Risk-Constrained Optimal Chiller Loading Strategy Using Information Gap Decision Theory

This paper presents a novel framework for economic cooling load dispatch in conventional water-cooled chillers. Moreover, information gap decision theory (IGDT) is applied to the optimal chiller loading (OCL) problem to find the optimum operating point of the test system in three decision-making mod...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 9; číslo 9; s. 1925
Hlavní autoři: Shi, Er, Jabari, Farkhondeh, Anvari-Moghaddam, Amjad, Mohammadpourfard, Mousa, Mohammadi-ivatloo, Behnam
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2019
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a novel framework for economic cooling load dispatch in conventional water-cooled chillers. Moreover, information gap decision theory (IGDT) is applied to the optimal chiller loading (OCL) problem to find the optimum operating point of the test system in three decision-making modes: (a) risk-neutral approach, (b) risk-aversion or robustness approach, and (c) risk-taker or opportunistic approach. In the robustness mode of the IGDT-based OCL problem, the system operator enters a desired energy cost value in order to find the most appropriate loading points for the chillers so that the total electricity procurement cost over the study horizon is smaller than or equal to this critical value. Meanwhile, the cooling load increase is maximized to the highest possible level to find the most robust performance of the benchmark grid with respect to the overestimated load. Similarly, the risk-taker optimization method finds the on/off status and the partial load ratio (PLR) of the chillers in order to keep the total energy cost as low as the given cost function. In addition, the minimum value of cooling load decrease can be found while satisfying the refrigeration capacity of the chiller and the load-generation balance constraint. Thus, a mixed-integer non-linear programming problem is solved using the branch and reduce optimization (BARON) tool of the generalized algebraic mathematical modeling system (GAMS) for a five-chiller plant, to demonstrate that IGDT is able to find a good solution in robustness/risk-taker OCL problem.
AbstractList This paper presents a novel framework for economic cooling load dispatch in conventional water-cooled chillers. Moreover, information gap decision theory (IGDT) is applied to the optimal chiller loading (OCL) problem to find the optimum operating point of the test system in three decision-making modes: (a) risk-neutral approach, (b) risk-aversion or robustness approach, and (c) risk-taker or opportunistic approach. In the robustness mode of the IGDT-based OCL problem, the system operator enters a desired energy cost value in order to find the most appropriate loading points for the chillers so that the total electricity procurement cost over the study horizon is smaller than or equal to this critical value. Meanwhile, the cooling load increase is maximized to the highest possible level to find the most robust performance of the benchmark grid with respect to the overestimated load. Similarly, the risk-taker optimization method finds the on/off status and the partial load ratio (PLR) of the chillers in order to keep the total energy cost as low as the given cost function. In addition, the minimum value of cooling load decrease can be found while satisfying the refrigeration capacity of the chiller and the load-generation balance constraint. Thus, a mixed-integer non-linear programming problem is solved using the branch and reduce optimization (BARON) tool of the generalized algebraic mathematical modeling system (GAMS) for a five-chiller plant, to demonstrate that IGDT is able to find a good solution in robustness/risk-taker OCL problem.
[...]the economic operation of electrical air conditioners is important to reduce the energy demand of interconnected power systems. The variable climatic conditions affect the building cooling demand, the optimum value of the partial load ratios (PLRs), and the cooling capability of the chillers, as well as their power consumption [7]. [...]the uncertainties associated with the cooling load should be modeled by short-term scheduling of electrical air conditioners [8,9]. According to Equation (6), the robust optimization problem is formulated with an aim to maximize the uncertainty variable, α , while the energy cost is less than the given cost, Fk . [...]the minimum value of the cooling load decrease, which reduces the energy cost to predefined values Fw , must be found by solving the optimization problem (Equations (1)–(5), (13) and (14)).
Author Mohammadi-ivatloo, Behnam
Mohammadpourfard, Mousa
Jabari, Farkhondeh
Shi, Er
Anvari-Moghaddam, Amjad
Author_xml – sequence: 1
  givenname: Er
  surname: Shi
  fullname: Shi, Er
– sequence: 2
  givenname: Farkhondeh
  surname: Jabari
  fullname: Jabari, Farkhondeh
– sequence: 3
  givenname: Amjad
  orcidid: 0000-0002-5505-3252
  surname: Anvari-Moghaddam
  fullname: Anvari-Moghaddam, Amjad
– sequence: 4
  givenname: Mousa
  orcidid: 0000-0002-6098-924X
  surname: Mohammadpourfard
  fullname: Mohammadpourfard, Mousa
– sequence: 5
  givenname: Behnam
  orcidid: 0000-0002-0255-8353
  surname: Mohammadi-ivatloo
  fullname: Mohammadi-ivatloo, Behnam
BookMark eNptUU1Lw0AQXUTBWnvxFwS8CdH9SLO7R4laC4WCtnhcJptNuzXNxt300H9v0iqKOJeZN7x5PN5coNPa1QahK4JvGZP4DppGYkkkHZ-gAcU8jVlC-Omv-RyNQtjgriRhguABenux4T3OXB1aD7Y2RTRvWruFKsrWtqqMj2YOCluvoteO0JrVPlqGHk7r0vkttNbV0QSa6MFoG3qwWBvn95forIQqmNFXH6Ll0-Mie45n88k0u5_FmqWkjYGOJU1ZSiEnBHiRMl7qgpdsXGjCmQBBcpJoEIaneUm1wEzTnAJmXFPNgQ3R9KhbONioxnfW_V45sOqwcH6lwLdWV0YVGkupsUhpzhKWUKmFFqQsBOES50J2WtdHrca7j50Jrdq4na87-4oySoSgCRUdCx9Z2rsQvCmVtu0hhz7BShGs-m-on290Jzd_Tr6N_kP-BD6ei5Q
CitedBy_id crossref_primary_10_1016_j_enbuild_2020_110058
crossref_primary_10_3233_JIFS_240283
crossref_primary_10_3390_app9204451
crossref_primary_10_3390_app10113829
crossref_primary_10_3390_su12125089
crossref_primary_10_1007_s11814_019_0392_x
crossref_primary_10_1109_ACCESS_2020_2981697
crossref_primary_10_1080_02286203_2020_1843935
crossref_primary_10_1016_j_scs_2019_101991
crossref_primary_10_1016_j_cie_2020_106425
crossref_primary_10_1016_j_jclepro_2019_118393
crossref_primary_10_1016_j_jobe_2020_101263
crossref_primary_10_1016_j_compeleceng_2020_106550
crossref_primary_10_1109_ACCESS_2020_2998845
crossref_primary_10_3390_en13153760
crossref_primary_10_3390_en15239187
Cites_doi 10.1007/978-3-319-22732-0
10.1016/j.enbuild.2004.06.002
10.1016/j.rse.2014.08.012
10.1016/j.enbuild.2005.12.009
10.1016/j.applthermaleng.2005.02.010
10.1016/j.sbspro.2014.03.704
10.1016/j.energy.2005.10.018
10.1016/j.apenergy.2019.01.170
10.1016/j.enbuild.2017.10.040
10.1016/j.enconman.2008.08.036
10.1016/j.applthermaleng.2018.11.122
10.1016/j.gloenvcha.2008.12.003
10.1007/978-3-319-62350-4
10.1016/j.matcom.2018.04.013
10.18280/mmep.050311
10.1016/j.enbuild.2018.03.077
10.1016/j.enconman.2004.10.012
10.1016/j.enbuild.2013.04.030
10.1016/j.enbuild.2012.11.030
10.1016/j.enbuild.2017.12.020
10.1016/j.energy.2012.10.058
10.1016/j.enbuild.2018.04.046
10.1016/j.energy.2014.07.060
10.1016/j.jobe.2018.05.018
10.3390/en80910504
10.1016/j.apenergy.2009.05.004
10.1016/j.applthermaleng.2016.02.114
10.1007/978-3-319-75097-2
10.1016/j.enbuild.2010.10.028
10.3390/app7080784
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app9091925
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_dc099c0862b343429c8c81fd81790b89
10_3390_app9091925
GeographicLocations Iran
Switzerland
GeographicLocations_xml – name: Switzerland
– name: Iran
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-a25926362ab11a7d637fcd7f35dc1738a81b14ca8e76bf2c803c2b2a037c2c7a3
IEDL.DBID DOA
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469756000204&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:43:20 EDT 2025
Mon Jun 30 11:10:50 EDT 2025
Sat Nov 29 07:16:51 EST 2025
Tue Nov 18 21:41:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a25926362ab11a7d637fcd7f35dc1738a81b14ca8e76bf2c803c2b2a037c2c7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5505-3252
0000-0002-0255-8353
0000-0002-6098-924X
OpenAccessLink https://doaj.org/article/dc099c0862b343429c8c81fd81790b89
PQID 2321882428
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_dc099c0862b343429c8c81fd81790b89
proquest_journals_2321882428
crossref_citationtrail_10_3390_app9091925
crossref_primary_10_3390_app9091925
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chang (ref_11) 2010; 87
Chang (ref_23) 2005; 25
Chang (ref_10) 2005; 46
Chang (ref_22) 2005; 37
Ho (ref_9) 2014; 154
Lin (ref_31) 2015; 8
Zheng (ref_1) 2019; 155
ref_32
Wang (ref_5) 2019; 238
Chang (ref_6) 2007; 39
ref_30
Cannistraro (ref_20) 2018; 5
Chang (ref_15) 2009; 50
ref_16
Cannistraro (ref_28) 2018; 19
Sulaiman (ref_2) 2014; 129
Saeedi (ref_26) 2019; 148
Chang (ref_13) 2006; 31
Coelho (ref_14) 2013; 59
Coelho (ref_17) 2014; 75
Huang (ref_8) 2018; 158
Zheng (ref_25) 2018; 161
Powell (ref_4) 2013; 50
Sohrabi (ref_19) 2018; 169
ref_21
Wang (ref_3) 2018; 172
Lee (ref_18) 2011; 43
ref_29
Lo (ref_24) 2016; 100
ref_27
Chen (ref_12) 2014; 68
Hallegatte (ref_7) 2009; 19
References_xml – ident: ref_16
  doi: 10.1007/978-3-319-22732-0
– volume: 37
  start-page: 147
  year: 2005
  ident: ref_22
  article-title: Optimal chiller loading by genetic algorithm for reducing energy consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.06.002
– ident: ref_30
– volume: 154
  start-page: 38
  year: 2014
  ident: ref_9
  article-title: Mapping maximum urban air temperature on hot summer days
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.08.012
– volume: 39
  start-page: 437
  year: 2007
  ident: ref_6
  article-title: Optimal chiller loading by evolution strategy for saving energy
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2005.12.009
– volume: 25
  start-page: 2800
  year: 2005
  ident: ref_23
  article-title: Genetic algorithm based optimal chiller loading for energy conservation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2005.02.010
– volume: 129
  start-page: 483
  year: 2014
  ident: ref_2
  article-title: A new swarm intelligence approach for optimal chiller loading for energy conservation
  publication-title: Procedia Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2014.03.704
– volume: 31
  start-page: 1883
  year: 2006
  ident: ref_13
  article-title: An innovative approach for demand side management—Optimal chiller loading by simulated annealing
  publication-title: Energy
  doi: 10.1016/j.energy.2005.10.018
– volume: 238
  start-page: 1444
  year: 2019
  ident: ref_5
  article-title: Online chiller loading strategy based on the near-optimal performance map for energy conservation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.170
– volume: 158
  start-page: 684
  year: 2018
  ident: ref_8
  article-title: Optimal configuration of multiple-chiller plants under cooling load uncertainty for different climate effects and building types
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.10.040
– volume: 50
  start-page: 132
  year: 2009
  ident: ref_15
  article-title: Evolution strategy based optimal chiller loading for saving energy
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2008.08.036
– volume: 148
  start-page: 1081
  year: 2019
  ident: ref_26
  article-title: Robust optimization based optimal chiller loading under cooling demand uncertainty
  publication-title: Appl. Ther. Eng.
  doi: 10.1016/j.applthermaleng.2018.11.122
– volume: 19
  start-page: 240
  year: 2009
  ident: ref_7
  article-title: Strategies to adapt to an uncertain climate change
  publication-title: Glob. Environ. Chang.
  doi: 10.1016/j.gloenvcha.2008.12.003
– ident: ref_32
  doi: 10.1007/978-3-319-62350-4
– volume: 155
  start-page: 227
  year: 2019
  ident: ref_1
  article-title: Optimal chiller loading by improved artificial fish swarm algorithm for energy saving
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2018.04.013
– volume: 5
  start-page: 205
  year: 2018
  ident: ref_20
  article-title: Testing a dual-source heat pump
  publication-title: Math. Model. Eng. Probl.
  doi: 10.18280/mmep.050311
– volume: 169
  start-page: 245
  year: 2018
  ident: ref_19
  article-title: Optimal chiller loading for saving energy by exchange market algorithm
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.03.077
– ident: ref_29
– volume: 46
  start-page: 2158
  year: 2005
  ident: ref_10
  article-title: Optimal chiller sequencing by branch and bound method for saving energy
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2004.10.012
– volume: 68
  start-page: 364
  year: 2014
  ident: ref_12
  article-title: Applying smart models for energy saving in optimal chiller loading
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.04.030
– volume: 59
  start-page: 273
  year: 2013
  ident: ref_14
  article-title: Improved firefly algorithm approach applied to chiller loading for energy conservation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.11.030
– volume: 161
  start-page: 80
  year: 2018
  ident: ref_25
  article-title: Optimal chiller loading by improved invasive weed optimization algorithm for reducing energy consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.12.020
– volume: 50
  start-page: 445
  year: 2013
  ident: ref_4
  article-title: Optimal chiller loading in a district cooling system with thermal energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2012.10.058
– volume: 172
  start-page: 1
  year: 2018
  ident: ref_3
  article-title: Evaluation of operation performance of a multi-chiller system using a data-based chiller model
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.04.046
– volume: 75
  start-page: 237
  year: 2014
  ident: ref_17
  article-title: Optimal chiller loading for energy conservation using a new differential cuckoo search approach
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.060
– volume: 19
  start-page: 295
  year: 2018
  ident: ref_28
  article-title: New sol-gel deposition technique in the Smart-Windows–Computation of possible applications of Smart-Windows in buildings
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2018.05.018
– volume: 8
  start-page: 10504
  year: 2015
  ident: ref_31
  article-title: Optimal energy reduction schedules for ice storage air-conditioning systems
  publication-title: Energies
  doi: 10.3390/en80910504
– volume: 87
  start-page: 1096
  year: 2010
  ident: ref_11
  article-title: Economic dispatch of chiller plant by gradient method for saving energy
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.05.004
– volume: 100
  start-page: 1140
  year: 2016
  ident: ref_24
  article-title: Economic dispatch of chiller plant by improved ripple bee swarm optimization algorithm for saving energy
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.02.114
– ident: ref_21
  doi: 10.1007/978-3-319-75097-2
– volume: 43
  start-page: 599
  year: 2011
  ident: ref_18
  article-title: Optimal chiller loading by differential evolution algorithm for reducing energy consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.10.028
– ident: ref_27
  doi: 10.3390/app7080784
SSID ssj0000913810
Score 2.222534
Snippet This paper presents a novel framework for economic cooling load dispatch in conventional water-cooled chillers. Moreover, information gap decision theory...
[...]the economic operation of electrical air conditioners is important to reduce the energy demand of interconnected power systems. The variable climatic...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1925
SubjectTerms Decision making
Decision theory
Electricity
Energy conservation
Energy consumption
Genetic algorithms
information gap decision theory (IGDT)
Integer programming
Linear programming
Load
mixed-integer non-linear programming problem (MINLP)
optimal chiller loading (OCL)
Optimization algorithms
Optimization techniques
uncertain cooling demand
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VLQc4QFuoWCiVJTjQQ0T8Uds5Ifp9QEtVgegtssdOVbXsLpsFqf--nsS7rQTi0qtjWUnGnnljj98DeI-VtDpEYgDAWChZhsIprwuvRLPLNWqFoRObMKORPT-vTvOGW5vLKhc-sXPUYYK0R_4xRX6e0GBCy5-mvwpSjaLT1Syh8QhWialMDWB173B0erbcZSHWS8vLnpdUpvyezoWr1FqRNva9SNQR9v_lj7sgc_T8oa-3Bs8yvGSf-_mwDitxvAFP75EObsB6Xs4t-5A5p3dewI-zy_aqIPXOTjMiBvY1-ZKfaSjiPr6OM_Zl0lXbs0xne8O6YgOWrzORedmxm7KDrNnD-kv_L-H70eG3_ZMiay4UKDWfFy6lQ0KnqOY8584ELU2DwTRyNyA30roEc7lCZ6PRvhFoS4nCC1dKgwKNk5swGE_G8RUwQalKyo940F4l3FEFNEGUyJWIJffNEHYW_7_GTEhO33hdp8SEbFXf2WoI75Z9pz0Nxz977ZEZlz2IOrtrmMwu6rwS64AJFCNlcl4qmcIxWrS8CZa4yrythrC1sHCd13Nb35n39f8fv4EnCVJVfUnkFgzms9_xLTzGP_PLdradp-ct2Cbu-A
  priority: 102
  providerName: ProQuest
Title Risk-Constrained Optimal Chiller Loading Strategy Using Information Gap Decision Theory
URI https://www.proquest.com/docview/2321882428
https://doaj.org/article/dc099c0862b343429c8c81fd81790b89
Volume 9
WOSCitedRecordID wos000469756000204&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEB9EPdRD8aPiq1YCetDD4iZZk-zRz1bQ50MU7WlJJlmQ2qe89yz0v-8kG_VBC7143BD2Y2Yy-f3YyW8AtrGWRvkQFQAwFJUsfWErpwpXiXafK1QV-tRsQvf75u6uHky1-oo1YZ08cGe4PY-EYTACbycrSdkTDRreehOlpZxJR_cI9UyRqZSDax6lqzo9Ukm8Pv4Prmm0jj2xp3agJNT_Vx5Om8vpInzMqJAddG-zBDNhuAwLU1qBy7CUV-GY7WSp6N0VuL26H_8oYtPN1OoheHZJKeAn3SpKFj-EETt_TEXyLKvQ_mapRoDlU0jRK-yrfWLHudUO687qf4Kb05Pro29FbpVQoFR8UlhiMULRZmQd51Z7JXWLXrdy3yPX0lhCp7xCa4JWrhVoSonCCVtKjQK1laswO3wchjVgIjIMojXcK1cRXKg9ai9K5JUIJXdtD3ZfzNdg1hGP3_jQEJ-Ipm7eTN2Drde5T516xj9nHUYvvM6IitdpgOKgyXHQ_C8OerDx4sMmL8NxQ3CRE4UgivX5PZ6xDh8IL9VdveMGzE5Gz-ELzOOvyf14tAlzhyf9wdVmikS6GpxdDL7_AfOO4f4
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dTxQxFL1BMFEeUFDjCmoTNZGHidN2mHYejBEBIawrIRh4G9vbjiHC7rqzavhT_kZvZzoLicY3HnztNE06Pb09tx_nADzHQurc-aAAgD7JZOoSk9k8sZmoNniOeYauMZtQg4E-OSkO5uBX9xYmXKvsYmITqN0Iwx75K1r5ObFBYstvxt-S4BoVTlc7C40WFvv-4ielbPXrvS0a3xdC7GwfvdtNoqtAgjLn08QQ4Rc5xW1jOTfK5VJV6FQlNxxyJbUhIsczNNqr3FYCdSpRWGFSqVCgMpLavQELmcwUzauFze3BweFsVyeobGqetjqoUhZpOIcuqLQIXtxXVr7GIOCP-N8sajt3_rffcReWIn1mb1u8L8OcH67A4hVRxRVYjuGqZi-jpvb6PTg-PK2_JsGdtPHE8I59pFh5Tk0FbeczP2H9UfOagEW53gvWXKZg8blWgC97b8ZsK3oSsVbU4D58upbuPoD54WjoHwITIRWj_I-73GbEqwqHyokUeSZ8ym3Vg_VuvEuMguuhj2clJV4BG-UlNnrwbFZ33MqM_LXWZoDNrEaQBm8KRpMvZYw0pUMi_RgyVSsJpKJAjZpXTgctNquLHqx1iCpjvKrLSzg9-vfnp3Br9-hDv-zvDfZX4TbRx6K9_rkG89PJd_8YbuKP6Wk9eRKnBoPP1w2_3-dlS-M
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFiE4AC2gLhSwBEj0EDX-aOwcEAKWhVXLskIgyinEY6eqKLvLZgH1r_HrGCfOthKIWw9cHcuS4-fxG3-8B_AQc2ky54MCAPpEydQlpbJZYpWodnmGmULXmE3o0cgcHOTjFfjVvYUJ1yq7mNgEajfFsEe-Qys_JzZIbHmnitcixv3B09m3JDhIhZPWzk6jhcieP_lJ6Vv9ZNinsX4kxODl-xevk-gwkKDM-CIpifyLjGJ4aTkvtcukrtDpSu465FqakkgdV1garzNbCTSpRGFFmUqNAnUpqd0LsEaUXNEcWxsP34w_LXd4guKm4WmriSplnoYz6ZxK8-DLfWYVbMwC_lgLmgVucO1__jXX4Wqk1exZOw_WYcVPNuDKGbHFDViPYaxmj6PW9vYN-PjuqP6SBNfSxivDO_aWYuhXaipoPh_7OdufNq8MWJTxPWHNJQsWn3EFWLNX5Yz1o1cRa8UObsKHc-nuLVidTCd-E5gIKRrlhdxlVhHfyh1qJ1LkSviU26oH293YFxiF2EMfjwtKyAJOilOc9ODBsu6slR_5a63nAULLGkEyvCmYzg-LGIEKh5QMYMhgrVSSaAgaNLxyJmi0WZP3YKtDVxHjWF2cQuv2vz_fh0uEuWJ_ONq7A5eJVebtrdAtWF3Mv_u7cBF_LI7q-b04Sxh8Pm_0_Qa5YVTV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk-Constrained+Optimal+Chiller+Loading+Strategy+Using+Information+Gap+Decision+Theory&rft.jtitle=Applied+sciences&rft.au=Er+Shi&rft.au=Farkhondeh+Jabari&rft.au=Amjad+Anvari-Moghaddam&rft.au=Mousa+Mohammadpourfard&rft.date=2019-05-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=9&rft.spage=1925&rft_id=info:doi/10.3390%2Fapp9091925&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dc099c0862b343429c8c81fd81790b89
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon