The ML-EM Algorithm is Not Optimal for Poisson Noise
The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson distributed. This short paper considers the problem that for a given noisy projection data set, whether the ML-EM algorithm is able to provide an ap...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on nuclear science Jg. 62; H. 5; S. 2096 - 2101 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9499, 1558-1578 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson distributed. This short paper considers the problem that for a given noisy projection data set, whether the ML-EM algorithm is able to provide an approximate solution that is close to the true solution. It is well-known that the ML-EM algorithm at early iterations converges towards the true solution and then in later iterations diverges away from the true solution. Therefore a potential good approximate solution can only be obtained by early termination. This short paper argues that the ML-EM algorithm is not optimal in providing such an approximate solution. In order to show that the ML-EM algorithm is not optimal, it is only necessary to provide a different algorithm that performs better. An alternative algorithm is suggested in this paper and this alternative algorithm is able to outperform the ML-EM algorithm. |
|---|---|
| AbstractList | The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson distributed. This short paper considers the problem that for a given noisy projection data set, whether the ML-EM algorithm is able to provide an approximate solution that is close to the true solution. It is well-known that the ML-EM algorithm at early iterations converges towards the true solution and then in later iterations diverges away from the true solution. Therefore a potential good approximate solution can only be obtained by early termination. This short paper argues that the ML-EM algorithm is not optimal in providing such an approximate solution. In order to show that the ML-EM algorithm is not optimal, it is only necessary to provide a different algorithm that performs better. An alternative algorithm is suggested in this paper and this alternative algorithm is able to outperform the ML-EM algorithm. |
| Author | Zeng, Gengsheng L. |
| Author_xml | – sequence: 1 givenname: Gengsheng L. surname: Zeng fullname: Zeng, Gengsheng L. email: larryzeng@weber.edu organization: Department of Engineering, Weber State University, Ogden, UT, USA |
| BookMark | eNp9kE1LAzEQhoNUsFbvgpcFz1szySa7OZZSP6AfgvUcttmJTWk3NUkP_nu3tHjw4GmY4X1mhuea9FrfIiF3QIcAVD0u5-9DRkEMWVEKYNUF6YMQVQ6irHqkTylUuSqUuiLXMW66thBU9EmxXGM2m-aTWTbafvrg0nqXuZjNfcoW--R29TazPmRv3sXo227uIt6QS1tvI96e64B8PE2W45d8unh-HY-mueESUq6woFJVylg0dVNxbgViYzk2DYKQ5QpqzktLAWqLlCNjhhaNKaSybCUM5QPycNq7D_7rgDHpjT-EtjupoWSKlRK46lL0lDLBxxjQ6n3o_g7fGqg-utGdG310o89uOkT-QYxLdXK-TaF22__A-xPoEPH3TskqWUnFfwBpIXFq |
| CODEN | IETNAE |
| CitedBy_id | crossref_primary_10_1007_s40314_016_0313_0 crossref_primary_10_1016_j_compbiomed_2016_08_006 crossref_primary_10_1016_j_compeleceng_2017_02_014 crossref_primary_10_1093_rpd_ncz095 |
| Cites_doi | 10.1109/TMI.1982.4307558 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 |
| DOI | 10.1109/TNS.2015.2475128 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Aluminium Industry Abstracts Bacteriology Abstracts (Microbiology B) Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Engineered Materials Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-1578 |
| EndPage | 2101 |
| ExternalDocumentID | 3855727321 10_1109_TNS_2015_2475128 7286869 |
| Genre | orig-research |
| GroupedDBID | .DC .GJ 0R~ 29I 3O- 4.4 53G 5GY 5RE 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETEA AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VOH AAYXX CITATION 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 RIG |
| ID | FETCH-LOGICAL-c361t-9e406989cfecad833f5eedf3edde1567b1a337f011afe03e22c04dc469f2b5c03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363242200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9499 |
| IngestDate | Mon Jun 30 08:31:29 EDT 2025 Tue Nov 18 22:11:21 EST 2025 Sat Nov 29 05:53:18 EST 2025 Wed Aug 27 02:43:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-9e406989cfecad833f5eedf3edde1567b1a337f011afe03e22c04dc469f2b5c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1729276139 |
| PQPubID | 85457 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_1729276139 crossref_citationtrail_10_1109_TNS_2015_2475128 crossref_primary_10_1109_TNS_2015_2475128 ieee_primary_7286869 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-Oct. 2015-10-00 20151001 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-Oct. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on nuclear science |
| PublicationTitleAbbrev | TNS |
| PublicationYear | 2015 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | langer (ref1) 1984; 8 ref2 zeng (ref3) 2009 |
| References_xml | – year: 2009 ident: ref3 publication-title: Medical Imaging Reconstruction A Tutorial – volume: 8 start-page: 302 year: 1984 ident: ref1 article-title: EM reconstruction algorithms for emission and transmission tomography publication-title: J Comp Assist Tomogr – ident: ref2 doi: 10.1109/TMI.1982.4307558 |
| SSID | ssj0014505 |
| Score | 2.1509998 |
| Snippet | The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2096 |
| SubjectTerms | Algorithms Approximation algorithms Bayesian analysis Computed tomography Estimating techniques expectation maximization (EM) Image reconstruction iterative reconstruction maximum likelihood (ML) Noise Noise level Noise measurement noise weighted image reconstruction Phantoms Poisson noise Positron emission tomography positron emission tomography (PET) single photon emission computed tomography (SPECT) |
| Title | The ML-EM Algorithm is Not Optimal for Poisson Noise |
| URI | https://ieeexplore.ieee.org/document/7286869 https://www.proquest.com/docview/1729276139 |
| Volume | 62 |
| WOSCitedRecordID | wos000363242200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014505 issn: 0018-9499 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPvqpYrZKDF8G0281jd49FKh5sLFiht5DsQwttI23q73c2TYOiCN5CshvCtzsz32RmdgCuE2TFJqHcTY0tyVGJ76ZEERe1pE6lQoOveNFsgkURn0zEqAa3VS2M1rpIPtMde1nE8lUm1_ZXWZdRHvJQ1KHOWLip1aoiBn5Aym4FKMBI47chSSK64-jZ5nAFHeoztG_8mwkqeqr8UMSFdbk_-N93HcJ-ySKd_mbZj6CmF8ew9-VswSb4uAGc4aM7GDr92Wu2nOZvc2e6cqIsd55QT8xxPhJWZ5Qh9NkC709X-gRe7gfjuwe3bJHgSi_s5a7QtnKVC2m0TBT3PBOg0TOeRq2FnhlLe4nnMYNCnBhNPE2pJL6S6BMbmgaSeKfQWGQLfQaOQU_SZ8iXAnzOeZhKShS1Upn0BFOmBd0tarEszw-3bSxmceFHEBEjzrHFOS5xbsFNNeN9c3bGH2ObFtdqXAlpC9rbhYlL4VrFyLkEZchDxPnvsy5g1757k3PXhka-XOtL2JEf-XS1vCr2zSc00b5H |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDb7FaNQcvgmm3m6TZPRZpqdjGghV6C8k-tNA20qT-fmfTtCiK4C0kuyR8uzPzTWZmB-AmQlasI8rsWJuSHBm5dkwksVFLqlhINPiS5c0m_CBgoxEflOBuXQujlMqTz1TNXOaxfJmIhflVVvcpa7Im34BN0zmrqNZaxwxcjxT9ClCEkcivgpKE14fBs8ni8mrU9dHCsW9GKO-q8kMV5_als_-_LzuAvYJHWq3lwh9CSc2OYPfL6YLH4OIWsPo9u923WpPXZD7O3qbWOLWCJLOeUFNMcT5SVmuQIPjJDO-PU3UCL5328L5rF00SbOE0G5nNlaldZVxoJSLJHEd7aPa0o1BvoW_mx43IcXyNYhxpRRxFqSCuFOgVaxp7gjinUJ4lM3UGlkZf0vWRMXn4nLFmLCiR1Mhl1OC-1BWor1ALRXGCuGlkMQlzT4LwEHEODc5hgXMFbtcz3penZ_wx9tjguh5XQFqB6mphwkK80hBZF6c-MhF-_vusa9juDvu9sPcQPF7AjnnPMgOvCuVsvlCXsCU-snE6v8r30CdOwMGQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ML-EM+Algorithm+is+Not+Optimal+for+Poisson+Noise&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Zeng%2C+Gengsheng+L.&rft.date=2015-10-01&rft.pub=IEEE&rft.issn=0018-9499&rft.volume=62&rft.issue=5&rft.spage=2096&rft.epage=2101&rft_id=info:doi/10.1109%2FTNS.2015.2475128&rft.externalDocID=7286869 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon |