Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression Filtering Method for SEM Images
Scanning Electron Microscopy (SEM) images often suffer from noise contamination, which degrades image quality and affects further analysis. This research presents a complete approach to estimate their Signal-to-Noise Ratio (SNR) and noise variance (NV), and enhance image quality using NV-guided Wien...
Uloženo v:
| Vydáno v: | IEEE access Ročník 13; s. 93574 - 93592 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Scanning Electron Microscopy (SEM) images often suffer from noise contamination, which degrades image quality and affects further analysis. This research presents a complete approach to estimate their Signal-to-Noise Ratio (SNR) and noise variance (NV), and enhance image quality using NV-guided Wiener filter. The main idea of this study is to use a good SNR estimation technique and infuse a machine learning model to estimate NV of the SEM image, which then guides the wiener filter to remove the noise, providing a more robust and accurate SEM image filtering pipeline. First, we investigate five different SNR estimation techniques, namely Nearest Neighbourhood (NN) method, First-Order Linear Interpolation (FOL) method, Nearest Neighbourhood with First-Order Linear Interpolation (NN+FOL) method, Non-Linear Least Squares Regression (NLLSR) method, and Linear Least Squares Regression (LSR) method. It is shown that LSR method to perform better than the rest. Then, Support Vector Machines (SVM) and Gaussian Process Regression (GPR) are tested by pairing it with LSR. In this test, the Optimizable GPR model shows the highest accuracy and it stands as the most effective solution for NV estimation. Combining these results lead to the proposed Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression (AO-GPRLLSR) Filtering pipeline. The AO-GPRLLSR method generated an estimated noise variance which served as input to NV-guided Wiener filter for improving the quality of SEM images. The proposed method is shown to achieve notable success in estimating SNR and NV of SEM images and leads to lower Mean Squared Error (MSE) after the filtering process. |
|---|---|
| AbstractList | Scanning Electron Microscopy (SEM) images often suffer from noise contamination, which degrades image quality and affects further analysis. This research presents a complete approach to estimate their Signal-to-Noise Ratio (SNR) and noise variance (NV), and enhance image quality using NV-guided Wiener filter. The main idea of this study is to use a good SNR estimation technique and infuse a machine learning model to estimate NV of the SEM image, which then guides the wiener filter to remove the noise, providing a more robust and accurate SEM image filtering pipeline. First, we investigate five different SNR estimation techniques, namely Nearest Neighbourhood (NN) method, First-Order Linear Interpolation (FOL) method, Nearest Neighbourhood with First-Order Linear Interpolation (NN+FOL) method, Non-Linear Least Squares Regression (NLLSR) method, and Linear Least Squares Regression (LSR) method. It is shown that LSR method to perform better than the rest. Then, Support Vector Machines (SVM) and Gaussian Process Regression (GPR) are tested by pairing it with LSR. In this test, the Optimizable GPR model shows the highest accuracy and it stands as the most effective solution for NV estimation. Combining these results lead to the proposed Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression (AO-GPRLLSR) Filtering pipeline. The AO-GPRLLSR method generated an estimated noise variance which served as input to NV-guided Wiener filter for improving the quality of SEM images. The proposed method is shown to achieve notable success in estimating SNR and NV of SEM images and leads to lower Mean Squared Error (MSE) after the filtering process. |
| Author | Chee Yong Ong, Dominic Sim, Kok Swee Bukhori, Iksan Beng Gan, Kok |
| Author_xml | – sequence: 1 givenname: Dominic orcidid: 0009-0002-9373-5657 surname: Chee Yong Ong fullname: Chee Yong Ong, Dominic organization: Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia – sequence: 2 givenname: Iksan orcidid: 0000-0001-8216-5607 surname: Bukhori fullname: Bukhori, Iksan organization: Department of Electrical Engineering, Faculty of Engineering, President University, Bekasi, Indonesia – sequence: 3 givenname: Kok Swee orcidid: 0000-0003-2976-8825 surname: Sim fullname: Sim, Kok Swee email: sksbg2022@gmail.com organization: Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia – sequence: 4 givenname: Kok orcidid: 0000-0002-8776-5502 surname: Beng Gan fullname: Beng Gan, Kok organization: Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia |
| BookMark | eNpNUU1v2zAMFYYMWPrxC9qDgJ6TSZYlS8cgSNsAKTo061mgbSpVkFiJ5AzYfv3UOtjKyyNIvkeC74KMutAhITecTTln5vtsPl-s19OCFXIqZCWENl_IuODKTIQUavQp_0auU9qyHDqXZDUmh1kLh97_QvqcYe__QL1D-gCnlDx09EcMDaZEX3ATM_rQ0ZXvECJdIaSero8nyI3P_Xu_6zH6bkOfsH8LLXUh0vXiiS73sMF0Rb462CW8PuMleb1f_Jw_TlbPD8v5bDVphOL9xEBrjDCu0k4KJ1E3CI45kJIhr1BURjfGKV63bcmlYrVSAkBzJ4tSg2vEJVkOum2ArT1Ev4f42wbw9qMQ4sZC7H2zQ1tXhdNYmLKuVIlY1LVztUFV8fxKIVTWuhu0DjEcT5h6uw2n2OXzrSi4NFIqXuYpMUw1MaQU0f3bypl9d8oOTtl3p-zZqcy6HVgeEf8zOOOy1Fz8BfOIkhM |
| CODEN | IAECCG |
| Cites_doi | 10.9790/0661-01015563 10.1016/j.progsolidstchem.2014.02.001 10.1007/978-0-387-39620-0_1 10.1088/2632-2153/abee59 10.1016/j.ress.2024.110094 10.1111/j.1365-2818.2005.01488.x 10.13005/ojcst/10.01.14 10.33093/ijoras.2021.3.5 10.1109/nssmic.1993.373563 10.1093/jmicro/dfi034 10.7753/ijsea0210.1001 10.1190/1.2236003 10.1097/jce.0000000000000378 10.1007/0-387-25281-9_4 10.1287/educ.2018.0188 10.1002/jemt.20610 10.1016/s1076-5670(02)80054-4 10.1049/iet-ipr.2013.0693 10.1007/978-1-4939-6676-9 10.1109/spin48934.2020.9070915 10.3390/s23042085 10.5120/19256-0999 10.1109/cyberneticscom.2017.8311683 10.1002/sca.21055 10.1002/sca.21327 10.1111/jmi.12425 10.1007/s11664-014-3262-7 10.3390/app14010223 10.1118/1.1677252 10.1007/s10035-023-01368-1 10.1109/tip.2012.2235847 10.1016/j.bbapap.2017.09.013 10.1109/access.2024.3482118 10.1007/978-3-540-38967-5 10.1111/jmi.13254 10.1002/sca.4950260607 10.33093/ijoras.2024.6.1.4 10.1007/s10462-017-9611-1 10.1109/83.902289 10.1364/josa.59.000553 10.1007/s00216-024-05550-z 10.1002/sca.4950260605 10.33093/ijoras.2023.5.1.2 10.1016/j.scp.2023.101060 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3573389 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ: Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 93592 |
| ExternalDocumentID | oai_doaj_org_article_b72f8e294b764ee2bbffb9e671389336 10_1109_ACCESS_2025_3573389 11015481 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Multimedia University funderid: 10.13039/100012024 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-9ad9939f78f53f5e8ceaf0fa550e17e3798c9f61bdd41560b663aa81f5248afc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502494300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:57 EDT 2025 Sat Nov 01 15:16:12 EDT 2025 Sat Nov 29 07:51:13 EST 2025 Wed Aug 27 01:52:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-9ad9939f78f53f5e8ceaf0fa550e17e3798c9f61bdd41560b663aa81f5248afc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0002-9373-5657 0000-0001-8216-5607 0000-0003-2976-8825 0000-0002-8776-5502 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/11015481 |
| PQID | 3215955614 |
| PQPubID | 4845423 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b72f8e294b764ee2bbffb9e671389336 crossref_primary_10_1109_ACCESS_2025_3573389 proquest_journals_3215955614 ieee_primary_11015481 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref15 ref14 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 (ref27) 2025 ref51 ref50 ref45 ref48 ref47 Lukàč (ref41) 2003; 13 ref8 ref7 ref9 ref4 ref3 ref6 Sim (ref21) 2023; 31 ref40 Ribeiro (ref46) 2004 Reimer (ref5) 1998 ref34 ref37 ref31 ref30 ref33 ref32 Vijendran (ref53) 2013; 3 ref2 ref1 ref39 Melnik (ref49) 2025 Jain (ref38) 1989 Gonzalez (ref35) 2008 ref24 ref23 ref26 ref25 ref20 Arastehfar (ref43) 2013; 1 ref22 ref28 Balasubramanian (ref36) ref29 Juneja (ref44) 2009; 1 Kumar (ref42) 2025; 34 |
| References_xml | – ident: ref47 doi: 10.9790/0661-01015563 – ident: ref2 doi: 10.1016/j.progsolidstchem.2014.02.001 – volume: 1 start-page: 274 issue: 1 year: 2009 ident: ref44 article-title: An improved adaptive median filtering method for impulse noise detection publication-title: IJRTER – ident: ref11 doi: 10.1007/978-0-387-39620-0_1 – volume: 13 start-page: 369 issue: 3 year: 2003 ident: ref41 article-title: Application of the adaptive center-weighted vector median framework for the enhancement of CDNA microarray images publication-title: Int. J. Appl. Math. Comp. – ident: ref28 doi: 10.1088/2632-2153/abee59 – ident: ref24 doi: 10.1016/j.ress.2024.110094 – ident: ref13 doi: 10.1111/j.1365-2818.2005.01488.x – ident: ref32 doi: 10.13005/ojcst/10.01.14 – volume-title: Fundamentals of Digital Image Processing year: 1989 ident: ref38 – ident: ref56 doi: 10.33093/ijoras.2021.3.5 – ident: ref48 doi: 10.1109/nssmic.1993.373563 – ident: ref1 doi: 10.1093/jmicro/dfi034 – volume-title: Digital Image Processing year: 2008 ident: ref35 – volume: 1 start-page: 13 issue: 1 year: 2013 ident: ref43 article-title: An enhanced median filter for removing noise from MR images publication-title: JADM – ident: ref52 doi: 10.7753/ijsea0210.1001 – ident: ref37 doi: 10.1190/1.2236003 – ident: ref40 doi: 10.1097/jce.0000000000000378 – volume-title: Gaussian Probability Density Functions: Properties and Error Characterization year: 2004 ident: ref46 – volume: 34 start-page: 1 issue: 1 year: 2025 ident: ref42 article-title: High density impulse noise removal in color images using median controlled adaptive recursive weighted median filter publication-title: Int. J. Comput. Sci. – ident: ref33 doi: 10.1007/0-387-25281-9_4 – ident: ref26 doi: 10.1287/educ.2018.0188 – ident: ref14 doi: 10.1002/jemt.20610 – ident: ref34 doi: 10.1016/s1076-5670(02)80054-4 – ident: ref50 doi: 10.1049/iet-ipr.2013.0693 – ident: ref3 doi: 10.1007/978-1-4939-6676-9 – ident: ref29 doi: 10.1109/spin48934.2020.9070915 – ident: ref25 doi: 10.3390/s23042085 – ident: ref45 doi: 10.5120/19256-0999 – ident: ref51 doi: 10.1109/cyberneticscom.2017.8311683 – ident: ref20 doi: 10.1002/sca.21055 – ident: ref12 doi: 10.1002/sca.21327 – start-page: 1 volume-title: Proc. Int. Conf. Control, Autom., Commun. Energy Conservation ident: ref36 article-title: An efficient non-linear cascade filtering algorithm for removal of high density salt and pepper noise in image and video sequence – ident: ref19 doi: 10.1111/jmi.12425 – ident: ref15 doi: 10.1007/s11664-014-3262-7 – ident: ref7 doi: 10.3390/app14010223 – year: 2025 ident: ref49 article-title: Nonlinear locally adaptive techniques for image filtering and restoration in mixed noise environments – ident: ref4 doi: 10.1118/1.1677252 – ident: ref10 doi: 10.1007/s10035-023-01368-1 – ident: ref6 doi: 10.1109/tip.2012.2235847 – ident: ref22 doi: 10.1016/j.bbapap.2017.09.013 – ident: ref17 doi: 10.1109/access.2024.3482118 – volume: 3 start-page: 200 year: 2013 ident: ref53 article-title: Fast and efficient method for image denoising publication-title: IJEIT – volume-title: Scanning Electron Microscopy: Physics of Image Formation and Microanalysis year: 1998 ident: ref5 doi: 10.1007/978-3-540-38967-5 – ident: ref9 doi: 10.1111/jmi.13254 – ident: ref16 doi: 10.1002/sca.4950260607 – ident: ref54 doi: 10.33093/ijoras.2024.6.1.4 – ident: ref23 doi: 10.1007/s10462-017-9611-1 – ident: ref39 doi: 10.1109/83.902289 – ident: ref31 doi: 10.1364/josa.59.000553 – volume-title: Bayesian Optimization Algorithm year: 2025 ident: ref27 – ident: ref8 doi: 10.1007/s00216-024-05550-z – volume: 31 start-page: 328 issue: 1 year: 2023 ident: ref21 article-title: Deep convolutional neural network for SEM image noise variance classification publication-title: Eng. Lett. – ident: ref18 doi: 10.1002/sca.4950260605 – ident: ref30 doi: 10.33093/ijoras.2023.5.1.2 – ident: ref55 doi: 10.1016/j.scp.2023.101060 |
| SSID | ssj0000816957 |
| Score | 2.3412793 |
| Snippet | Scanning Electron Microscopy (SEM) images often suffer from noise contamination, which degrades image quality and affects further analysis. This research... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 93574 |
| SubjectTerms | Electrons Estimation Gaussian process Gaussian process regression (GPR) Gaussian processes Image degradation Image filters Image processing Image quality Interpolation Least squares method Machine learning Noise noise variance estimation Numerical analysis Regression scanning electron microscope (SEM) Scanning electron microscopy Signal to noise ratio signal-to-noise ratio (SNR) SNR estimation support vector machine (SVM) Support vector machines Wiener filtering Wiener filters |
| SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RSBgjwwEoiTxo-xVC0g0YJ4SGyWndgICUKhLb-fOydAJAYWpkhJFMd3zvm--Px9hBzalHFbOhs7znGZUZSxMr6IeWIgH0EKuLQIYhNiPJYPD-q6JfWFNWE1PXBtuBMrUi9dqrpW8K5zqbXeW-W4wBW2LAtk24lQLTAVYrBkXOWioRliiTrp9fvQIwCEaX6cIQkgCru3pqLA2N9IrPyKy2GyGa6R1SZLpL367dbJgqs2yEqLO3CTTHqlmWCsoldweMHirGdHz8x8itsiabMBgN64x7rStaIAO2FY00tU66G3b3PcedS-PnzClXN4OB0FWWkK-Sy9HYzoxQsEnekWuR8O7vrncSOfEBcZZzOweQnJh_JC-jzzuZOFMz7xBjCJY8JlQslCec5sWSKKSywkH8ZI5vO0K8Ff2TZZrF4rt0Mot5BHepMmRQ7wUQgrS29KJm1uDDJ4ReToy5J6UrNk6IAuEqVrw2s0vG4MH5FTtPb3rUhxHU6A43XjeP2X4yOyhb76aY8F-MUi0vlynm6-x6nOILNRqATa3f2PtvfIMvan_hXTIYuz97nbJ0vFx-xp-n4QhuIniEvh6g priority: 102 providerName: Directory of Open Access Journals |
| Title | Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression Filtering Method for SEM Images |
| URI | https://ieeexplore.ieee.org/document/11015481 https://www.proquest.com/docview/3215955614 https://doaj.org/article/b72f8e294b764ee2bbffb9e671389336 |
| Volume | 13 |
| WOSCitedRecordID | wos001502494300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYo4tAeeJWK8JIPHFnYR9aPY4gSQCK0Kq3EzbLX4wqphEASjvx2ZrwGIlU9cNld7ctef177G9vzDWOHriyE8-AyEIKmGaXPtA1NJnKLfIQk4MomBpuQV1fq5kb_SM7q0RcGAOLiMzimwziX7--bOQ2VnWBXRQwbjZ1PUorWWettQIUiSOhaJmWhItcnvX4fPwJtwLI-rkj3j2K5L_Q-UaQ_RVX5pymO_ctw7YM5W2eriUjyXov8BluC8Sb7siAv-JVNet5OqDnj33F3R-u3_gI_s_MpeU7y5CPAf8KfdjHsmKNlijWfX1JAH379MCfnpMXrw1uaXMeX81GMPM2R8vLrwYhf3GG7NN1iv4eDX_3zLEVYyJpKFDOExSM_0UGqUFehBtWADXmwaLZAIaGSWjU6iMJ5T4Ze7pCfWKuKUJddhZBW39jy-H4M24wLh1Qz2DJvarQwpXTKB-sL5WprSeSrw45eS95MWiENEw2QXJsWKENAmQRUh50SOm-3kgp2PIHFbtJPZZwsg4JSd50UXYDSuRCcBiFp9rWiNLcIqvf0EkodtvcKtkm_7NRUSH40BQvt7vznsV32mbLYDsDsseXZ4xz22UrzNLudPh5Eax63o-fBQayZL1XT4U4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZQQQIO5VVESgs-cGTbXe-uH8cQNbQiCYgWqTfLXo-rSjQNTcLvZ8brlkioB0672pe9_vz4xvZ8w9gHLyrpA_gCpKRlRhUK42JXyNIhHyEJONGlYBNqNtPn5-ZbdlZPvjAAkDafwQGdprX8cN2taarsEIcqYtho7Dxsm0aUvbvW3ZQKxZAwrcraQlVpDoejEf4GWoGiPahJ-Y-iuW-MP0mmP8dV-aczTiPM-Nl_5u05285Ukg977F-wBzB_yZ5uCAy-YothcAvq0PhXPFzRDq6fwD-79ZJ8J3n2EuDf4aLfDjvnaJti3ecTCunDT3-tyT1p8_74kpbX8eN8mmJPcyS9_PRoyk-usGda7rAf46Oz0XGRYywUXS2rFQITkKGYqHRs69iC7sDFMjo0XKBSUCujOxNl5UMgU6_0yFCc01VsRaMR1Po125pfz-EN49Ij2YxOlB2CI5XyOkQXKu1b50jma8A-3pa8XfRSGjaZIKWxPVCWgLIZqAH7ROjcPUo62OkCFrvNzcp6JaIGYRqvZAMgvI_RG5CK1l9rSnOHoPqbXkZpwPZuwba50S5tjfTHULjQZvee196zx8dn04mdnMy-vGVPKLv9dMwe21rdrGGfPep-ry6XN-9SzfwDkjHibw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Optimizable+Gaussian+Process+Regression+Linear+Least+Squares+Regression+Filtering+Method+for+SEM+Images&rft.jtitle=IEEE+access&rft.au=Chee+Yong+Ong%2C+Dominic&rft.au=Bukhori%2C+Iksan&rft.au=Sim%2C+Kok+Swee&rft.au=Beng+Gan%2C+Kok&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=93574&rft.epage=93592&rft_id=info:doi/10.1109%2FACCESS.2025.3573389&rft.externalDocID=11015481 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |