Ensemble Learning-Based Rate-Distortion Optimization for End-to-End Image Compression

End-to-end image compression using trained deep networks as encoding/decoding models has been developed substantially in the recent years. Previous work is limited in using a single encoding/decoding model, whereas we explore the usage of multiple encoding/decoding models as an ensemble. We propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology Jg. 31; H. 3; S. 1193 - 1207
Hauptverfasser: Wang, Yefei, Liu, Dong, Ma, Siwei, Wu, Feng, Gao, Wen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1051-8215, 1558-2205
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract End-to-end image compression using trained deep networks as encoding/decoding models has been developed substantially in the recent years. Previous work is limited in using a single encoding/decoding model, whereas we explore the usage of multiple encoding/decoding models as an ensemble. We propose several methods to obtain multiple models. First, we adopt the boosting strategy to train multiple networks with diversity as an ensemble. Second, we train an ensemble of multiple probability distribution models to reduce the distribution gap for efficient entropy coding. Third, we present a geometric transform-based self-ensemble method. The multiple models can be regarded as the multiple coding modes, similar to those in non-deep video coding schemes. We further adopt block-level model/mode selection at the encoder side to pursue rate-distortion optimization, where we use hierarchical block partitioning to improve the adaptation ability. Compared with single-model end-to-end compression, our proposed method improves the compression efficiency significantly, leading to 21% BD-rate reduction on the Kodak dataset, without increasing the decoding complexity. On the other hand, when keeping the same compression efficiency, our method can use much simplified decoding models, where the floating-point operations are reduced by 70%.
AbstractList End-to-end image compression using trained deep networks as encoding/decoding models has been developed substantially in the recent years. Previous work is limited in using a single encoding/decoding model, whereas we explore the usage of multiple encoding/decoding models as an ensemble. We propose several methods to obtain multiple models. First, we adopt the boosting strategy to train multiple networks with diversity as an ensemble. Second, we train an ensemble of multiple probability distribution models to reduce the distribution gap for efficient entropy coding. Third, we present a geometric transform-based self-ensemble method. The multiple models can be regarded as the multiple coding modes, similar to those in non-deep video coding schemes. We further adopt block-level model/mode selection at the encoder side to pursue rate-distortion optimization, where we use hierarchical block partitioning to improve the adaptation ability. Compared with single-model end-to-end compression, our proposed method improves the compression efficiency significantly, leading to 21% BD-rate reduction on the Kodak dataset, without increasing the decoding complexity. On the other hand, when keeping the same compression efficiency, our method can use much simplified decoding models, where the floating-point operations are reduced by 70%.
Author Wu, Feng
Gao, Wen
Ma, Siwei
Liu, Dong
Wang, Yefei
Author_xml – sequence: 1
  givenname: Yefei
  surname: Wang
  fullname: Wang, Yefei
  email: wyfei@mail.ustc.edu.cn
  organization: CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Dong
  orcidid: 0000-0001-9100-2906
  surname: Liu
  fullname: Liu, Dong
  email: dongeliu@ustc.edu.cn
  organization: CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Siwei
  orcidid: 0000-0002-2731-5403
  surname: Ma
  fullname: Ma, Siwei
  email: swma@pku.edu.cn
  organization: National Engineering Laboratory for Video Technology, Peking University, Beijing, China
– sequence: 4
  givenname: Feng
  surname: Wu
  fullname: Wu, Feng
  email: fengwu@ustc.edu.cn
  organization: CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China
– sequence: 5
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
  email: wgao@pku.edu.cn
  organization: National Engineering Laboratory for Video Technology, Peking University, Beijing, China
BookMark eNp9kEtPwzAQhC1UJNrCH4BLJM4ufsSOc4RSHlKlStBytZxkU7lq4mC7B_j1pA9x4MBpdqVvdrQzQoPWtYDQNSUTSkl-t5y-fywnjDAy4YQQzukZGlIhFGaMiEE_E0GxYlRcoFEIG0JoqtJsiFazNkBTbCGZg_Gtbdf4wQSokjcTAT_aEJ2P1rXJoou2sd_msNTOJ7O2wtHhXpLXxqwhmbqm8xBCD1yi89psA1yddIxWT7Pl9AXPF8-v0_s5LrmkERsiGavBpGBUISqVUVoWKi9LagzjacbSDCpp8pTXhWKZZHWRKyq5LImAggEfo9vj3c67zx2EqDdu59s-UrM0VyrjUsieYkeq9C4ED7XuvG2M_9KU6H19-lCf3tenT_X1JvXHVNp4-D56Y7f_W2-OVgsAv1l5TwuZ8R9j7H-B
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2023_3237274
crossref_primary_10_1109_TCSVT_2022_3157074
crossref_primary_10_1109_TCSVT_2023_3300316
crossref_primary_10_1145_3580499
crossref_primary_10_1007_s00530_022_01026_1
crossref_primary_10_1109_TMM_2024_3372352
crossref_primary_10_7780_kjrs_2025_41_1_2
crossref_primary_10_1109_TGRS_2023_3315725
crossref_primary_10_1109_TCSVT_2022_3145024
crossref_primary_10_1109_TCSVT_2021_3104575
crossref_primary_10_1016_j_ipm_2021_102808
crossref_primary_10_1109_TCSVT_2022_3216713
crossref_primary_10_1109_TCSVT_2022_3230843
crossref_primary_10_1016_j_mfglet_2025_06_163
crossref_primary_10_1109_TCSVT_2024_3395481
crossref_primary_10_1109_TCSVT_2021_3082635
crossref_primary_10_1109_TCSVT_2023_3241225
crossref_primary_10_1109_ACCESS_2023_3236086
crossref_primary_10_1145_3652148
crossref_primary_10_1007_s11042_023_15271_7
crossref_primary_10_1109_TCSVT_2022_3231789
crossref_primary_10_1007_s11263_023_01809_7
crossref_primary_10_1109_TCSVT_2021_3133313
crossref_primary_10_1016_j_neucom_2022_08_009
crossref_primary_10_1109_JIOT_2022_3150417
crossref_primary_10_1145_3719011
Cites_doi 10.1109/CVPRW.2017.151
10.1109/ICME.2017.8019416
10.1145/2379776.2379786
10.1145/1968.1972
10.1145/28395.28426
10.1007/3-540-48219-9_8
10.1023/A:1010933404324
10.1007/s10916-018-1136-x
10.1109/CVPR.2017.577
10.1007/978-0-387-73003-5_293
10.1109/CVPR.2018.00462
10.1007/978-3-319-51811-4_3
10.1109/CVPR.2014.81
10.1016/j.rse.2018.12.010
10.1109/30.125072
10.1109/79.733495
10.1201/b12207
10.1142/9789812386533_0015
10.1214/aos/1024691352
10.1109/CVPR.2016.206
10.1109/TCSVT.2012.2221191
10.1016/S0893-6080(05)80023-1
10.1109/TITS.2018.2888587
10.1007/978-3-319-24574-4_28
10.1007/3-540-59119-2_166
10.1007/BF00116037
10.1007/978-1-4615-3626-0_12
10.1016/j.ins.2016.08.007
10.1007/BF00058655
10.1006/inco.1995.1136
10.1016/S0923-5965(01)00024-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2020.3000331
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1207
ExternalDocumentID 10_1109_TCSVT_2020_3000331
9109567
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFA0701603
  funderid: 10.13039/501100002855
– fundername: Natural Science Foundation of China
  grantid: 61931014; 61772483; 61632001
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-a0622fea4ea8b5d8711cb89cc1aa2347247ed6a943fb82762fb981636c05eb2e3
IEDL.DBID RIE
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626532100028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sun Nov 30 05:08:39 EST 2025
Tue Nov 18 22:35:24 EST 2025
Sat Nov 29 01:44:14 EST 2025
Wed Aug 27 02:48:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a0622fea4ea8b5d8711cb89cc1aa2347247ed6a943fb82762fb981636c05eb2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9100-2906
0000-0002-2731-5403
PQID 2498873656
PQPubID 85433
PageCount 15
ParticipantIDs ieee_primary_9109567
crossref_primary_10_1109_TCSVT_2020_3000331
proquest_journals_2498873656
crossref_citationtrail_10_1109_TCSVT_2020_3000331
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
recht (ref43) 2019
ref15
ref14
ref17
ref16
theis (ref4) 2017
ref18
zhou (ref25) 2019
kingma (ref45) 2014
ref50
liu (ref24) 2019
ref48
ref42
ref41
ballé (ref10) 2018
van den oord (ref23) 2016
shannon (ref1) 1959; 4
ref7
ref3
ref6
ref40
agustsson (ref8) 2017
ref35
ref34
ref37
ref31
krizhevsky (ref19) 2012
ref30
ref33
ref32
ref2
bjontegaard (ref46) 2001
ref39
goodfellow (ref26) 2014
ref38
ballé (ref9) 2016
lin (ref44) 2014
minnen (ref11) 2018
ref20
ref22
ref21
ref28
ref27
ref29
howard (ref47) 2017
rippel (ref5) 2017
an (ref36) 2019
zheng (ref49) 2019
References_xml – ident: ref20
  doi: 10.1109/CVPRW.2017.151
– ident: ref50
  doi: 10.1109/ICME.2017.8019416
– ident: ref28
  doi: 10.1145/2379776.2379786
– ident: ref13
  doi: 10.1145/1968.1972
– ident: ref14
  doi: 10.1145/28395.28426
– start-page: 4790
  year: 2016
  ident: ref23
  article-title: Conditional image generation with PixelCNN decoders
  publication-title: Proc NIPS
– ident: ref29
  doi: 10.1007/3-540-48219-9_8
– year: 2017
  ident: ref4
  article-title: Lossy image compression with compressive autoencoders
  publication-title: arXiv 1703 00395
– ident: ref33
  doi: 10.1023/A:1010933404324
– ident: ref37
  doi: 10.1007/s10916-018-1136-x
– year: 2019
  ident: ref49
  article-title: Implicit dual-domain convolutional network for robust color image compression artifact reduction
  publication-title: IEEE Trans Circuits Syst Video Technol
– ident: ref6
  doi: 10.1109/CVPR.2017.577
– year: 2001
  ident: ref46
  article-title: Calcuation of average PSNR differences between RD-curves
– ident: ref27
  doi: 10.1007/978-0-387-73003-5_293
– start-page: 740
  year: 2014
  ident: ref44
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc Eur Conf Comput Vis
– ident: ref7
  doi: 10.1109/CVPR.2018.00462
– ident: ref48
  doi: 10.1007/978-3-319-51811-4_3
– start-page: 1
  year: 2019
  ident: ref25
  article-title: End-to-end optimized image compression with attention mechanism
  publication-title: Proc CVPR Workshops
– ident: ref22
  doi: 10.1109/CVPR.2014.81
– ident: ref35
  doi: 10.1016/j.rse.2018.12.010
– start-page: 2672
  year: 2014
  ident: ref26
  article-title: Generative adversarial nets
  publication-title: Proc NIPS
– ident: ref17
  doi: 10.1109/30.125072
– year: 2019
  ident: ref43
  article-title: Do ImageNet classifiers generalize to ImageNet?
  publication-title: arXiv 1902 10811
– ident: ref2
  doi: 10.1109/79.733495
– ident: ref12
  doi: 10.1201/b12207
– ident: ref40
  doi: 10.1142/9789812386533_0015
– ident: ref39
  doi: 10.1214/aos/1024691352
– ident: ref42
  doi: 10.1109/CVPR.2016.206
– start-page: 2922
  year: 2017
  ident: ref5
  article-title: Real-time adaptive image compression
  publication-title: Proc ICML
– start-page: 1
  year: 2019
  ident: ref24
  article-title: Practical stacked non-local attention modules for image compression
  publication-title: Proc CVPR Workshops
– ident: ref3
  doi: 10.1109/TCSVT.2012.2221191
– start-page: 10794
  year: 2018
  ident: ref11
  article-title: Joint autoregressive and hierarchical priors for learned image compression
  publication-title: Proc NIPS
– year: 2014
  ident: ref45
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref34
  doi: 10.1016/S0893-6080(05)80023-1
– year: 2018
  ident: ref10
  article-title: Variational image compression with a scale hyperprior
  publication-title: arXiv 1802 01436
– year: 2016
  ident: ref9
  article-title: End-to-end optimized image compression
  publication-title: arXiv 1611 01704
– year: 2017
  ident: ref47
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
– year: 2019
  ident: ref36
  article-title: Deep ensemble learning for alzheimers disease classification
  publication-title: arXiv 1905 12827
– start-page: 1141
  year: 2017
  ident: ref8
  article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations
  publication-title: Proc NIPS
– ident: ref38
  doi: 10.1109/TITS.2018.2888587
– ident: ref21
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref31
  doi: 10.1007/3-540-59119-2_166
– ident: ref15
  doi: 10.1007/BF00116037
– ident: ref16
  doi: 10.1007/978-1-4615-3626-0_12
– ident: ref41
  doi: 10.1016/j.ins.2016.08.007
– volume: 4
  start-page: 142
  year: 1959
  ident: ref1
  article-title: Coding theorems for a discrete source with a fidelity criterion
  publication-title: IRE Nat Conv Rec
– start-page: 1097
  year: 2012
  ident: ref19
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc NIPS
– ident: ref32
  doi: 10.1007/BF00058655
– ident: ref30
  doi: 10.1006/inco.1995.1136
– ident: ref18
  doi: 10.1016/S0923-5965(01)00024-8
SSID ssj0014847
Score 2.5172803
Snippet End-to-end image compression using trained deep networks as encoding/decoding models has been developed substantially in the recent years. Previous work is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1193
SubjectTerms Adaptation models
Coders
Coding
Decoding
Distortion
Encoding-Decoding
Ensemble learning
Entropy coding
Floating point arithmetic
Geometric transformation
Image coding
Image compression
Modal choice
Optimization
Rate-distortion
rate-distortion optimization
Transforms
Title Ensemble Learning-Based Rate-Distortion Optimization for End-to-End Image Compression
URI https://ieeexplore.ieee.org/document/9109567
https://www.proquest.com/docview/2498873656
Volume 31
WOSCitedRecordID wos000626532100028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4B4kEP_kIjiqYHb1ph7Vi7oyJEE4NGgXBb1q4zJjAMDP9-X8sgGo2Jp-3QJktf-73vW98PgPNUirQVqJgyIwLqK18iDoYJHndP-wFPEu6iKocPoteTo1H4VILLdS6MMcYFn5kr--ru8pOpXthfZQ10bUjnRRnKQgTLXK31jYEvXTMxpAselejHVgkyzbDRb78M-ygFGSpUqwG4980Jua4qP6DY-Zfuzv--bBe2Cx5JrpeG34OSyfZh60t1wSoMOtncTNTYkKKI6iu9QZ-VkGfkl_TW1QexZiGPCBuTIh-TIIklnSyh-ZTig9xPEHCIRY1lwGx2AINup9--o0UXBap54OU0bgaMpSb2TSxVK0GB5GklQ629OGbcF8wXJgni0OepkgyxMVWhRJYW6GYLZbfhh1DJppk5AqJQnPBU2HotHM8-V4J7KTehUMYyA1YDb7WskS5KjNtOF-PISY1mGDlTRNYUUWGKGlys57wvC2z8ObpqF389slj3GtRX1ouKMziPUFgignIkrMe_zzqBTWYjVFxEWR0q-WxhTmFDf-Rv89mZ216ffZ3LGA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MC6gP3sXp1Dz4ptE2yZr00ctEcU7RbfhWmjQVwXXipr_fk6wbiiL41D4kUHKS73xfcy4A-7mSeT3SKWVWRlRooRAH4wyPe2hExLOM-6jKblO2WurxMb6rwOEkF8Za64PP7JF79Xf5Wd-8u19lx-jakM7LKZipC8GCUbbW5M5AKN9ODAlDSBV6snGKTBAft88eum0Ugww1qlMBPPzmhnxflR9g7D3MxdL_vm0ZFksmSU5Gpl-Bii1WYeFLfcE16DSKge3pF0vKMqpP9BS9VkbukWHSc18hxBmG3CJw9MqMTII0ljSKjA77FB_kqoeQQxxujEJmi3XoXDTaZ5e07KNADY_CIU2DiLHcpsKmStczlEih0So2JkxTxoVkQtosSmPBc60YomOuY4U8LTJBHYW35RswXfQLuwlEozzhuXQVWziefq4lD3NuY6mt4wasCuF4WRNTFhl3vS5eEi82gjjxpkicKZLSFFU4mMx5HZXY-HP0mlv8ychy3atQG1svKU_hIEFpiRjKkbJu_T5rD-Yu2zfNpHnVut6GeebiVXx8WQ2mh2_vdgdmzcfwefC267faJznDzl8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Learning-Based+Rate-Distortion+Optimization+for+End-to-End+Image+Compression&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Wang%2C+Yefei&rft.au=Liu%2C+Dong&rft.au=Ma%2C+Siwei&rft.au=Wu%2C+Feng&rft.date=2021-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=31&rft.issue=3&rft.spage=1193&rft_id=info:doi/10.1109%2FTCSVT.2020.3000331&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon