On the Lossless Compression of HyperHeight LiDAR Forested Landscape Data

Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate change, disaster management, and ecological conservation. A HyperHeight Data Cube (HHDC) is a novel representation of LiDAR data. HHDCs are stru...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 17; číslo 21; s. 3588
Hlavní autoři: Makarichev, Viktor, Ramirez-Jaime, Andres, Porras-Diaz, Nestor, Vasilyeva, Irina, Lukin, Vladimir, Arce, Gonzalo, Okarma, Krzysztof
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2025
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate change, disaster management, and ecological conservation. A HyperHeight Data Cube (HHDC) is a novel representation of LiDAR data. HHDCs are structured three-dimensional tensors, where each cell captures the number of photons detected at specific spatial and height coordinates. These data structures preserve the detailed vertical and horizontal information essential for ecological and topographical analyses, particularly Digital Terrain Models and canopy height profiles. In this paper, we investigate lossless compression techniques for large volumes of HHDCs to alleviate constraints on onboard storage, processing resources, and downlink bandwidth. We analyze several methods, including bit packing, Rice coding (RC), run-length encoding (RLE), and context-adaptive binary arithmetic coding (CABAC), as well as their combinations. We introduce the block-splitting framework, which is a simplified version of octrees. The combination of RC with RLE and CABAC within this framework achieves a median compression ratio greater than 24, which is confirmed by the results of processing two large sets of HHDCs simulated using the Smithsonian Environmental Research Center NEON data.
AbstractList What are the main findings? * The combination of Golomb–Rice coding with run-length encoding and context-adaptive binary arithmetic coding within the developed block-splitting framework provides a median compression ratio above 24 for HyperHeight LiDAR data. * The proposed methods provide lossless reconstruction and outperform standard NPZ and bit packing when compressing HyperHeight LiDAR data. The combination of Golomb–Rice coding with run-length encoding and context-adaptive binary arithmetic coding within the developed block-splitting framework provides a median compression ratio above 24 for HyperHeight LiDAR data. The proposed methods provide lossless reconstruction and outperform standard NPZ and bit packing when compressing HyperHeight LiDAR data. What are the implications of the main findings? * The proposed approach enables efficient, lossless onboard compression of large LiDAR datasets for satellite missions such as NASA CASALS. * Scalability and data transfer efficiency are improved, supporting real-time environmental monitoring and analysis. The proposed approach enables efficient, lossless onboard compression of large LiDAR datasets for satellite missions such as NASA CASALS. Scalability and data transfer efficiency are improved, supporting real-time environmental monitoring and analysis. Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate change, disaster management, and ecological conservation. A HyperHeight Data Cube (HHDC) is a novel representation of LiDAR data. HHDCs are structured three-dimensional tensors, where each cell captures the number of photons detected at specific spatial and height coordinates. These data structures preserve the detailed vertical and horizontal information essential for ecological and topographical analyses, particularly Digital Terrain Models and canopy height profiles. In this paper, we investigate lossless compression techniques for large volumes of HHDCs to alleviate constraints on onboard storage, processing resources, and downlink bandwidth. We analyze several methods, including bit packing, Rice coding (RC), run-length encoding (RLE), and context-adaptive binary arithmetic coding (CABAC), as well as their combinations. We introduce the block-splitting framework, which is a simplified version of octrees. The combination of RC with RLE and CABAC within this framework achieves a median compression ratio greater than 24, which is confirmed by the results of processing two large sets of HHDCs simulated using the Smithsonian Environmental Research Center NEON data.
Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate change, disaster management, and ecological conservation. A HyperHeight Data Cube (HHDC) is a novel representation of LiDAR data. HHDCs are structured three-dimensional tensors, where each cell captures the number of photons detected at specific spatial and height coordinates. These data structures preserve the detailed vertical and horizontal information essential for ecological and topographical analyses, particularly Digital Terrain Models and canopy height profiles. In this paper, we investigate lossless compression techniques for large volumes of HHDCs to alleviate constraints on onboard storage, processing resources, and downlink bandwidth. We analyze several methods, including bit packing, Rice coding (RC), run-length encoding (RLE), and context-adaptive binary arithmetic coding (CABAC), as well as their combinations. We introduce the block-splitting framework, which is a simplified version of octrees. The combination of RC with RLE and CABAC within this framework achieves a median compression ratio greater than 24, which is confirmed by the results of processing two large sets of HHDCs simulated using the Smithsonian Environmental Research Center NEON data.
What are the main findings? The combination of Golomb–Rice coding with run-length encoding and context-adaptive binary arithmetic coding within the developed block-splitting framework provides a median compression ratio above 24 for HyperHeight LiDAR data. The proposed methods provide lossless reconstruction and outperform standard NPZ and bit packing when compressing HyperHeight LiDAR data. What are the implications of the main findings? The proposed approach enables efficient, lossless onboard compression of large LiDAR datasets for satellite missions such as NASA CASALS. Scalability and data transfer efficiency are improved, supporting real-time environmental monitoring and analysis. Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate change, disaster management, and ecological conservation. A HyperHeight Data Cube (HHDC) is a novel representation of LiDAR data. HHDCs are structured three-dimensional tensors, where each cell captures the number of photons detected at specific spatial and height coordinates. These data structures preserve the detailed vertical and horizontal information essential for ecological and topographical analyses, particularly Digital Terrain Models and canopy height profiles. In this paper, we investigate lossless compression techniques for large volumes of HHDCs to alleviate constraints on onboard storage, processing resources, and downlink bandwidth. We analyze several methods, including bit packing, Rice coding (RC), run-length encoding (RLE), and context-adaptive binary arithmetic coding (CABAC), as well as their combinations. We introduce the block-splitting framework, which is a simplified version of octrees. The combination of RC with RLE and CABAC within this framework achieves a median compression ratio greater than 24, which is confirmed by the results of processing two large sets of HHDCs simulated using the Smithsonian Environmental Research Center NEON data.
Audience Academic
Author Ramirez-Jaime, Andres
Lukin, Vladimir
Vasilyeva, Irina
Arce, Gonzalo
Porras-Diaz, Nestor
Makarichev, Viktor
Okarma, Krzysztof
Author_xml – sequence: 1
  givenname: Viktor
  orcidid: 0000-0003-1481-9132
  surname: Makarichev
  fullname: Makarichev, Viktor
– sequence: 2
  givenname: Andres
  orcidid: 0000-0002-9215-5426
  surname: Ramirez-Jaime
  fullname: Ramirez-Jaime, Andres
– sequence: 3
  givenname: Nestor
  orcidid: 0009-0002-4369-384X
  surname: Porras-Diaz
  fullname: Porras-Diaz, Nestor
– sequence: 4
  givenname: Irina
  orcidid: 0000-0002-1378-1104
  surname: Vasilyeva
  fullname: Vasilyeva, Irina
– sequence: 5
  givenname: Vladimir
  orcidid: 0000-0002-1443-9685
  surname: Lukin
  fullname: Lukin, Vladimir
– sequence: 6
  givenname: Gonzalo
  orcidid: 0000-0001-7163-7111
  surname: Arce
  fullname: Arce, Gonzalo
– sequence: 7
  givenname: Krzysztof
  orcidid: 0000-0002-6721-3241
  surname: Okarma
  fullname: Okarma, Krzysztof
BookMark eNpNUUtrGzEQFiWFpm4u_QWC3gpOR6-VdDROUwcWAqU9i1k9nDX2aittDvn3lePSdoZhhnl8zMz3nlxNeYqEfGRwK4SFL6UyzZlQxrwh1xw0X0tu-dV_8TtyU-sBmgjBLMhrsnuc6PIUaZ9rPcZa6Taf5tKCMU80J7p7mWPZxXH_tNB-vNt8p_e5lZcYaI9TqB7nSO9wwQ_kbcJjjTd__Ir8vP_6Y7tb94_fHrabfu1Fx5Y1AmcwIIaog_eCQfJMcS90AimjRlQCGUiBAIMafEhKmyEZ2xkNWg1BrMjDBTdkPLi5jCcsLy7j6F4TuewdlmX0x-hMF8QgbEzyLFxaawE86JQkGpCqYX26YM0l_3puV7lDfi5TW98JrpmSwjZbkdtL1x4b6DilvBT0TUM8jb5RkMaW35hOKMU7cx74fBnwpX21xPR3TQbuzJT7x5T4DbmLhI8
Cites_doi 10.1109/MGRS.2020.3048443
10.1109/ICME.2007.4284761
10.1109/MGRS.2014.2352465
10.1109/SSP64130.2025.11073328
10.1201/9781315154381-5
10.1109/IGARSS53475.2024.10642000
10.1109/TGRS.2008.2009316
10.1117/12.3025299
10.3390/rs10030482
10.1109/DSMP.2016.7583539
10.1109/IGARSS46834.2022.9884418
10.2112/JCOASTRES-D-11-00017.1
10.1109/CISA60639.2024.10576270
10.1147/rd.326.0717
10.3390/rs17071215
10.3390/rs17040679
10.1117/1.OE.51.11.111712
10.1007/978-3-319-25691-7_16
10.1016/B978-0-12-809474-7.00001-X
10.3390/rs17050899
10.1007/978-1-84882-903-9
10.3390/s151024926
10.1109/30.125072
10.1109/IGARSS52108.2023.10281919
10.1029/2018EA000506
10.3390/sym11101274
10.1016/j.rse.2019.111262
10.3390/rs11111390
10.1109/IGARSS53475.2024.10641698
10.3390/rs8121039
10.1201/9781315097954
10.1038/s41586-020-2649-2
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs17213588
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_86d3b39ef444442499900c07ff4a8045
A863552684
10_3390_rs17213588
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-a0210baade7dcc310fc152c37f044e7aa53a1043a00b5bcdf578bf89687075bd3
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001613138400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Mon Nov 17 19:31:59 EST 2025
Thu Nov 13 19:12:09 EST 2025
Tue Nov 18 03:51:26 EST 2025
Wed Nov 05 20:41:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a0210baade7dcc310fc152c37f044e7aa53a1043a00b5bcdf578bf89687075bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1378-1104
0009-0002-4369-384X
0000-0003-1481-9132
0000-0002-9215-5426
0000-0001-7163-7111
0000-0002-1443-9685
0000-0002-6721-3241
OpenAccessLink https://www.proquest.com/docview/3271543954?pq-origsite=%requestingapplication%
PQID 3271543954
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_86d3b39ef444442499900c07ff4a8045
proquest_journals_3271543954
gale_infotracacademiconefile_A863552684
crossref_primary_10_3390_rs17213588
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_13
ref_35
ref_12
ref_11
ref_33
ref_10
ref_31
ref_30
Hihara (ref_16) 2015; 15
ref_18
ref_17
ref_15
Klemas (ref_3) 2011; 27
Blanes (ref_36) 2014; 2
Kiely (ref_20) 2021; 9
Uss (ref_24) 2012; 51
Harris (ref_32) 2020; 585
ref_25
ref_23
ref_22
ref_21
Magli (ref_19) 2009; 47
Pennebaker (ref_34) 1988; 32
ref_1
Hancock (ref_4) 2019; 6
ref_2
ref_29
Arce (ref_8) 2024; 62
ref_27
ref_26
ref_9
Wallace (ref_28) 1992; 38
Tang (ref_5) 2019; 231
ref_7
ref_6
References_xml – volume: 9
  start-page: 102
  year: 2021
  ident: ref_20
  article-title: The CCSDS 123.0-B-2 “Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression” Standard: A comprehensive review
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2020.3048443
– ident: ref_35
  doi: 10.1109/ICME.2007.4284761
– ident: ref_26
– volume: 2
  start-page: 8
  year: 2014
  ident: ref_36
  article-title: A Tutorial on Image Compression for Optical Space Imaging Systems
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2014.2352465
– ident: ref_13
  doi: 10.1109/SSP64130.2025.11073328
– ident: ref_1
  doi: 10.1201/9781315154381-5
– ident: ref_7
  doi: 10.1109/IGARSS53475.2024.10642000
– volume: 47
  start-page: 1168
  year: 2009
  ident: ref_19
  article-title: Multiband Lossless Compression of Hyperspectral Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2009316
– ident: ref_9
  doi: 10.1117/12.3025299
– ident: ref_23
  doi: 10.3390/rs10030482
– ident: ref_15
  doi: 10.1109/DSMP.2016.7583539
– ident: ref_6
  doi: 10.1109/IGARSS46834.2022.9884418
– volume: 27
  start-page: 1019
  year: 2011
  ident: ref_3
  article-title: Beach profiling and LIDAR bathymetry: An overview with case studies
  publication-title: J. Coast. Res.
  doi: 10.2112/JCOASTRES-D-11-00017.1
– ident: ref_12
  doi: 10.1109/CISA60639.2024.10576270
– volume: 62
  start-page: 1
  year: 2024
  ident: ref_8
  article-title: HyperHeight LiDAR Compressive Sampling and Machine Learning Reconstruction of Forested Landscapes
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 32
  start-page: 717
  year: 1988
  ident: ref_34
  article-title: An overview of the basic principles of the Q-Coder adaptive binary arithmetic coder
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.326.0717
– ident: ref_10
  doi: 10.3390/rs17071215
– ident: ref_18
  doi: 10.3390/rs17040679
– volume: 51
  start-page: 111712
  year: 2012
  ident: ref_24
  article-title: Maximum Likelihood Estimation of Spatially Correlated Signal-Dependent Noise in Hyperspectral Images
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.51.11.111712
– ident: ref_33
  doi: 10.1007/978-3-319-25691-7_16
– ident: ref_25
  doi: 10.1016/B978-0-12-809474-7.00001-X
– ident: ref_22
  doi: 10.3390/rs17050899
– ident: ref_31
– ident: ref_29
– ident: ref_30
  doi: 10.1007/978-1-84882-903-9
– volume: 15
  start-page: 24926
  year: 2015
  ident: ref_16
  article-title: Onboard Image Processing System for Hyperspectral Sensor
  publication-title: Sensors
  doi: 10.3390/s151024926
– volume: 38
  start-page: xviii
  year: 1992
  ident: ref_28
  article-title: The JPEG still picture compression standard
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/30.125072
– ident: ref_17
  doi: 10.1109/IGARSS52108.2023.10281919
– volume: 6
  start-page: 294
  year: 2019
  ident: ref_4
  article-title: The GEDI simulator: A large-footprint waveform lidar simulator for calibration and validation of spaceborne missions
  publication-title: Earth Space Sci.
  doi: 10.1029/2018EA000506
– ident: ref_14
  doi: 10.3390/sym11101274
– volume: 231
  start-page: 111262
  year: 2019
  ident: ref_5
  article-title: Characterizing global forest canopy cover distribution using spaceborne lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111262
– ident: ref_21
  doi: 10.3390/rs11111390
– ident: ref_11
  doi: 10.1109/IGARSS53475.2024.10641698
– ident: ref_2
  doi: 10.3390/rs8121039
– ident: ref_27
  doi: 10.1201/9781315097954
– volume: 585
  start-page: 357
  year: 2020
  ident: ref_32
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
SSID ssj0000331904
Score 2.4126859
Snippet Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate...
What are the main findings? * The combination of Golomb–Rice coding with run-length encoding and context-adaptive binary arithmetic coding within the developed...
What are the main findings? The combination of Golomb–Rice coding with run-length encoding and context-adaptive binary arithmetic coding within the developed...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 3588
SubjectTerms Algorithms
Analysis
Arithmetic coding
Binary codes
Climate change
Climatic changes
Compression
Compression ratio
context-adaptive binary arithmetic encoding
Data compression
Data structures
Data transfer (computers)
Data transmission
Datasets
Disaster management
Emergency preparedness
Entropy
Environmental monitoring
Environmental research
Height
hyperheight data cube (HHDC)
Ice sheets
Lidar
light detection and ranging (LiDAR)
lossless compression
Mathematical analysis
Neon
Octrees
Optical radar
Photons
Real time
Remote sensing
Research facilities
Rice codes
run-length encoding
Sparsity
Splitting
Tensors
Terrain models
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yBL2IP7E6JaDgqaxb0qY9TufoYUwRhd1CkiY4kE66Kvjf-17auV3Eiz2GEsJ7ee99X0jeR8i15sJokaWhssBNeBG7MLM2CQ2UDiU07CKXerEJMZ2ms1n2uCH1hXfCmvbAjeF6aVIwzTLrOH4DBOhRZCLhHFcp4BHMvpHINsiUz8EMtlbEm36kDHh9r1oi2WGxl1hZVyDfqP-3dOxrzHif7LXgkA6bRR2QLVsekp1Wp_z164jkDyUFxEYnMPEb5CiK4dzcZC3pwtEcWGWV-9NOOpmPhk8UpTfxRJNO8E0v3naiI1WrY_Iyvn--y8NWCyE0LOnXoUJuppUqrCiMAUzmDFRew4SLOLdCqZgpYFZMRZGOtSkcRKJ2aZZAPIpYF-yEdMpFaU8J7VuYhCnGY2W4yDQgRBe7xDpmrQA4EpCrlX3ke9PyQgJVQCvKtRUDcoum-_kD21T7AXCebJ0n_3JeQG7Q8BKDqa6UUe2bAFgotqWSwxTxEDakCUh35RvZRtlSsoEABMiymJ_9x2rOye4A1X39S8Mu6dTVh70g2-azni-rS7_BvgHHL9KY
  priority: 102
  providerName: Directory of Open Access Journals
Title On the Lossless Compression of HyperHeight LiDAR Forested Landscape Data
URI https://www.proquest.com/docview/3271543954
https://doaj.org/article/86d3b39ef444442499900c07ff4a8045
Volume 17
WOSCitedRecordID wos001613138400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CDYld-EYrjMoSSJyipbUdJyfUsU5FKiUaIA0ulu3YbNKUjjRM2oW_nfdcdz3BhRxyiKPI8vv8vdjvB_DGCuWsqsrMeMQmopEhq7wvMoehwyiLWhTKSDahFovy7KyqU8FtlbZVbnxidNTN0lGN_JCPFUZ7Xknx7upnRqxR9Hc1UWjchV3qkjCKW_c-39ZYco4Klot1V1KO6P6wWxHk4TISrWzjUGzX_zenHCPNycP_neMjeJByTDZZK8VjuOPbJ3A_0Z2f3zyF2aeWYeLH5jizS3R1jLzCekNsy5aBzRCcdrNYNGXzi-PJKSMGTyqMsjkdDaZNU-zY9OYZfD2Zfnk_yxKlQuZ4MeozQxDPGtN41TiHqV1wGMAdVyEXwitjJDcI0LjJcyutawIatA1lVaBZK2kb_hx22mXr94GNPH6EGy6kcUJVFhPNIEPhA_deYVYzgNebBdZX684ZGhEHiUFvxTCAI1r72zeo23V8sOx-6GQ8uiwabnnlg6BrTCAtz12uQhCmxJx0AG9Jcppssu-MM-loAU6UulvpSUlpFfW1GcDBRnI6GetKb8X24t_DL2FvTPS_8SjiAez03S__Cu656_5i1Q1h92i6qE-HEdYPoybS_fcU77X8juP1h4_1tz--Wuhw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLVK58I1YWoolQJyiprETJweEli5VVk2XFSpSObm2Y0MllC3ZUNQ_xW9kJh_dE9x6IMckihLP08y8iWcewCsjpDUySwPtkJuIMvZB5lwSWAwdWhpEkU9bsQk5n6enp9liA34PvTC0rXLwia2jLpeWauR7PJIY7XkWi3cXPwJSjaK_q4OERgeLI3f1Cynb6u1sivZ9HUWHH04O8qBXFQgsT_abQBPLMVqXTpbWYnbjLcYwy6UPhXBS65hr5Chch6GJjS09Ytr4NEsQ2TI2Jcfn3oJNQWAfweZidrz4cl3VCTlCOhTdHFTOs3CvXhHJ4nEr7bKOfK1AwN_CQBvbDu_9b6tyH-72WTSbdLB_ABuueghbvaD7t6tHkH-sGKa2rMCV-I7OnJHf67b8VmzpWY70u87bsjArzqeTT4w0Sqn0ywpqfqZtYWyqG_0YPt_IhzyBUbWs3FNg-w4fwjUXsbZCZgZTaR_7xHnunMS8bQwvB4Oqi242iEJORWZXa7OP4T3Z-voOmufdnljWX1XvHlSalNzwzHlBR0Q0NAxtKL0XOsWsewxvCCmKvE5Ta6v75gl8UZrfpSYpJY40uWcMOwNSVO-OVmoNk2f_vvwCtvKT40IVs_nRNtyJSOy4bbzcgVFT_3TP4ba9bM5X9W6PfAZnNw2rPxuwQVU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgoAL34iFApYAcYrWje04OSC0sKy26mpZIZAqLq7t2FAJZUs2gPrX-HXM5KN7glsP5JhEUWI_z8ybjOcBPHdSe6eLPLEBuYksVUyKELLEo-uw2iGKYt6KTejlMj86KlY78HvYC0NllYNNbA11ufaUIx-LVKO3F4WS49iXRayms9en3xNSkKI_rYOcRgeRw3D2C-nb5tXBFOf6RZrO3n18O096hYHEi2y_SSwxHmdtGXTpPUY60aM_80JHLmXQ1iphka8Iy7lTzpcR8e1iXmSIcq1cKfC5l-CyRo5J5YQr9fk8v8MFgpvLriOqEAUf1xuiW0K1Ii9bH9hKBfzNIbRebnbzfx6fW3Cjj63ZpFsMt2EnVHfgWi_z_vXsLszfVwwDXrbAUfmGJp6RNewKgSu2jmyOpLyet8litjiZTj4wUi6lhDBb0JZoKhZjU9vYe_DpQj7kPuxW6yo8ALYf8CHCCqmsl7pwGGBHFbMQRQgao7kRPBsm15x2HUMMMi2CgNlCYARvaN7P76Au3-2Jdf3F9EbD5FkpnChClHSkRE4591zHKG2OsfgIXhJqDNmiprbe9lsq8EWpq5eZ5BROUj-fEewNqDG9kdqYLWQe_vvyU7iKWDKLg-XhI7iekgJyuxtzD3ab-kd4DFf8z-ZkUz9plwCD44vG1B_fcEi4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Lossless+Compression+of+HyperHeight+LiDAR+Forested+Landscape+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Makarichev%2C+Viktor&rft.au=Ramirez-Jaime%2C+Andres&rft.au=Porras-Diaz%2C+Nestor&rft.au=Vasilyeva%2C+Irina&rft.date=2025-11-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=17&rft.issue=21&rft.spage=3588&rft_id=info:doi/10.3390%2Frs17213588&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs17213588
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon