DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor

Traditional camera sensors rely on human eyes for observation. However, human eyes are prone to fatigue when observing objects of different sizes for a long time in complex scenes, and human cognition is limited, which often leads to judgment errors and greatly reduces efficiency. Object recognition...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics (Basel) Ročník 12; číslo 10; s. 2323
Hlavní autoři: Lou, Haitong, Duan, Xuehu, Guo, Junmei, Liu, Haiying, Gu, Jason, Bi, Lingyun, Chen, Haonan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 21.05.2023
Témata:
ISSN:2079-9292, 2079-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Traditional camera sensors rely on human eyes for observation. However, human eyes are prone to fatigue when observing objects of different sizes for a long time in complex scenes, and human cognition is limited, which often leads to judgment errors and greatly reduces efficiency. Object recognition technology is an important technology used to judge the object’s category on a camera sensor. In order to solve this problem, a small-size object detection algorithm for special scenarios was proposed in this paper. The advantage of this algorithm is that it not only has higher precision for small-size object detection but also can ensure that the detection accuracy for each size is not lower than that of the existing algorithm. There are three main innovations in this paper, as follows: (1) A new downsampling method which could better preserve the context feature information is proposed. (2) The feature fusion network is improved to effectively combine shallow information and deep information. (3) A new network structure is proposed to effectively improve the detection accuracy of the model. From the point of view of detection accuracy, it is better than YOLOX, YOLOR, YOLOv3, scaled YOLOv5, YOLOv7-Tiny, and YOLOv8. Three authoritative public datasets are used in these experiments: (a) In the Visdron dataset (small-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 2.5%, 1.9%, and 2.1% higher than those of YOLOv8s, respectively. (b) On the Tinyperson dataset (minimal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 1%, 0.2%, and 1.2% higher than those of YOLOv8s, respectively. (c) On the PASCAL VOC2007 dataset (normal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 0.5%, 0.3%, and 0.4% higher than those of YOLOv8s, respectively.
AbstractList Traditional camera sensors rely on human eyes for observation. However, human eyes are prone to fatigue when observing objects of different sizes for a long time in complex scenes, and human cognition is limited, which often leads to judgment errors and greatly reduces efficiency. Object recognition technology is an important technology used to judge the object’s category on a camera sensor. In order to solve this problem, a small-size object detection algorithm for special scenarios was proposed in this paper. The advantage of this algorithm is that it not only has higher precision for small-size object detection but also can ensure that the detection accuracy for each size is not lower than that of the existing algorithm. There are three main innovations in this paper, as follows: (1) A new downsampling method which could better preserve the context feature information is proposed. (2) The feature fusion network is improved to effectively combine shallow information and deep information. (3) A new network structure is proposed to effectively improve the detection accuracy of the model. From the point of view of detection accuracy, it is better than YOLOX, YOLOR, YOLOv3, scaled YOLOv5, YOLOv7-Tiny, and YOLOv8. Three authoritative public datasets are used in these experiments: (a) In the Visdron dataset (small-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 2.5%, 1.9%, and 2.1% higher than those of YOLOv8s, respectively. (b) On the Tinyperson dataset (minimal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 1%, 0.2%, and 1.2% higher than those of YOLOv8s, respectively. (c) On the PASCAL VOC2007 dataset (normal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 0.5%, 0.3%, and 0.4% higher than those of YOLOv8s, respectively.
Audience Academic
Author Bi, Lingyun
Guo, Junmei
Liu, Haiying
Duan, Xuehu
Lou, Haitong
Gu, Jason
Chen, Haonan
Author_xml – sequence: 1
  givenname: Haitong
  surname: Lou
  fullname: Lou, Haitong
– sequence: 2
  givenname: Xuehu
  surname: Duan
  fullname: Duan, Xuehu
– sequence: 3
  givenname: Junmei
  surname: Guo
  fullname: Guo, Junmei
– sequence: 4
  givenname: Haiying
  surname: Liu
  fullname: Liu, Haiying
– sequence: 5
  givenname: Jason
  surname: Gu
  fullname: Gu, Jason
– sequence: 6
  givenname: Lingyun
  surname: Bi
  fullname: Bi, Lingyun
– sequence: 7
  givenname: Haonan
  surname: Chen
  fullname: Chen, Haonan
BookMark eNp9kE1PwzAMhiM0JMbYL-BSiXNHEmdtwm1sMJAm9TA4cKqSNB2Z2mYkHRL8ejKNA0II-2DL8uOP9xwNOtcZhC4JngAIfG0ao3vvOqsDoQRToHCChhTnIhVU0MGP_AyNQ9jiaIIABzxEy8U8fSlWxTu_SdatbJp0bT9NUqhtHJosTB-DdV0yazbO2_61TW5lMFUSS3PZGi-TtemC8xfotJZNMOPvOELP93dP84d0VSwf57NVqiEjfSqB8TqXWGGimOTTXDFVSQmYsXi5EhVVIDJSZZrmgDNdk0wpWuVEEcyyOoMRujrO3Xn3tjehL7du77u4sqScCMZAcBa7JseujWxMabva9V7q6JVprY7y1TbWZ_kUcy6mAiIgjoD2LgRv6lLbXh4-j6BtSoLLg9blH1pHFn6xO29b6T_-pb4AFsiFsA
CitedBy_id crossref_primary_10_1007_s42979_025_03890_w
crossref_primary_10_4018_JOEUC_338214
crossref_primary_10_1007_s12040_024_02327_x
crossref_primary_10_1007_s10341_024_01085_w
crossref_primary_10_1016_j_icte_2025_08_007
crossref_primary_10_3389_fphy_2025_1579280
crossref_primary_10_1007_s10586_024_04999_y
crossref_primary_10_1109_TIM_2024_3379090
crossref_primary_10_4018_IJCINI_358013
crossref_primary_10_7717_peerj_cs_1830
crossref_primary_10_1155_atr_7427074
crossref_primary_10_3389_fpls_2024_1404772
crossref_primary_10_1016_j_wasman_2024_02_028
crossref_primary_10_1016_j_jksuci_2024_102113
crossref_primary_10_1016_j_iswa_2024_200327
crossref_primary_10_1109_JRFID_2024_3384483
crossref_primary_10_32604_cmc_2024_057655
crossref_primary_10_1016_j_jhydrol_2025_132974
crossref_primary_10_1109_ACCESS_2024_3351805
crossref_primary_10_1109_TGRS_2024_3443856
crossref_primary_10_3233_XST_230296
crossref_primary_10_1007_s13344_025_0044_3
crossref_primary_10_1038_s41598_024_84747_9
crossref_primary_10_1007_s00217_024_04516_w
crossref_primary_10_1007_s11227_024_06121_w
crossref_primary_10_1109_ACCESS_2025_3547914
crossref_primary_10_1016_j_dsp_2025_105268
crossref_primary_10_1016_j_engappai_2024_109506
crossref_primary_10_1016_j_mtcomm_2025_112050
crossref_primary_10_1016_j_atech_2025_101385
crossref_primary_10_32604_cmc_2023_042311
crossref_primary_10_2478_jaiscr_2024_0014
crossref_primary_10_1016_j_compag_2024_109481
crossref_primary_10_1016_j_engappai_2024_109351
crossref_primary_10_1016_j_asoc_2024_112329
crossref_primary_10_1109_JSEN_2024_3472730
crossref_primary_10_1016_j_ecolind_2025_113572
crossref_primary_10_1016_j_procs_2023_10_495
crossref_primary_10_1007_s00521_023_09364_5
crossref_primary_10_1049_ipr2_13028
crossref_primary_10_1007_s13349_024_00841_6
crossref_primary_10_7717_peerj_cs_2593
crossref_primary_10_1007_s00521_025_11207_4
crossref_primary_10_1016_j_procs_2025_04_506
crossref_primary_10_1109_TITS_2024_3437770
crossref_primary_10_1109_ACCESS_2024_3396224
crossref_primary_10_3788_LOP241729
crossref_primary_10_1016_j_measurement_2024_114960
crossref_primary_10_1109_LSENS_2024_3423395
crossref_primary_10_1016_j_comcom_2024_05_022
crossref_primary_10_1007_s11119_024_10135_y
crossref_primary_10_1007_s10994_025_06857_3
crossref_primary_10_1016_j_engappai_2025_110640
crossref_primary_10_1109_ACCESS_2025_3575764
crossref_primary_10_1007_s12145_024_01503_3
crossref_primary_10_1007_s11554_023_01403_7
crossref_primary_10_1186_s40537_025_01206_6
crossref_primary_10_1038_s41598_025_85245_2
crossref_primary_10_1007_s11760_025_04457_1
crossref_primary_10_26599_JICV_2023_9210049
crossref_primary_10_1016_j_cscm_2024_e03555
crossref_primary_10_1007_s11042_023_16451_1
crossref_primary_10_1109_JSTARS_2024_3516783
crossref_primary_10_1088_1755_1315_1390_1_012022
crossref_primary_10_1109_ACCESS_2023_3300372
crossref_primary_10_1016_j_eswa_2025_127447
crossref_primary_10_1117_1_JEI_34_1_013003
crossref_primary_10_1016_j_measurement_2024_116212
crossref_primary_10_1016_j_patrec_2025_05_011
crossref_primary_10_1109_TCE_2025_3527678
crossref_primary_10_1109_ACCESS_2024_3464741
crossref_primary_10_1088_2631_8695_adc8fd
crossref_primary_10_3389_fenvs_2025_1566224
crossref_primary_10_1016_j_marpolbul_2025_118608
crossref_primary_10_1007_s00530_024_01622_3
crossref_primary_10_1109_TETCI_2024_3386620
crossref_primary_10_1016_j_rineng_2025_104045
crossref_primary_10_1016_j_psj_2024_104289
crossref_primary_10_1063_5_0232136
crossref_primary_10_1016_j_rsma_2024_103880
crossref_primary_10_1109_ACCESS_2025_3589010
crossref_primary_10_1016_j_psj_2024_104281
crossref_primary_10_1038_s41598_025_10401_7
crossref_primary_10_1186_s40494_024_01144_1
crossref_primary_10_1007_s11042_024_18866_w
crossref_primary_10_1371_journal_pone_0293777
crossref_primary_10_1002_ima_23020
crossref_primary_10_1109_TIM_2025_3551917
crossref_primary_10_1109_ACCESS_2025_3534992
crossref_primary_10_1038_s41598_025_11053_3
crossref_primary_10_1016_j_jhydrol_2024_132028
crossref_primary_10_3390_drones9060433
crossref_primary_10_1016_j_jmapro_2025_03_070
crossref_primary_10_1109_ACCESS_2023_3329068
crossref_primary_10_31200_makuubd_1570013
crossref_primary_10_7717_peerj_cs_2718
crossref_primary_10_1061_JPCFEV_CFENG_5264
crossref_primary_10_1007_s00530_025_01882_7
crossref_primary_10_1016_j_compag_2025_110962
crossref_primary_10_1109_ACCESS_2024_3486603
crossref_primary_10_3788_CJL241265
crossref_primary_10_1063_5_0196580
crossref_primary_10_1093_bib_bbad349
crossref_primary_10_1371_journal_pone_0321249
crossref_primary_10_1016_j_compag_2024_109853
crossref_primary_10_1038_s41598_024_77173_4
crossref_primary_10_1016_j_dsp_2025_105469
crossref_primary_10_1007_s11227_024_06703_8
crossref_primary_10_1016_j_cropro_2023_106561
crossref_primary_10_1016_j_jnca_2025_104134
crossref_primary_10_1016_j_jobe_2025_113179
crossref_primary_10_1049_2024_2124139
crossref_primary_10_1080_17480272_2024_2319663
crossref_primary_10_32604_cmc_2024_051757
crossref_primary_10_1002_cpe_70268
crossref_primary_10_1016_j_pmcj_2025_102064
crossref_primary_10_3389_fpls_2024_1360419
crossref_primary_10_1016_j_jag_2025_104366
crossref_primary_10_1364_AO_555601
crossref_primary_10_1007_s11554_024_01439_3
crossref_primary_10_1515_geo_2025_0805
crossref_primary_10_1016_j_cviu_2025_104489
crossref_primary_10_1109_ACCESS_2024_3419835
crossref_primary_10_32604_cmc_2024_048755
crossref_primary_10_34133_plantphenomics_0246
crossref_primary_10_1109_ACCESS_2025_3536701
crossref_primary_10_1063_5_0239142
crossref_primary_10_1109_ACCESS_2024_3453993
crossref_primary_10_1038_s41598_025_08924_0
crossref_primary_10_1007_s11760_025_04429_5
crossref_primary_10_1088_1402_4896_ad418f
crossref_primary_10_1007_s11554_024_01558_x
crossref_primary_10_1049_gtd2_13093
crossref_primary_10_1016_j_aej_2025_09_001
crossref_primary_10_1088_1755_1315_1337_1_012060
crossref_primary_10_1109_ACCESS_2025_3595048
crossref_primary_10_1007_s11554_024_01519_4
crossref_primary_10_1038_s41598_025_02194_6
crossref_primary_10_3390_s23208380
crossref_primary_10_1007_s10499_024_01422_6
crossref_primary_10_1007_s44443_025_00116_0
crossref_primary_10_1016_j_sigpro_2024_109811
crossref_primary_10_1007_s11042_024_20265_0
crossref_primary_10_1016_j_compeleceng_2024_109259
crossref_primary_10_1016_j_imavis_2025_105653
crossref_primary_10_1049_itr2_12560
crossref_primary_10_1016_j_asoc_2024_112597
crossref_primary_10_1016_j_neucom_2024_129215
crossref_primary_10_1109_ACCESS_2025_3528046
crossref_primary_10_1002_tee_24096
crossref_primary_10_1007_s00371_024_03796_3
crossref_primary_10_1155_2024_5977332
crossref_primary_10_1371_journal_pone_0322919
crossref_primary_10_1007_s41965_024_00178_5
crossref_primary_10_1109_ACCESS_2024_3364681
crossref_primary_10_1111_mice_13515
crossref_primary_10_1088_1361_6501_ad4386
crossref_primary_10_1016_j_istruc_2025_108720
crossref_primary_10_1109_TIP_2025_3563775
crossref_primary_10_1016_j_egyr_2024_12_076
crossref_primary_10_1007_s00521_025_11011_0
crossref_primary_10_1016_j_ecoinf_2024_102846
crossref_primary_10_1186_s40494_024_01332_z
crossref_primary_10_1016_j_autcon_2024_105807
crossref_primary_10_1007_s11760_025_04023_9
crossref_primary_10_1016_j_neucom_2024_127685
crossref_primary_10_1007_s11042_023_17957_4
crossref_primary_10_1061_JCEMD4_COENG_15723
crossref_primary_10_1016_j_ymssp_2025_112976
crossref_primary_10_1007_s00371_025_04148_5
crossref_primary_10_1007_s11760_025_04005_x
crossref_primary_10_1007_s40747_025_01904_x
crossref_primary_10_3389_fpls_2024_1407839
crossref_primary_10_3389_fcvm_2025_1606159
crossref_primary_10_1007_s12541_024_01081_w
Cites_doi 10.1109/TITS.2019.2934991
10.1109/LSENS.2022.3213529
10.1109/CVPR.2017.243
10.1109/SAS51076.2021.9530102
10.1109/CVPR42600.2020.01160
10.1109/JSEN.2023.3254506
10.1109/JSEN.2023.3254588
10.1109/CVPR.2018.00474
10.1109/CVPR.2014.81
10.1109/JSEN.2023.3234153
10.1002/tee.23758
10.1109/ICCV.2015.169
10.1007/s00138-023-01390-6
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2018.00716
10.1109/CVPR.2017.690
10.1007/978-3-030-01264-9_8
10.1109/CVPR.2016.90
10.1109/CVPR.2016.91
10.3390/s22155817
10.1109/CVPRW50498.2020.00203
10.1109/CVPRW.2019.00103
10.1109/JBHI.2017.2754861
10.1109/CVPR.2017.106
10.1109/ICCV.2019.00140
10.1109/CVPR.2018.00913
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics12102323
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A750889593
10_3390_electronics12102323
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-a348f7a0b01b4a857b4bdaa3044102b9d2b3961d6c27306cf16bb2d71b1046f63
IEDL.DBID P5Z
ISICitedReferencesCount 326
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000997467300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Fri Jul 25 02:53:15 EDT 2025
Tue Nov 04 18:36:41 EST 2025
Sat Nov 29 07:13:03 EST 2025
Tue Nov 18 21:32:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a348f7a0b01b4a857b4bdaa3044102b9d2b3961d6c27306cf16bb2d71b1046f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2819443984?pq-origsite=%requestingapplication%
PQID 2819443984
PQPubID 2032404
ParticipantIDs proquest_journals_2819443984
gale_infotracacademiconefile_A750889593
crossref_citationtrail_10_3390_electronics12102323
crossref_primary_10_3390_electronics12102323
PublicationCentury 2000
PublicationDate 2023-05-21
PublicationDateYYYYMMDD 2023-05-21
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-21
  day: 21
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Singh (ref_6) 2023; 34
ref_14
ref_13
ref_35
ref_12
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
ref_30
Zou (ref_1) 2023; 23
ref_19
ref_18
ref_17
ref_16
ref_15
Abadi (ref_5) 2023; 2023
ref_25
Thevenot (ref_4) 2018; 22
ref_23
ref_22
ref_21
ref_20
Zhu (ref_3) 2020; 21
ref_29
ref_28
ref_27
Liu (ref_2) 2023; 23
ref_9
ref_8
Liu (ref_24) 2023; 18
ref_7
Sengupta (ref_26) 2022; 6
References_xml – ident: ref_7
– ident: ref_32
– volume: 21
  start-page: 4063
  year: 2020
  ident: ref_3
  article-title: Parallel Transportation Systems: Toward IoT-Enabled Smart Urban Traffic Control and Management
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2934991
– volume: 6
  start-page: 1
  year: 2022
  ident: ref_26
  article-title: Robust multiobject tracking using mmwave radar-camera sensor fusion
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2022.3213529
– ident: ref_34
  doi: 10.1109/CVPR.2017.243
– ident: ref_16
– ident: ref_27
  doi: 10.1109/SAS51076.2021.9530102
– ident: ref_33
  doi: 10.1109/CVPR42600.2020.01160
– volume: 23
  start-page: 8630
  year: 2023
  ident: ref_2
  article-title: Anomaly detection of high-frequency sensing data in transportation infrastructure monitoring system based on fine-tuned model
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3254506
– volume: 23
  start-page: 10825
  year: 2023
  ident: ref_1
  article-title: A Novel Day-to-Night Obstacle Detection Method for Excavators based on Image Enhancement and Multi-sensor Fusion
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3254588
– ident: ref_8
  doi: 10.1109/CVPR.2018.00474
– ident: ref_14
  doi: 10.1109/CVPR.2014.81
– volume: 2023
  start-page: 1
  year: 2023
  ident: ref_5
  article-title: Detection of Cyclist’s Crossing Intention based on Posture Estimation for Autonomous Driving
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3234153
– volume: 18
  start-page: 605
  year: 2023
  ident: ref_24
  article-title: DBF-YOLO:UAV Small Targets Detection Based on Shallow Feature Fusion
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.23758
– ident: ref_15
  doi: 10.1109/ICCV.2015.169
– ident: ref_21
– volume: 34
  start-page: 41
  year: 2023
  ident: ref_6
  article-title: Yow, Interpretable Visual Transmission Lines Inspections Using Pseudo-Prototypical Part Network
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-023-01390-6
– ident: ref_23
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_31
– ident: ref_10
  doi: 10.1109/CVPR.2018.00716
– ident: ref_19
  doi: 10.1109/CVPR.2017.690
– ident: ref_11
  doi: 10.1007/978-3-030-01264-9_8
– ident: ref_12
  doi: 10.1109/CVPR.2016.90
– ident: ref_18
  doi: 10.1109/CVPR.2016.91
– ident: ref_25
  doi: 10.3390/s22155817
– ident: ref_28
  doi: 10.1109/CVPRW50498.2020.00203
– ident: ref_35
  doi: 10.1109/CVPRW.2019.00103
– volume: 22
  start-page: 1497
  year: 2018
  ident: ref_4
  article-title: A Survey on Computer Vision for Assistive Medical Diagnosis from Faces
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2754861
– ident: ref_13
– ident: ref_29
  doi: 10.1109/CVPR.2017.106
– ident: ref_17
– ident: ref_22
– ident: ref_9
  doi: 10.1109/ICCV.2019.00140
– ident: ref_20
– ident: ref_30
  doi: 10.1109/CVPR.2018.00913
SSID ssj0000913830
Score 2.68511
Snippet Traditional camera sensors rely on human eyes for observation. However, human eyes are prone to fatigue when observing objects of different sizes for a long...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2323
SubjectTerms Accuracy
Algorithms
Cameras
Cognition
Datasets
Fatigue
Image processing
Medical research
Model accuracy
Object recognition
Object recognition (Computers)
Pattern recognition
Recall
Sensors
Signal processing
Title DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor
URI https://www.proquest.com/docview/2819443984
Volume 12
WOSCitedRecordID wos000997467300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LT9swGP80HoftwHNo3aDyAYkLFkns2A4XVEoZk0YbrZsEXCLbiQGptKwNHHbgb8dfmgKTEBdukfOy8tnfO78fwHbuhFUicVRwYym3VlLNY0O5MUmonI-gA1eRTchuV52dJWmdcJvUbZUznVgp6nxkMUe-hwUf7q2n4ge3fymyRmF1tabQmIMFRElA6oY0vnjKsSDmpWLBFGyI-eh-75lbZlIhZ7GI_WeQXlfLla05Xn7vLFdgqfYySWu6LFbhQzFcg08vsAfX4ftRm573fvbu1T7p3-jBgPav_xWkZzAxQ46KsurRGpLW4NK_oLy6IYfe4OXED7U1ZrJI30fAo_Fn-HPc-d0-oTWrArVMhCXVjCsnNSZADdcqloabXGsWeMcoiEySR4YlIsyF9Z5NIKwLhTFRLkOD5WAn2AbMD0fD4gsQWXCprbPC-5Acj3206GSutFI2jk3SgGj2aTNbQ44j88Ug86EHyiN7RR4N2H266XaKuPH25Tsoswz3o3-21fVvBX6GiGyVtSS6oAi_3IDNmcyyeqNOsmeBfX379Df4iEzz2DgQhZswX47vii1YtPfl9WTchIXDTjf91YS504dOs1qFfiz9cZqePwLk8-bI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl44DeiMMAPIF6w1sSu7SAhVFrGqnVtpQ5pe8psJ4ZJXTvaMAR_FH8jd2mygTTtbQ-8RfnhxLlP9_nO9ncAL7OgvFFJ4Eo6z6X3mlvZdlw6l0QmYATdCmWxCT0cmv39ZLwGv-u9MLSssvaJpaPO5p5y5Js04SORPY18f_KNU9Uoml2tS2isYLGT__yBIdvyXb-H9n0Vx1sf97rbvKoqwL1QUcGtkCZoSwlAJ61payddZi2G9RLJ1iVZ7ESiokx5ZPaW8iFSzsWZjhxNhwYlsN1rsC4J7A1YH_d3xwdnWR1S2TSitZI3EiJpbZ5Xs1mWWl0iFv9Q4MVEULLb1p3_7b_chdvVOJp1VsC_B2v57D7c-ktd8QF86nX5wWgwOjVv2eTYTqd8cvQrZyNHqSfWy4tyFdqMdaZfsEPF12P2ASk9Y3iqaylXxyYY488XD-HzlfTkETRm81n-GJjOpbY-eIWjZEnHGA8HnRlrjG-3XdKEuDZl6itRdartMU0xuCL7pxfYvwlvzh46WWmKXH77a8JISh4H2_a22jiBX0jaXWlH0yCbBKabsFFjJK1c0TI9B8iTyy-_gBvbe7uDdNAf7jyFmzG-nJZJxNEGNIrF9_wZXPenxdFy8bxCPYPDqwbUHyJSP0c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NgRA88HOIjgF-APGC1SZ2bAcJodJSmDa1lQrS4CWznRgmde3WhiH40_jruEuTDaRpb3vgLcpvx1_u853P3wE8y4PyRqWBK-k8l95rbmXiuHQujUxAD7oTqmITejg0e3vpeA1-N2thKK2ysYmVoc7nnmLkbZrwkcieRrZDnRYx7g_eHB1zqiBFM61NOY0VRHaKnz_QfVu-3u5jXz-P48G7j70PvK4wwL1QUcmtkCZoS8FAJ61JtJMutxZdfInE69I8diJVUa48snxH-RAp5-JcR46mRoMSeN8rcFWjj0nphOPky2l8h_Q2jeishI6ESDvts7o2y0q1S8TiHzI8nxIqnhvc_p-_0B24VY-uWXf1O9yFtWJ2D27-pbl4H973e_zzaHd0Yl6xyaGdTvnk4FfBRo4CUqxflFVu2ox1p1-xQeW3Q_YWiT5nuKtnKYLHJuj5zxcb8OlSWvIA1mfzWfEQmC6ktj54hWNnSdvoJQedG2uMTxKXtiBuujXztdQ6VfyYZuhyERayc7DQgpenFx2tlEYuPv0F4SUjO4T39rZeToFvSIpeWVfT0Jtkp1uw1eAlqw3UMjsDy-bFh5_CdURRtrs93HkEN2J8NuVOxNEWrJeL78VjuOZPyoPl4kkFfwb7l42mP9QxRqo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DC-YOLOv8%3A+Small-Size+Object+Detection+Algorithm+Based+on+Camera+Sensor&rft.jtitle=Electronics+%28Basel%29&rft.au=Haitong+Lou&rft.au=Duan%2C+Xuehu&rft.au=Guo%2C+Junmei&rft.au=Liu%2C+Haiying&rft.date=2023-05-21&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=12&rft.issue=10&rft.spage=2323&rft_id=info:doi/10.3390%2Felectronics12102323&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon