in this paper. The advantage of this algorithm is that it not only has higher precision for small-size object detection but also can ensure that the detection accuracy for each size is not lower than that of the existing algorithm. There are three main innovations in this paper, as follows: (1) A new downsampling method which could better preserve the context feature information is proposed. (2) The feature fusion network is improved to effectively combine shallow information and deep information. (3) A new network structure is proposed to effectively improve the detection accuracy of the model. From the point of view of detection accuracy, it is better than YOLOX, YOLOR, YOLOv3, scaled YOLOv5, YOLOv7-Tiny, and YOLOv8. Three authoritative public datasets are used in these experiments: (a) In the Visdron dataset (small-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 2.5%, 1.9%, and 2.1% higher than those of YOLOv8s, respectively. (b) On the Tinyperson dataset (minimal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 1%, 0.2%, and 1.2% higher than those of YOLOv8s, respectively. (c) On the PASCAL VOC2007 dataset (normal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 0.5%, 0.3%, and 0.4% higher than those of YOLOv8s, respectively. |
|---|---|
| AbstractList | Traditional camera sensors rely on human eyes for observation. However, human eyes are prone to fatigue when observing objects of different sizes for a long time in complex scenes, and human cognition is limited, which often leads to judgment errors and greatly reduces efficiency. Object recognition technology is an important technology used to judge the object’s category on a camera sensor. In order to solve this problem, a small-size object detection algorithm for special scenarios was proposed in this paper. The advantage of this algorithm is that it not only has higher precision for small-size object detection but also can ensure that the detection accuracy for each size is not lower than that of the existing algorithm. There are three main innovations in this paper, as follows: (1) A new downsampling method which could better preserve the context feature information is proposed. (2) The feature fusion network is improved to effectively combine shallow information and deep information. (3) A new network structure is proposed to effectively improve the detection accuracy of the model. From the point of view of detection accuracy, it is better than YOLOX, YOLOR, YOLOv3, scaled YOLOv5, YOLOv7-Tiny, and YOLOv8. Three authoritative public datasets are used in these experiments: (a) In the Visdron dataset (small-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 2.5%, 1.9%, and 2.1% higher than those of YOLOv8s, respectively. (b) On the Tinyperson dataset (minimal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 1%, 0.2%, and 1.2% higher than those of YOLOv8s, respectively. (c) On the PASCAL VOC2007 dataset (normal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 0.5%, 0.3%, and 0.4% higher than those of YOLOv8s, respectively. |
| Audience | Academic |
| Author | Bi, Lingyun Guo, Junmei Liu, Haiying Duan, Xuehu Lou, Haitong Gu, Jason Chen, Haonan |
| Author_xml | – sequence: 1 givenname: Haitong surname: Lou fullname: Lou, Haitong – sequence: 2 givenname: Xuehu surname: Duan fullname: Duan, Xuehu – sequence: 3 givenname: Junmei surname: Guo fullname: Guo, Junmei – sequence: 4 givenname: Haiying surname: Liu fullname: Liu, Haiying – sequence: 5 givenname: Jason surname: Gu fullname: Gu, Jason – sequence: 6 givenname: Lingyun surname: Bi fullname: Bi, Lingyun – sequence: 7 givenname: Haonan surname: Chen fullname: Chen, Haonan |
| BookMark | eNp9kE1PwzAMhiM0JMbYL-BSiXNHEmdtwm1sMJAm9TA4cKqSNB2Z2mYkHRL8ejKNA0II-2DL8uOP9xwNOtcZhC4JngAIfG0ao3vvOqsDoQRToHCChhTnIhVU0MGP_AyNQ9jiaIIABzxEy8U8fSlWxTu_SdatbJp0bT9NUqhtHJosTB-DdV0yazbO2_61TW5lMFUSS3PZGi-TtemC8xfotJZNMOPvOELP93dP84d0VSwf57NVqiEjfSqB8TqXWGGimOTTXDFVSQmYsXi5EhVVIDJSZZrmgDNdk0wpWuVEEcyyOoMRujrO3Xn3tjehL7du77u4sqScCMZAcBa7JseujWxMabva9V7q6JVprY7y1TbWZ_kUcy6mAiIgjoD2LgRv6lLbXh4-j6BtSoLLg9blH1pHFn6xO29b6T_-pb4AFsiFsA |
| CitedBy_id | crossref_primary_10_1007_s42979_025_03890_w crossref_primary_10_4018_JOEUC_338214 crossref_primary_10_1007_s12040_024_02327_x crossref_primary_10_1007_s10341_024_01085_w crossref_primary_10_1016_j_icte_2025_08_007 crossref_primary_10_3389_fphy_2025_1579280 crossref_primary_10_1007_s10586_024_04999_y crossref_primary_10_1109_TIM_2024_3379090 crossref_primary_10_4018_IJCINI_358013 crossref_primary_10_7717_peerj_cs_1830 crossref_primary_10_1155_atr_7427074 crossref_primary_10_3389_fpls_2024_1404772 crossref_primary_10_1016_j_wasman_2024_02_028 crossref_primary_10_1016_j_jksuci_2024_102113 crossref_primary_10_1016_j_iswa_2024_200327 crossref_primary_10_1109_JRFID_2024_3384483 crossref_primary_10_32604_cmc_2024_057655 crossref_primary_10_1016_j_jhydrol_2025_132974 crossref_primary_10_1109_ACCESS_2024_3351805 crossref_primary_10_1109_TGRS_2024_3443856 crossref_primary_10_3233_XST_230296 crossref_primary_10_1007_s13344_025_0044_3 crossref_primary_10_1038_s41598_024_84747_9 crossref_primary_10_1007_s00217_024_04516_w crossref_primary_10_1007_s11227_024_06121_w crossref_primary_10_1109_ACCESS_2025_3547914 crossref_primary_10_1016_j_dsp_2025_105268 crossref_primary_10_1016_j_engappai_2024_109506 crossref_primary_10_1016_j_mtcomm_2025_112050 crossref_primary_10_1016_j_atech_2025_101385 crossref_primary_10_32604_cmc_2023_042311 crossref_primary_10_2478_jaiscr_2024_0014 crossref_primary_10_1016_j_compag_2024_109481 crossref_primary_10_1016_j_engappai_2024_109351 crossref_primary_10_1016_j_asoc_2024_112329 crossref_primary_10_1109_JSEN_2024_3472730 crossref_primary_10_1016_j_ecolind_2025_113572 crossref_primary_10_1016_j_procs_2023_10_495 crossref_primary_10_1007_s00521_023_09364_5 crossref_primary_10_1049_ipr2_13028 crossref_primary_10_1007_s13349_024_00841_6 crossref_primary_10_7717_peerj_cs_2593 crossref_primary_10_1007_s00521_025_11207_4 crossref_primary_10_1016_j_procs_2025_04_506 crossref_primary_10_1109_TITS_2024_3437770 crossref_primary_10_1109_ACCESS_2024_3396224 crossref_primary_10_3788_LOP241729 crossref_primary_10_1016_j_measurement_2024_114960 crossref_primary_10_1109_LSENS_2024_3423395 crossref_primary_10_1016_j_comcom_2024_05_022 crossref_primary_10_1007_s11119_024_10135_y crossref_primary_10_1007_s10994_025_06857_3 crossref_primary_10_1016_j_engappai_2025_110640 crossref_primary_10_1109_ACCESS_2025_3575764 crossref_primary_10_1007_s12145_024_01503_3 crossref_primary_10_1007_s11554_023_01403_7 crossref_primary_10_1186_s40537_025_01206_6 crossref_primary_10_1038_s41598_025_85245_2 crossref_primary_10_1007_s11760_025_04457_1 crossref_primary_10_26599_JICV_2023_9210049 crossref_primary_10_1016_j_cscm_2024_e03555 crossref_primary_10_1007_s11042_023_16451_1 crossref_primary_10_1109_JSTARS_2024_3516783 crossref_primary_10_1088_1755_1315_1390_1_012022 crossref_primary_10_1109_ACCESS_2023_3300372 crossref_primary_10_1016_j_eswa_2025_127447 crossref_primary_10_1117_1_JEI_34_1_013003 crossref_primary_10_1016_j_measurement_2024_116212 crossref_primary_10_1016_j_patrec_2025_05_011 crossref_primary_10_1109_TCE_2025_3527678 crossref_primary_10_1109_ACCESS_2024_3464741 crossref_primary_10_1088_2631_8695_adc8fd crossref_primary_10_3389_fenvs_2025_1566224 crossref_primary_10_1016_j_marpolbul_2025_118608 crossref_primary_10_1007_s00530_024_01622_3 crossref_primary_10_1109_TETCI_2024_3386620 crossref_primary_10_1016_j_rineng_2025_104045 crossref_primary_10_1016_j_psj_2024_104289 crossref_primary_10_1063_5_0232136 crossref_primary_10_1016_j_rsma_2024_103880 crossref_primary_10_1109_ACCESS_2025_3589010 crossref_primary_10_1016_j_psj_2024_104281 crossref_primary_10_1038_s41598_025_10401_7 crossref_primary_10_1186_s40494_024_01144_1 crossref_primary_10_1007_s11042_024_18866_w crossref_primary_10_1371_journal_pone_0293777 crossref_primary_10_1002_ima_23020 crossref_primary_10_1109_TIM_2025_3551917 crossref_primary_10_1109_ACCESS_2025_3534992 crossref_primary_10_1038_s41598_025_11053_3 crossref_primary_10_1016_j_jhydrol_2024_132028 crossref_primary_10_3390_drones9060433 crossref_primary_10_1016_j_jmapro_2025_03_070 crossref_primary_10_1109_ACCESS_2023_3329068 crossref_primary_10_31200_makuubd_1570013 crossref_primary_10_7717_peerj_cs_2718 crossref_primary_10_1061_JPCFEV_CFENG_5264 crossref_primary_10_1007_s00530_025_01882_7 crossref_primary_10_1016_j_compag_2025_110962 crossref_primary_10_1109_ACCESS_2024_3486603 crossref_primary_10_3788_CJL241265 crossref_primary_10_1063_5_0196580 crossref_primary_10_1093_bib_bbad349 crossref_primary_10_1371_journal_pone_0321249 crossref_primary_10_1016_j_compag_2024_109853 crossref_primary_10_1038_s41598_024_77173_4 crossref_primary_10_1016_j_dsp_2025_105469 crossref_primary_10_1007_s11227_024_06703_8 crossref_primary_10_1016_j_cropro_2023_106561 crossref_primary_10_1016_j_jnca_2025_104134 crossref_primary_10_1016_j_jobe_2025_113179 crossref_primary_10_1049_2024_2124139 crossref_primary_10_1080_17480272_2024_2319663 crossref_primary_10_32604_cmc_2024_051757 crossref_primary_10_1002_cpe_70268 crossref_primary_10_1016_j_pmcj_2025_102064 crossref_primary_10_3389_fpls_2024_1360419 crossref_primary_10_1016_j_jag_2025_104366 crossref_primary_10_1364_AO_555601 crossref_primary_10_1007_s11554_024_01439_3 crossref_primary_10_1515_geo_2025_0805 crossref_primary_10_1016_j_cviu_2025_104489 crossref_primary_10_1109_ACCESS_2024_3419835 crossref_primary_10_32604_cmc_2024_048755 crossref_primary_10_34133_plantphenomics_0246 crossref_primary_10_1109_ACCESS_2025_3536701 crossref_primary_10_1063_5_0239142 crossref_primary_10_1109_ACCESS_2024_3453993 crossref_primary_10_1038_s41598_025_08924_0 crossref_primary_10_1007_s11760_025_04429_5 crossref_primary_10_1088_1402_4896_ad418f crossref_primary_10_1007_s11554_024_01558_x crossref_primary_10_1049_gtd2_13093 crossref_primary_10_1016_j_aej_2025_09_001 crossref_primary_10_1088_1755_1315_1337_1_012060 crossref_primary_10_1109_ACCESS_2025_3595048 crossref_primary_10_1007_s11554_024_01519_4 crossref_primary_10_1038_s41598_025_02194_6 crossref_primary_10_3390_s23208380 crossref_primary_10_1007_s10499_024_01422_6 crossref_primary_10_1007_s44443_025_00116_0 crossref_primary_10_1016_j_sigpro_2024_109811 crossref_primary_10_1007_s11042_024_20265_0 crossref_primary_10_1016_j_compeleceng_2024_109259 crossref_primary_10_1016_j_imavis_2025_105653 crossref_primary_10_1049_itr2_12560 crossref_primary_10_1016_j_asoc_2024_112597 crossref_primary_10_1016_j_neucom_2024_129215 crossref_primary_10_1109_ACCESS_2025_3528046 crossref_primary_10_1002_tee_24096 crossref_primary_10_1007_s00371_024_03796_3 crossref_primary_10_1155_2024_5977332 crossref_primary_10_1371_journal_pone_0322919 crossref_primary_10_1007_s41965_024_00178_5 crossref_primary_10_1109_ACCESS_2024_3364681 crossref_primary_10_1111_mice_13515 crossref_primary_10_1088_1361_6501_ad4386 crossref_primary_10_1016_j_istruc_2025_108720 crossref_primary_10_1109_TIP_2025_3563775 crossref_primary_10_1016_j_egyr_2024_12_076 crossref_primary_10_1007_s00521_025_11011_0 crossref_primary_10_1016_j_ecoinf_2024_102846 crossref_primary_10_1186_s40494_024_01332_z crossref_primary_10_1016_j_autcon_2024_105807 crossref_primary_10_1007_s11760_025_04023_9 crossref_primary_10_1016_j_neucom_2024_127685 crossref_primary_10_1007_s11042_023_17957_4 crossref_primary_10_1061_JCEMD4_COENG_15723 crossref_primary_10_1016_j_ymssp_2025_112976 crossref_primary_10_1007_s00371_025_04148_5 crossref_primary_10_1007_s11760_025_04005_x crossref_primary_10_1007_s40747_025_01904_x crossref_primary_10_3389_fpls_2024_1407839 crossref_primary_10_3389_fcvm_2025_1606159 crossref_primary_10_1007_s12541_024_01081_w |
| Cites_doi | 10.1109/TITS.2019.2934991 10.1109/LSENS.2022.3213529 10.1109/CVPR.2017.243 10.1109/SAS51076.2021.9530102 10.1109/CVPR42600.2020.01160 10.1109/JSEN.2023.3254506 10.1109/JSEN.2023.3254588 10.1109/CVPR.2018.00474 10.1109/CVPR.2014.81 10.1109/JSEN.2023.3234153 10.1002/tee.23758 10.1109/ICCV.2015.169 10.1007/s00138-023-01390-6 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2018.00716 10.1109/CVPR.2017.690 10.1007/978-3-030-01264-9_8 10.1109/CVPR.2016.90 10.1109/CVPR.2016.91 10.3390/s22155817 10.1109/CVPRW50498.2020.00203 10.1109/CVPRW.2019.00103 10.1109/JBHI.2017.2754861 10.1109/CVPR.2017.106 10.1109/ICCV.2019.00140 10.1109/CVPR.2018.00913 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics12102323 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | A750889593 10_3390_electronics12102323 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-a348f7a0b01b4a857b4bdaa3044102b9d2b3961d6c27306cf16bb2d71b1046f63 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 326 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000997467300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Fri Jul 25 02:53:15 EDT 2025 Tue Nov 04 18:36:41 EST 2025 Sat Nov 29 07:13:03 EST 2025 Tue Nov 18 21:32:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-a348f7a0b01b4a857b4bdaa3044102b9d2b3961d6c27306cf16bb2d71b1046f63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2819443984?pq-origsite=%requestingapplication% |
| PQID | 2819443984 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2819443984 gale_infotracacademiconefile_A750889593 crossref_citationtrail_10_3390_electronics12102323 crossref_primary_10_3390_electronics12102323 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-21 |
| PublicationDateYYYYMMDD | 2023-05-21 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Singh (ref_6) 2023; 34 ref_14 ref_13 ref_35 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 Zou (ref_1) 2023; 23 ref_19 ref_18 ref_17 ref_16 ref_15 Abadi (ref_5) 2023; 2023 ref_25 Thevenot (ref_4) 2018; 22 ref_23 ref_22 ref_21 ref_20 Zhu (ref_3) 2020; 21 ref_29 ref_28 ref_27 Liu (ref_2) 2023; 23 ref_9 ref_8 Liu (ref_24) 2023; 18 ref_7 Sengupta (ref_26) 2022; 6 |
| References_xml | – ident: ref_7 – ident: ref_32 – volume: 21 start-page: 4063 year: 2020 ident: ref_3 article-title: Parallel Transportation Systems: Toward IoT-Enabled Smart Urban Traffic Control and Management publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2934991 – volume: 6 start-page: 1 year: 2022 ident: ref_26 article-title: Robust multiobject tracking using mmwave radar-camera sensor fusion publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2022.3213529 – ident: ref_34 doi: 10.1109/CVPR.2017.243 – ident: ref_16 – ident: ref_27 doi: 10.1109/SAS51076.2021.9530102 – ident: ref_33 doi: 10.1109/CVPR42600.2020.01160 – volume: 23 start-page: 8630 year: 2023 ident: ref_2 article-title: Anomaly detection of high-frequency sensing data in transportation infrastructure monitoring system based on fine-tuned model publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3254506 – volume: 23 start-page: 10825 year: 2023 ident: ref_1 article-title: A Novel Day-to-Night Obstacle Detection Method for Excavators based on Image Enhancement and Multi-sensor Fusion publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3254588 – ident: ref_8 doi: 10.1109/CVPR.2018.00474 – ident: ref_14 doi: 10.1109/CVPR.2014.81 – volume: 2023 start-page: 1 year: 2023 ident: ref_5 article-title: Detection of Cyclist’s Crossing Intention based on Posture Estimation for Autonomous Driving publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3234153 – volume: 18 start-page: 605 year: 2023 ident: ref_24 article-title: DBF-YOLO:UAV Small Targets Detection Based on Shallow Feature Fusion publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.23758 – ident: ref_15 doi: 10.1109/ICCV.2015.169 – ident: ref_21 – volume: 34 start-page: 41 year: 2023 ident: ref_6 article-title: Yow, Interpretable Visual Transmission Lines Inspections Using Pseudo-Prototypical Part Network publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-023-01390-6 – ident: ref_23 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_31 – ident: ref_10 doi: 10.1109/CVPR.2018.00716 – ident: ref_19 doi: 10.1109/CVPR.2017.690 – ident: ref_11 doi: 10.1007/978-3-030-01264-9_8 – ident: ref_12 doi: 10.1109/CVPR.2016.90 – ident: ref_18 doi: 10.1109/CVPR.2016.91 – ident: ref_25 doi: 10.3390/s22155817 – ident: ref_28 doi: 10.1109/CVPRW50498.2020.00203 – ident: ref_35 doi: 10.1109/CVPRW.2019.00103 – volume: 22 start-page: 1497 year: 2018 ident: ref_4 article-title: A Survey on Computer Vision for Assistive Medical Diagnosis from Faces publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2754861 – ident: ref_13 – ident: ref_29 doi: 10.1109/CVPR.2017.106 – ident: ref_17 – ident: ref_22 – ident: ref_9 doi: 10.1109/ICCV.2019.00140 – ident: ref_20 – ident: ref_30 doi: 10.1109/CVPR.2018.00913 |
| SSID | ssj0000913830 |
| Score | 2.6851516 |
| Snippet | Traditional camera sensors rely on human eyes for observation. However, human eyes are prone to fatigue when observing objects of different sizes for a long... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2323 |
| SubjectTerms | Accuracy Algorithms Cameras Cognition Datasets Fatigue Image processing Medical research Model accuracy Object recognition Object recognition (Computers) Pattern recognition Recall Sensors Signal processing |
| Title | DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor |
| URI | https://www.proquest.com/docview/2819443984 |
| Volume | 12 |
| WOSCitedRecordID | wos000997467300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LT9swGP80HoftwHNo3aDyAYkLFknsvLigUsqYNNpo3STgEvkRA1JpWRs47MDfzvelKTAJceHq2Inlz_b3zO8HsF04ZVBvhjy2Fh0UaWOeBs7nLhROhrJwSTIlm4i73eTsLM3qgNukLquc3YnVRW1HhmLke5Twkag9E3lw-5cTaxRlV2sKjTlYIJQEom7IwounGAthXibCm4INCfTu9565ZSYVcpYIxH8K6fVrudI1x8vvneUKLNVWJmtNt8UqfCiGa_DpBfbgOnw_avPz3s_efbLP-jdqMOD9638F62kKzLCjoqxqtIasNbjED5RXN-wQFZ5l2NRWFMliffSAR-PP8Oe487t9wmtWBW5E5JdcCZm4WFEAVEuVhLGW2iolPDSMvECnNtAijXwbGbRsvMg4P9I6sLGvKR3sIrEB88PRsPgCTKTo32D30OFoLaRSnhXaM0KHxsWiaEAwW9rc1JDjxHwxyNH1IHnkr8ijAbtPg26niBtvd98hmeV0HvHdRtW_FeAMCdkqb8VkghL8cgM2ZzLL64M6yZ8F9vXtx9_gIzHNU-FA4G_CfDm-K7Zg0dyX15NxExYOO93sVxPmTh86zWoXYlv24zQ7fwSRROY3 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48EYECuwBxAWr9u76hYRQSCiNmiaRUqT25O4TKqVJSUwR_Ch-IzOx3YJU9dYDV9u79no-zbczu_sNwEvnlUHejIPUWgxQpE2DnPso8LHwMpbOZ1lVbCIdDrP9_Xy8Br-bszC0rbLxiStHbeeGcuSbtOAjkT0z-f7kW0BVo2h1tSmhUcFix_38gSHb8l2_h_Z9xfnWx73udlBXFQiMSKIyUEJmPlWUANRSZXGqpbZKYVgvkWx1brkWeRLZxCCzh4nxUaI1t2mkaTnUJwL7vQbrksDegvVxf3d8cJbVIZXNTISVvJEQebh5Xs1mudLqElz8Q4EXE8GK3bbu_G__5S7crufRrFMB_x6sudl9uPWXuuID-NTrBgejweg0e8smx2o6DSZHvxwbaUo9sZ4rV7vQZqwz_YIDKr8esw9I6Zbhpa6iXB2bYIw_XzyEz1cykkfQms1n7jEwkWMEh4_HHltrIZUKrdChETo2PhWuDbwxZWFqUXWq7TEtMLgi-xcX2L8Nb84anVSaIpc__powUpDHwb6Nqg9O4BeSdlfRSWmSTQLTbdhoMFLUrmhZnAPkyeW3X8CN7b3dQTHoD3eewk2OL6dtEjzagFa5-O6ewXVzWh4tF89r1DM4vGpA_QFLlT62 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAyF44DpExwA_gHjBahI7cYKEUGkpTJvaSgVp8JL5EsOkrt3aMAQ_jV_HOblsIE172wOvie3E8Rd_PsfH3wF4VnhtkTdjrpxDA0U6xbPIh9zHwstYFj5N62QTajRK9_ayyRr8bs_CUFhlOydWE7VbWPKRd2nDRyJ7prLrm7CIyWD45uiYUwYp2mlt02nUENkpfv5A8231enuAY_08iobvPvY_8CbDALciCUuuhUy90uQMNFKnsTLSOK3RxJdIvCZzkRFZErrEIssHifVhYkzkVGhoa9QnAtu9AlcV2pgUTjiJv5z6d0hvMxVBLXQkRBZ0z_LarCrVLhGJf8jwfEqoeG54-3_-QnfgVrO6Zr36d7gLa8X8Htz8S3PxPrwf9Pnn8e74JH3Fpod6NuPTg18FGxtySLFBUVaxaXPWm33FDpXfDtlbJHrH8FJfkwePTdHyXyw34NOl9OQBrM8X8-IhMJGhXYfFY4-1jZBaB06YwAoTW69E0YGoHdbcNlLrlPFjlqPJRVjIz8FCB16eVjqqlUYuLv6C8JLTPIRtW90cp8A3JEWvvKdo6U2y0x3YavGSNxPUKj8Dy-bFt5_CdURRvrs92nkENyJ8NsVOROEWrJfL78VjuGZPyoPV8kkFfwb7l42mP_drRhk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DC-YOLOv8%3A+Small-Size+Object+Detection+Algorithm+Based+on+Camera+Sensor&rft.jtitle=Electronics+%28Basel%29&rft.au=Lou%2C+Haitong&rft.au=Duan%2C+Xuehu&rft.au=Guo%2C+Junmei&rft.au=Liu%2C+Haiying&rft.date=2023-05-21&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=10&rft.spage=2323&rft_id=info:doi/10.3390%2Felectronics12102323&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12102323 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |