The ML-EM Algorithm is Not Optimal for Poisson Noise

The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson distributed. This short paper considers the problem that for a given noisy projection data set, whether the ML-EM algorithm is able to provide an ap...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on nuclear science Ročník 62; číslo 5; s. 2096 - 2101
Hlavný autor: Zeng, Gengsheng L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9499, 1558-1578
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson distributed. This short paper considers the problem that for a given noisy projection data set, whether the ML-EM algorithm is able to provide an approximate solution that is close to the true solution. It is well-known that the ML-EM algorithm at early iterations converges towards the true solution and then in later iterations diverges away from the true solution. Therefore a potential good approximate solution can only be obtained by early termination. This short paper argues that the ML-EM algorithm is not optimal in providing such an approximate solution. In order to show that the ML-EM algorithm is not optimal, it is only necessary to provide a different algorithm that performs better. An alternative algorithm is suggested in this paper and this alternative algorithm is able to outperform the ML-EM algorithm.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2015.2475128