On the Lossless Compression of HyperHeight LiDAR Forested Landscape Data
Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate change, disaster management, and ecological conservation. A HyperHeight Data Cube (HHDC) is a novel representation of LiDAR data. HHDCs are stru...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 17; číslo 21; s. 3588 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.11.2025
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate change, disaster management, and ecological conservation. A HyperHeight Data Cube (HHDC) is a novel representation of LiDAR data. HHDCs are structured three-dimensional tensors, where each cell captures the number of photons detected at specific spatial and height coordinates. These data structures preserve the detailed vertical and horizontal information essential for ecological and topographical analyses, particularly Digital Terrain Models and canopy height profiles. In this paper, we investigate lossless compression techniques for large volumes of HHDCs to alleviate constraints on onboard storage, processing resources, and downlink bandwidth. We analyze several methods, including bit packing, Rice coding (RC), run-length encoding (RLE), and context-adaptive binary arithmetic coding (CABAC), as well as their combinations. We introduce the block-splitting framework, which is a simplified version of octrees. The combination of RC with RLE and CABAC within this framework achieves a median compression ratio greater than 24, which is confirmed by the results of processing two large sets of HHDCs simulated using the Smithsonian Environmental Research Center NEON data. |
|---|---|
| AbstractList | What are the main findings? * The combination of Golomb–Rice coding with run-length encoding and context-adaptive binary arithmetic coding within the developed block-splitting framework provides a median compression ratio above 24 for HyperHeight LiDAR data. * The proposed methods provide lossless reconstruction and outperform standard NPZ and bit packing when compressing HyperHeight LiDAR data. The combination of Golomb–Rice coding with run-length encoding and context-adaptive binary arithmetic coding within the developed block-splitting framework provides a median compression ratio above 24 for HyperHeight LiDAR data. The proposed methods provide lossless reconstruction and outperform standard NPZ and bit packing when compressing HyperHeight LiDAR data. What are the implications of the main findings? * The proposed approach enables efficient, lossless onboard compression of large LiDAR datasets for satellite missions such as NASA CASALS. * Scalability and data transfer efficiency are improved, supporting real-time environmental monitoring and analysis. The proposed approach enables efficient, lossless onboard compression of large LiDAR datasets for satellite missions such as NASA CASALS. Scalability and data transfer efficiency are improved, supporting real-time environmental monitoring and analysis. Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate change, disaster management, and ecological conservation. A HyperHeight Data Cube (HHDC) is a novel representation of LiDAR data. HHDCs are structured three-dimensional tensors, where each cell captures the number of photons detected at specific spatial and height coordinates. These data structures preserve the detailed vertical and horizontal information essential for ecological and topographical analyses, particularly Digital Terrain Models and canopy height profiles. In this paper, we investigate lossless compression techniques for large volumes of HHDCs to alleviate constraints on onboard storage, processing resources, and downlink bandwidth. We analyze several methods, including bit packing, Rice coding (RC), run-length encoding (RLE), and context-adaptive binary arithmetic coding (CABAC), as well as their combinations. We introduce the block-splitting framework, which is a simplified version of octrees. The combination of RC with RLE and CABAC within this framework achieves a median compression ratio greater than 24, which is confirmed by the results of processing two large sets of HHDCs simulated using the Smithsonian Environmental Research Center NEON data. Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate change, disaster management, and ecological conservation. A HyperHeight Data Cube (HHDC) is a novel representation of LiDAR data. HHDCs are structured three-dimensional tensors, where each cell captures the number of photons detected at specific spatial and height coordinates. These data structures preserve the detailed vertical and horizontal information essential for ecological and topographical analyses, particularly Digital Terrain Models and canopy height profiles. In this paper, we investigate lossless compression techniques for large volumes of HHDCs to alleviate constraints on onboard storage, processing resources, and downlink bandwidth. We analyze several methods, including bit packing, Rice coding (RC), run-length encoding (RLE), and context-adaptive binary arithmetic coding (CABAC), as well as their combinations. We introduce the block-splitting framework, which is a simplified version of octrees. The combination of RC with RLE and CABAC within this framework achieves a median compression ratio greater than 24, which is confirmed by the results of processing two large sets of HHDCs simulated using the Smithsonian Environmental Research Center NEON data. What are the main findings? The combination of Golomb–Rice coding with run-length encoding and context-adaptive binary arithmetic coding within the developed block-splitting framework provides a median compression ratio above 24 for HyperHeight LiDAR data. The proposed methods provide lossless reconstruction and outperform standard NPZ and bit packing when compressing HyperHeight LiDAR data. What are the implications of the main findings? The proposed approach enables efficient, lossless onboard compression of large LiDAR datasets for satellite missions such as NASA CASALS. Scalability and data transfer efficiency are improved, supporting real-time environmental monitoring and analysis. Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate change, disaster management, and ecological conservation. A HyperHeight Data Cube (HHDC) is a novel representation of LiDAR data. HHDCs are structured three-dimensional tensors, where each cell captures the number of photons detected at specific spatial and height coordinates. These data structures preserve the detailed vertical and horizontal information essential for ecological and topographical analyses, particularly Digital Terrain Models and canopy height profiles. In this paper, we investigate lossless compression techniques for large volumes of HHDCs to alleviate constraints on onboard storage, processing resources, and downlink bandwidth. We analyze several methods, including bit packing, Rice coding (RC), run-length encoding (RLE), and context-adaptive binary arithmetic coding (CABAC), as well as their combinations. We introduce the block-splitting framework, which is a simplified version of octrees. The combination of RC with RLE and CABAC within this framework achieves a median compression ratio greater than 24, which is confirmed by the results of processing two large sets of HHDCs simulated using the Smithsonian Environmental Research Center NEON data. |
| Audience | Academic |
| Author | Ramirez-Jaime, Andres Lukin, Vladimir Vasilyeva, Irina Arce, Gonzalo Porras-Diaz, Nestor Makarichev, Viktor Okarma, Krzysztof |
| Author_xml | – sequence: 1 givenname: Viktor orcidid: 0000-0003-1481-9132 surname: Makarichev fullname: Makarichev, Viktor – sequence: 2 givenname: Andres orcidid: 0000-0002-9215-5426 surname: Ramirez-Jaime fullname: Ramirez-Jaime, Andres – sequence: 3 givenname: Nestor orcidid: 0009-0002-4369-384X surname: Porras-Diaz fullname: Porras-Diaz, Nestor – sequence: 4 givenname: Irina orcidid: 0000-0002-1378-1104 surname: Vasilyeva fullname: Vasilyeva, Irina – sequence: 5 givenname: Vladimir orcidid: 0000-0002-1443-9685 surname: Lukin fullname: Lukin, Vladimir – sequence: 6 givenname: Gonzalo orcidid: 0000-0001-7163-7111 surname: Arce fullname: Arce, Gonzalo – sequence: 7 givenname: Krzysztof orcidid: 0000-0002-6721-3241 surname: Okarma fullname: Okarma, Krzysztof |
| BookMark | eNpNUUtrGzEQFiWFpm4u_QWC3gpOR6-VdDROUwcWAqU9i1k9nDX2aittDvn3lePSdoZhhnl8zMz3nlxNeYqEfGRwK4SFL6UyzZlQxrwh1xw0X0tu-dV_8TtyU-sBmgjBLMhrsnuc6PIUaZ9rPcZa6Taf5tKCMU80J7p7mWPZxXH_tNB-vNt8p_e5lZcYaI9TqB7nSO9wwQ_kbcJjjTd__Ir8vP_6Y7tb94_fHrabfu1Fx5Y1AmcwIIaog_eCQfJMcS90AimjRlQCGUiBAIMafEhKmyEZ2xkNWg1BrMjDBTdkPLi5jCcsLy7j6F4TuewdlmX0x-hMF8QgbEzyLFxaawE86JQkGpCqYX26YM0l_3puV7lDfi5TW98JrpmSwjZbkdtL1x4b6DilvBT0TUM8jb5RkMaW35hOKMU7cx74fBnwpX21xPR3TQbuzJT7x5T4DbmLhI8 |
| Cites_doi | 10.1109/MGRS.2020.3048443 10.1109/ICME.2007.4284761 10.1109/MGRS.2014.2352465 10.1109/SSP64130.2025.11073328 10.1201/9781315154381-5 10.1109/IGARSS53475.2024.10642000 10.1109/TGRS.2008.2009316 10.1117/12.3025299 10.3390/rs10030482 10.1109/DSMP.2016.7583539 10.1109/IGARSS46834.2022.9884418 10.2112/JCOASTRES-D-11-00017.1 10.1109/CISA60639.2024.10576270 10.1147/rd.326.0717 10.3390/rs17071215 10.3390/rs17040679 10.1117/1.OE.51.11.111712 10.1007/978-3-319-25691-7_16 10.1016/B978-0-12-809474-7.00001-X 10.3390/rs17050899 10.1007/978-1-84882-903-9 10.3390/s151024926 10.1109/30.125072 10.1109/IGARSS52108.2023.10281919 10.1029/2018EA000506 10.3390/sym11101274 10.1016/j.rse.2019.111262 10.3390/rs11111390 10.1109/IGARSS53475.2024.10641698 10.3390/rs8121039 10.1201/9781315097954 10.1038/s41586-020-2649-2 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/rs17213588 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_86d3b39ef444442499900c07ff4a8045 A863552684 10_3390_rs17213588 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-a0210baade7dcc310fc152c37f044e7aa53a1043a00b5bcdf578bf89687075bd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001613138400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Mon Nov 17 19:31:59 EST 2025 Thu Nov 13 19:12:09 EST 2025 Tue Nov 18 03:51:26 EST 2025 Wed Nov 05 20:41:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-a0210baade7dcc310fc152c37f044e7aa53a1043a00b5bcdf578bf89687075bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1378-1104 0009-0002-4369-384X 0000-0003-1481-9132 0000-0002-9215-5426 0000-0001-7163-7111 0000-0002-1443-9685 0000-0002-6721-3241 |
| OpenAccessLink | https://doaj.org/article/86d3b39ef444442499900c07ff4a8045 |
| PQID | 3271543954 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_86d3b39ef444442499900c07ff4a8045 proquest_journals_3271543954 gale_infotracacademiconefile_A863552684 crossref_primary_10_3390_rs17213588 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_14 ref_13 ref_35 ref_12 ref_11 ref_33 ref_10 ref_31 ref_30 Hihara (ref_16) 2015; 15 ref_18 ref_17 ref_15 Klemas (ref_3) 2011; 27 Blanes (ref_36) 2014; 2 Kiely (ref_20) 2021; 9 Uss (ref_24) 2012; 51 Harris (ref_32) 2020; 585 ref_25 ref_23 ref_22 ref_21 Magli (ref_19) 2009; 47 Pennebaker (ref_34) 1988; 32 ref_1 Hancock (ref_4) 2019; 6 ref_2 ref_29 Arce (ref_8) 2024; 62 ref_27 ref_26 ref_9 Wallace (ref_28) 1992; 38 Tang (ref_5) 2019; 231 ref_7 ref_6 |
| References_xml | – volume: 9 start-page: 102 year: 2021 ident: ref_20 article-title: The CCSDS 123.0-B-2 “Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression” Standard: A comprehensive review publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2020.3048443 – ident: ref_35 doi: 10.1109/ICME.2007.4284761 – ident: ref_26 – volume: 2 start-page: 8 year: 2014 ident: ref_36 article-title: A Tutorial on Image Compression for Optical Space Imaging Systems publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2014.2352465 – ident: ref_13 doi: 10.1109/SSP64130.2025.11073328 – ident: ref_1 doi: 10.1201/9781315154381-5 – ident: ref_7 doi: 10.1109/IGARSS53475.2024.10642000 – volume: 47 start-page: 1168 year: 2009 ident: ref_19 article-title: Multiband Lossless Compression of Hyperspectral Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2009316 – ident: ref_9 doi: 10.1117/12.3025299 – ident: ref_23 doi: 10.3390/rs10030482 – ident: ref_15 doi: 10.1109/DSMP.2016.7583539 – ident: ref_6 doi: 10.1109/IGARSS46834.2022.9884418 – volume: 27 start-page: 1019 year: 2011 ident: ref_3 article-title: Beach profiling and LIDAR bathymetry: An overview with case studies publication-title: J. Coast. Res. doi: 10.2112/JCOASTRES-D-11-00017.1 – ident: ref_12 doi: 10.1109/CISA60639.2024.10576270 – volume: 62 start-page: 1 year: 2024 ident: ref_8 article-title: HyperHeight LiDAR Compressive Sampling and Machine Learning Reconstruction of Forested Landscapes publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 32 start-page: 717 year: 1988 ident: ref_34 article-title: An overview of the basic principles of the Q-Coder adaptive binary arithmetic coder publication-title: IBM J. Res. Dev. doi: 10.1147/rd.326.0717 – ident: ref_10 doi: 10.3390/rs17071215 – ident: ref_18 doi: 10.3390/rs17040679 – volume: 51 start-page: 111712 year: 2012 ident: ref_24 article-title: Maximum Likelihood Estimation of Spatially Correlated Signal-Dependent Noise in Hyperspectral Images publication-title: Opt. Eng. doi: 10.1117/1.OE.51.11.111712 – ident: ref_33 doi: 10.1007/978-3-319-25691-7_16 – ident: ref_25 doi: 10.1016/B978-0-12-809474-7.00001-X – ident: ref_22 doi: 10.3390/rs17050899 – ident: ref_31 – ident: ref_29 – ident: ref_30 doi: 10.1007/978-1-84882-903-9 – volume: 15 start-page: 24926 year: 2015 ident: ref_16 article-title: Onboard Image Processing System for Hyperspectral Sensor publication-title: Sensors doi: 10.3390/s151024926 – volume: 38 start-page: xviii year: 1992 ident: ref_28 article-title: The JPEG still picture compression standard publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/30.125072 – ident: ref_17 doi: 10.1109/IGARSS52108.2023.10281919 – volume: 6 start-page: 294 year: 2019 ident: ref_4 article-title: The GEDI simulator: A large-footprint waveform lidar simulator for calibration and validation of spaceborne missions publication-title: Earth Space Sci. doi: 10.1029/2018EA000506 – ident: ref_14 doi: 10.3390/sym11101274 – volume: 231 start-page: 111262 year: 2019 ident: ref_5 article-title: Characterizing global forest canopy cover distribution using spaceborne lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111262 – ident: ref_21 doi: 10.3390/rs11111390 – ident: ref_11 doi: 10.1109/IGARSS53475.2024.10641698 – ident: ref_2 doi: 10.3390/rs8121039 – ident: ref_27 doi: 10.1201/9781315097954 – volume: 585 start-page: 357 year: 2020 ident: ref_32 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 |
| SSID | ssj0000331904 |
| Score | 2.4126859 |
| Snippet | Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate... What are the main findings? * The combination of Golomb–Rice coding with run-length encoding and context-adaptive binary arithmetic coding within the developed... What are the main findings? The combination of Golomb–Rice coding with run-length encoding and context-adaptive binary arithmetic coding within the developed... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 3588 |
| SubjectTerms | Algorithms Analysis Arithmetic coding Binary codes Climate change Climatic changes Compression Compression ratio context-adaptive binary arithmetic encoding Data compression Data structures Data transfer (computers) Data transmission Datasets Disaster management Emergency preparedness Entropy Environmental monitoring Environmental research Height hyperheight data cube (HHDC) Ice sheets Lidar light detection and ranging (LiDAR) lossless compression Mathematical analysis Neon Octrees Optical radar Photons Real time Remote sensing Research facilities Rice codes run-length encoding Sparsity Splitting Tensors Terrain models |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB71gVQu0BYQgYIstVJPqzqxN949oUCJcojSqg-pN8vPNlK1KZsFiX_PjOM0J7iwx10fLI_n8c3OzAdwYn0I6Nh8wYVDgII-qKgwcC1UwPBEKITNMTUKT9VsVt3d1Zc54bbMZZVrm5gMtV84ypGfiYFCby_qUn55-lEQaxT9Xc0UGtuwS1MS-ql07_o5x8IFXjAuV1NJBaL7s3ZJkEeUiWhl44fSuP6_GeXkacav_3eP-_Aqx5hstLoUB7AVmkPYy3TnD7_fwOSiYRj4sSnu7BFNHSOrsCqIbdgisgmC03aSkqZsOj8fXTFi8KTEKJtSazAVTbFz05m3cDv-fvNtUmRKhcKJYb8rDEE8a4wPyjuHoV106MCdUJFLGZQxpTAI0ITh3JbW-YgKbWNVD1GtVWm9eAc7zaIJ74EpZeso8ND7JiIqlBWv3CBII6WwypuyB8frA9ZPq8kZGhEHiUFvxNCDr3T2zyto2nV6sWjvdVYeXQ29sKIOUdIzIJDGueMqRmkqjEl7cEqS06STXWucya0FuFGabqVHFYVVNNemB0dryemsrEu9EduHf3_-CC8HRP-bWhGPYKdrf4ZP8ML96ubL9nO6e38AfZHglg priority: 102 providerName: ProQuest |
| Title | On the Lossless Compression of HyperHeight LiDAR Forested Landscape Data |
| URI | https://www.proquest.com/docview/3271543954 https://doaj.org/article/86d3b39ef444442499900c07ff4a8045 |
| Volume | 17 |
| WOSCitedRecordID | wos001613138400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS9xAFH8ULdiL2NbS9WMZqOApOO5MdpLjqrussN0G24L2MsxMZlCQKNkoePFv971JVr1IL-aQQxLC8N68936_4X0A7NnSewxsZcKFQ4KCMSjJELgmyiM8EQppc4iFwjM1n2fn53nxatQX5YS17YFbwR1kw1JYkfsg6RoQQOfccRWCNBniEfK-XOWvyFT0wQK3FpdtP1KBvP6gXhDZEWkcsfISgWKj_rfccYwxkw1Y78AhG7WL-gwffPUF1ro55ZcPX2H6q2KI2NgMf3yNPoqRObeZrBW7CWyKrLKextNONrs6GZ0xGr1JJ5psRjW9lO3ETkxjNuHvZPzneJp0sxASJ4aHTWKIm1ljSq9K5xCTBYeR1wkVuJReGZMKg8xKGM5tal0Z0BJtyPIh2qNKbSm-wUp1U_nvwJSyeRAY6Q9NQDonM565gZdGSmFVadIe_FjKR9-2LS80UgWSon6RYg-OSHTPX1Cb6vgAlac75en_Ka8H-yR4TcbU1MaZriYAF0ptqfQoIzxEDWl6sLPUje6sbKHFQCECFHkqt95jNdvwaUDTfWOl4Q6sNPWd34WP7r65WtR9WD0az4uzftxofcoR_U33xzHei_Qfvi9OfxYXTyhi16U |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKlceCMCBVYCxMnq1rvO2geEAqFyVDdEqEjltF3vAyohpzgG1D_Fb2TGj-YEtx7w0bYse-fTzPeNd2YAXpTOewxsLuLCokDBGBSlSFwj5ZGeCIWyObSFwoVaLNKTk2y5Bb-HWhjaVjn4xNZRu5WlHPmeiBVGe5El8s3594imRtHf1WGERgeLQ3_xCyXb-vV8hvZ9GccH74_f5VE_VSCyYrLfRIZUTmmM88pZi-wmWIxhVqjApfTKmEQY1CjCcF4mpXUBMV2GNJsgslVSOoHPvQbbksA-gu3l_Gj5-TKrwwVCmsuuD6oQGd-r1ySyRNKOdtlEvnZAwN_CQBvbDm79b6tyG272LJpNO9jfgS1f3YWdfqD714t7kH-oGFJbVuBKfENnzsjvdVt-K7YKLEf5XedtWpgVZ7PpR0YzSin1ywoqfqZtYWxmGnMfPl3JhzyAUbWq_ENgSpVZEEiJ9k1A3StTntrYSyOlKJUzyRieDwbV511vEI2aisyuN2Yfw1uy9eUd1M-7PbGqv-jePeh04kQpMh8kHTHJUM4tVyFIkyLrHsMrQoomr9PUxpq-eAJflPp36WlKxJE694xhd0CK7t3RWm9g8ujfl5_BTn58VOhivjh8DDdiGnbcFl7uwqipf_gncN3-bM7W9dMe-QxOrxpWfwAHKz_t |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoALb0SgwEqAOFnZetdZ-4BQIESpaoUIgVRx2e4TKiGnOAbUv8avY8aP5gS3HvDRtix799uZ71vPA-C59SGgY_MJFw4FCvqgJEfimqiA9EQolM2xTRQu1XKZHx0Vqx34PeTCUFjlYBNbQ-3XjvbIxyJV6O1Fkclx7MMiVrP569PvCXWQoj-tQzuNDiKH4ewXyrfNq4MZzvWLNJ2_-_h2kfQdBhInJvtNYkjxWGN8UN45ZDrRoT9zQkUuZVDGZMKgXhGGc5tZ5yPi28a8mCDKVWa9wOdegssKNSaFE66yz-f7O1wguLnsKqIKUfBxvSG5JbK2ycvWB7atAv7mEFovN7_5P4_PLbjRc2s27RbDbdgJ1R241rd5_3p2FxbvK4aEl5U4Kt_QxDOyhl0gcMXWkS1QlNeLdrOYlSez6QdGnUtpQ5iVlBJNwWJsZhpzDz5dyIfch91qXYUHwJSyRRRIlPZNRDUsc567NEgjpbDKm2wEz4bJ1addxRCNSosgoLcQGMEbmvfzO6jKd3tiXX_RvdHQ-cQLK4oQJR0piVPOHVcxSpMjFx_BS0KNJlvU1MaZPqUCX5SqeulpTnSS6vmMYG9Aje6N1EZvIfPw35efwlXEki4PloeP4HpKHZDbbMw92G3qH-ExXHE_m5NN_aRdAgyOLxpTfwC_J0dQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Lossless+Compression+of+HyperHeight+LiDAR+Forested+Landscape+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Makarichev%2C+Viktor&rft.au=Ramirez-Jaime%2C+Andres&rft.au=Porras-Diaz%2C+Nestor&rft.au=Vasilyeva%2C+Irina&rft.date=2025-11-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=17&rft.issue=21&rft.spage=3588&rft_id=info:doi/10.3390%2Frs17213588&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs17213588 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |