Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression Filtering Method for SEM Images

Scanning Electron Microscopy (SEM) images often suffer from noise contamination, which degrades image quality and affects further analysis. This research presents a complete approach to estimate their Signal-to-Noise Ratio (SNR) and noise variance (NV), and enhance image quality using NV-guided Wien...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 93574 - 93592
Hlavní autoři: Chee Yong Ong, Dominic, Bukhori, Iksan, Sim, Kok Swee, Beng Gan, Kok
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Scanning Electron Microscopy (SEM) images often suffer from noise contamination, which degrades image quality and affects further analysis. This research presents a complete approach to estimate their Signal-to-Noise Ratio (SNR) and noise variance (NV), and enhance image quality using NV-guided Wiener filter. The main idea of this study is to use a good SNR estimation technique and infuse a machine learning model to estimate NV of the SEM image, which then guides the wiener filter to remove the noise, providing a more robust and accurate SEM image filtering pipeline. First, we investigate five different SNR estimation techniques, namely Nearest Neighbourhood (NN) method, First-Order Linear Interpolation (FOL) method, Nearest Neighbourhood with First-Order Linear Interpolation (NN+FOL) method, Non-Linear Least Squares Regression (NLLSR) method, and Linear Least Squares Regression (LSR) method. It is shown that LSR method to perform better than the rest. Then, Support Vector Machines (SVM) and Gaussian Process Regression (GPR) are tested by pairing it with LSR. In this test, the Optimizable GPR model shows the highest accuracy and it stands as the most effective solution for NV estimation. Combining these results lead to the proposed Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression (AO-GPRLLSR) Filtering pipeline. The AO-GPRLLSR method generated an estimated noise variance which served as input to NV-guided Wiener filter for improving the quality of SEM images. The proposed method is shown to achieve notable success in estimating SNR and NV of SEM images and leads to lower Mean Squared Error (MSE) after the filtering process.
AbstractList Scanning Electron Microscopy (SEM) images often suffer from noise contamination, which degrades image quality and affects further analysis. This research presents a complete approach to estimate their Signal-to-Noise Ratio (SNR) and noise variance (NV), and enhance image quality using NV-guided Wiener filter. The main idea of this study is to use a good SNR estimation technique and infuse a machine learning model to estimate NV of the SEM image, which then guides the wiener filter to remove the noise, providing a more robust and accurate SEM image filtering pipeline. First, we investigate five different SNR estimation techniques, namely Nearest Neighbourhood (NN) method, First-Order Linear Interpolation (FOL) method, Nearest Neighbourhood with First-Order Linear Interpolation (NN+FOL) method, Non-Linear Least Squares Regression (NLLSR) method, and Linear Least Squares Regression (LSR) method. It is shown that LSR method to perform better than the rest. Then, Support Vector Machines (SVM) and Gaussian Process Regression (GPR) are tested by pairing it with LSR. In this test, the Optimizable GPR model shows the highest accuracy and it stands as the most effective solution for NV estimation. Combining these results lead to the proposed Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression (AO-GPRLLSR) Filtering pipeline. The AO-GPRLLSR method generated an estimated noise variance which served as input to NV-guided Wiener filter for improving the quality of SEM images. The proposed method is shown to achieve notable success in estimating SNR and NV of SEM images and leads to lower Mean Squared Error (MSE) after the filtering process.
Author Chee Yong Ong, Dominic
Sim, Kok Swee
Bukhori, Iksan
Beng Gan, Kok
Author_xml – sequence: 1
  givenname: Dominic
  orcidid: 0009-0002-9373-5657
  surname: Chee Yong Ong
  fullname: Chee Yong Ong, Dominic
  organization: Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia
– sequence: 2
  givenname: Iksan
  orcidid: 0000-0001-8216-5607
  surname: Bukhori
  fullname: Bukhori, Iksan
  organization: Department of Electrical Engineering, Faculty of Engineering, President University, Bekasi, Indonesia
– sequence: 3
  givenname: Kok Swee
  orcidid: 0000-0003-2976-8825
  surname: Sim
  fullname: Sim, Kok Swee
  email: sksbg2022@gmail.com
  organization: Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia
– sequence: 4
  givenname: Kok
  orcidid: 0000-0002-8776-5502
  surname: Beng Gan
  fullname: Beng Gan, Kok
  organization: Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
BookMark eNpNUU1v2zAMFYYMWPrxC9qDgJ6TSZYlS8cgSNsAKTo061mgbSpVkFiJ5AzYfv3UOtjKyyNIvkeC74KMutAhITecTTln5vtsPl-s19OCFXIqZCWENl_IuODKTIQUavQp_0auU9qyHDqXZDUmh1kLh97_QvqcYe__QL1D-gCnlDx09EcMDaZEX3ATM_rQ0ZXvECJdIaSero8nyI3P_Xu_6zH6bkOfsH8LLXUh0vXiiS73sMF0Rb462CW8PuMleb1f_Jw_TlbPD8v5bDVphOL9xEBrjDCu0k4KJ1E3CI45kJIhr1BURjfGKV63bcmlYrVSAkBzJ4tSg2vEJVkOum2ArT1Ev4f42wbw9qMQ4sZC7H2zQ1tXhdNYmLKuVIlY1LVztUFV8fxKIVTWuhu0DjEcT5h6uw2n2OXzrSi4NFIqXuYpMUw1MaQU0f3bypl9d8oOTtl3p-zZqcy6HVgeEf8zOOOy1Fz8BfOIkhM
CODEN IAECCG
Cites_doi 10.9790/0661-01015563
10.1016/j.progsolidstchem.2014.02.001
10.1007/978-0-387-39620-0_1
10.1088/2632-2153/abee59
10.1016/j.ress.2024.110094
10.1111/j.1365-2818.2005.01488.x
10.13005/ojcst/10.01.14
10.33093/ijoras.2021.3.5
10.1109/nssmic.1993.373563
10.1093/jmicro/dfi034
10.7753/ijsea0210.1001
10.1190/1.2236003
10.1097/jce.0000000000000378
10.1007/0-387-25281-9_4
10.1287/educ.2018.0188
10.1002/jemt.20610
10.1016/s1076-5670(02)80054-4
10.1049/iet-ipr.2013.0693
10.1007/978-1-4939-6676-9
10.1109/spin48934.2020.9070915
10.3390/s23042085
10.5120/19256-0999
10.1109/cyberneticscom.2017.8311683
10.1002/sca.21055
10.1002/sca.21327
10.1111/jmi.12425
10.1007/s11664-014-3262-7
10.3390/app14010223
10.1118/1.1677252
10.1007/s10035-023-01368-1
10.1109/tip.2012.2235847
10.1016/j.bbapap.2017.09.013
10.1109/access.2024.3482118
10.1007/978-3-540-38967-5
10.1111/jmi.13254
10.1002/sca.4950260607
10.33093/ijoras.2024.6.1.4
10.1007/s10462-017-9611-1
10.1109/83.902289
10.1364/josa.59.000553
10.1007/s00216-024-05550-z
10.1002/sca.4950260605
10.33093/ijoras.2023.5.1.2
10.1016/j.scp.2023.101060
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3573389
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 93592
ExternalDocumentID oai_doaj_org_article_b72f8e294b764ee2bbffb9e671389336
10_1109_ACCESS_2025_3573389
11015481
Genre orig-research
GrantInformation_xml – fundername: Multimedia University
  funderid: 10.13039/100012024
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-9ad9939f78f53f5e8ceaf0fa550e17e3798c9f61bdd41560b663aa81f5248afc3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502494300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:57 EDT 2025
Sat Nov 01 15:16:12 EDT 2025
Sat Nov 29 07:51:13 EST 2025
Wed Aug 27 01:52:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-9ad9939f78f53f5e8ceaf0fa550e17e3798c9f61bdd41560b663aa81f5248afc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-9373-5657
0000-0001-8216-5607
0000-0003-2976-8825
0000-0002-8776-5502
OpenAccessLink https://ieeexplore.ieee.org/document/11015481
PQID 3215955614
PQPubID 4845423
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_b72f8e294b764ee2bbffb9e671389336
crossref_primary_10_1109_ACCESS_2025_3573389
proquest_journals_3215955614
ieee_primary_11015481
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
(ref27) 2025
ref51
ref50
ref45
ref48
ref47
Lukàč (ref41) 2003; 13
ref8
ref7
ref9
ref4
ref3
ref6
Sim (ref21) 2023; 31
ref40
Ribeiro (ref46) 2004
Reimer (ref5) 1998
ref34
ref37
ref31
ref30
ref33
ref32
Vijendran (ref53) 2013; 3
ref2
ref1
ref39
Melnik (ref49) 2025
Jain (ref38) 1989
Gonzalez (ref35) 2008
ref24
ref23
ref26
ref25
ref20
Arastehfar (ref43) 2013; 1
ref22
ref28
Balasubramanian (ref36)
ref29
Juneja (ref44) 2009; 1
Kumar (ref42) 2025; 34
References_xml – ident: ref47
  doi: 10.9790/0661-01015563
– ident: ref2
  doi: 10.1016/j.progsolidstchem.2014.02.001
– volume: 1
  start-page: 274
  issue: 1
  year: 2009
  ident: ref44
  article-title: An improved adaptive median filtering method for impulse noise detection
  publication-title: IJRTER
– ident: ref11
  doi: 10.1007/978-0-387-39620-0_1
– volume: 13
  start-page: 369
  issue: 3
  year: 2003
  ident: ref41
  article-title: Application of the adaptive center-weighted vector median framework for the enhancement of CDNA microarray images
  publication-title: Int. J. Appl. Math. Comp.
– ident: ref28
  doi: 10.1088/2632-2153/abee59
– ident: ref24
  doi: 10.1016/j.ress.2024.110094
– ident: ref13
  doi: 10.1111/j.1365-2818.2005.01488.x
– ident: ref32
  doi: 10.13005/ojcst/10.01.14
– volume-title: Fundamentals of Digital Image Processing
  year: 1989
  ident: ref38
– ident: ref56
  doi: 10.33093/ijoras.2021.3.5
– ident: ref48
  doi: 10.1109/nssmic.1993.373563
– ident: ref1
  doi: 10.1093/jmicro/dfi034
– volume-title: Digital Image Processing
  year: 2008
  ident: ref35
– volume: 1
  start-page: 13
  issue: 1
  year: 2013
  ident: ref43
  article-title: An enhanced median filter for removing noise from MR images
  publication-title: JADM
– ident: ref52
  doi: 10.7753/ijsea0210.1001
– ident: ref37
  doi: 10.1190/1.2236003
– ident: ref40
  doi: 10.1097/jce.0000000000000378
– volume-title: Gaussian Probability Density Functions: Properties and Error Characterization
  year: 2004
  ident: ref46
– volume: 34
  start-page: 1
  issue: 1
  year: 2025
  ident: ref42
  article-title: High density impulse noise removal in color images using median controlled adaptive recursive weighted median filter
  publication-title: Int. J. Comput. Sci.
– ident: ref33
  doi: 10.1007/0-387-25281-9_4
– ident: ref26
  doi: 10.1287/educ.2018.0188
– ident: ref14
  doi: 10.1002/jemt.20610
– ident: ref34
  doi: 10.1016/s1076-5670(02)80054-4
– ident: ref50
  doi: 10.1049/iet-ipr.2013.0693
– ident: ref3
  doi: 10.1007/978-1-4939-6676-9
– ident: ref29
  doi: 10.1109/spin48934.2020.9070915
– ident: ref25
  doi: 10.3390/s23042085
– ident: ref45
  doi: 10.5120/19256-0999
– ident: ref51
  doi: 10.1109/cyberneticscom.2017.8311683
– ident: ref20
  doi: 10.1002/sca.21055
– ident: ref12
  doi: 10.1002/sca.21327
– start-page: 1
  volume-title: Proc. Int. Conf. Control, Autom., Commun. Energy Conservation
  ident: ref36
  article-title: An efficient non-linear cascade filtering algorithm for removal of high density salt and pepper noise in image and video sequence
– ident: ref19
  doi: 10.1111/jmi.12425
– ident: ref15
  doi: 10.1007/s11664-014-3262-7
– ident: ref7
  doi: 10.3390/app14010223
– year: 2025
  ident: ref49
  article-title: Nonlinear locally adaptive techniques for image filtering and restoration in mixed noise environments
– ident: ref4
  doi: 10.1118/1.1677252
– ident: ref10
  doi: 10.1007/s10035-023-01368-1
– ident: ref6
  doi: 10.1109/tip.2012.2235847
– ident: ref22
  doi: 10.1016/j.bbapap.2017.09.013
– ident: ref17
  doi: 10.1109/access.2024.3482118
– volume: 3
  start-page: 200
  year: 2013
  ident: ref53
  article-title: Fast and efficient method for image denoising
  publication-title: IJEIT
– volume-title: Scanning Electron Microscopy: Physics of Image Formation and Microanalysis
  year: 1998
  ident: ref5
  doi: 10.1007/978-3-540-38967-5
– ident: ref9
  doi: 10.1111/jmi.13254
– ident: ref16
  doi: 10.1002/sca.4950260607
– ident: ref54
  doi: 10.33093/ijoras.2024.6.1.4
– ident: ref23
  doi: 10.1007/s10462-017-9611-1
– ident: ref39
  doi: 10.1109/83.902289
– ident: ref31
  doi: 10.1364/josa.59.000553
– volume-title: Bayesian Optimization Algorithm
  year: 2025
  ident: ref27
– ident: ref8
  doi: 10.1007/s00216-024-05550-z
– volume: 31
  start-page: 328
  issue: 1
  year: 2023
  ident: ref21
  article-title: Deep convolutional neural network for SEM image noise variance classification
  publication-title: Eng. Lett.
– ident: ref18
  doi: 10.1002/sca.4950260605
– ident: ref30
  doi: 10.33093/ijoras.2023.5.1.2
– ident: ref55
  doi: 10.1016/j.scp.2023.101060
SSID ssj0000816957
Score 2.3412793
Snippet Scanning Electron Microscopy (SEM) images often suffer from noise contamination, which degrades image quality and affects further analysis. This research...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 93574
SubjectTerms Electrons
Estimation
Gaussian process
Gaussian process regression (GPR)
Gaussian processes
Image degradation
Image filters
Image processing
Image quality
Interpolation
Least squares method
Machine learning
Noise
noise variance estimation
Numerical analysis
Regression
scanning electron microscope (SEM)
Scanning electron microscopy
Signal to noise ratio
signal-to-noise ratio (SNR)
SNR estimation
support vector machine (SVM)
Support vector machines
Wiener filtering
Wiener filters
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RSBgjwwEoiTxo-xVC0g0YJ4SGyWndgICUKhLb-fOydAJAYWpkhJFMd3zvm--Px9hBzalHFbOhs7znGZUZSxMr6IeWIgH0EKuLQIYhNiPJYPD-q6JfWFNWE1PXBtuBMrUi9dqrpW8K5zqbXeW-W4wBW2LAtk24lQLTAVYrBkXOWioRliiTrp9fvQIwCEaX6cIQkgCru3pqLA2N9IrPyKy2GyGa6R1SZLpL367dbJgqs2yEqLO3CTTHqlmWCsoldweMHirGdHz8x8itsiabMBgN64x7rStaIAO2FY00tU66G3b3PcedS-PnzClXN4OB0FWWkK-Sy9HYzoxQsEnekWuR8O7vrncSOfEBcZZzOweQnJh_JC-jzzuZOFMz7xBjCJY8JlQslCec5sWSKKSywkH8ZI5vO0K8Ff2TZZrF4rt0Mot5BHepMmRQ7wUQgrS29KJm1uDDJ4ReToy5J6UrNk6IAuEqVrw2s0vG4MH5FTtPb3rUhxHU6A43XjeP2X4yOyhb76aY8F-MUi0vlynm6-x6nOILNRqATa3f2PtvfIMvan_hXTIYuz97nbJ0vFx-xp-n4QhuIniEvh6g
  priority: 102
  providerName: Directory of Open Access Journals
Title Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression Filtering Method for SEM Images
URI https://ieeexplore.ieee.org/document/11015481
https://www.proquest.com/docview/3215955614
https://doaj.org/article/b72f8e294b764ee2bbffb9e671389336
Volume 13
WOSCitedRecordID wos001502494300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYo4tAeeJWK8JIPHFnYR9aPY4gSQCK0Kq3EzbLX4wqphEASjvx2ZrwGIlU9cNld7ctef177G9vzDWOHriyE8-AyEIKmGaXPtA1NJnKLfIQk4MomBpuQV1fq5kb_SM7q0RcGAOLiMzimwziX7--bOQ2VnWBXRQwbjZ1PUorWWettQIUiSOhaJmWhItcnvX4fPwJtwLI-rkj3j2K5L_Q-UaQ_RVX5pymO_ctw7YM5W2eriUjyXov8BluC8Sb7siAv-JVNet5OqDnj33F3R-u3_gI_s_MpeU7y5CPAf8KfdjHsmKNlijWfX1JAH379MCfnpMXrw1uaXMeX81GMPM2R8vLrwYhf3GG7NN1iv4eDX_3zLEVYyJpKFDOExSM_0UGqUFehBtWADXmwaLZAIaGSWjU6iMJ5T4Ze7pCfWKuKUJddhZBW39jy-H4M24wLh1Qz2DJvarQwpXTKB-sL5WprSeSrw45eS95MWiENEw2QXJsWKENAmQRUh50SOm-3kgp2PIHFbtJPZZwsg4JSd50UXYDSuRCcBiFp9rWiNLcIqvf0EkodtvcKtkm_7NRUSH40BQvt7vznsV32mbLYDsDsseXZ4xz22UrzNLudPh5Eax63o-fBQayZL1XT4U4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZQQQIO5VVESgs-cGTbXe-uH8cQNbQiCYgWqTfLXo-rSjQNTcLvZ8brlkioB0672pe9_vz4xvZ8w9gHLyrpA_gCpKRlRhUK42JXyNIhHyEJONGlYBNqNtPn5-ZbdlZPvjAAkDafwQGdprX8cN2taarsEIcqYtho7Dxsm0aUvbvW3ZQKxZAwrcraQlVpDoejEf4GWoGiPahJ-Y-iuW-MP0mmP8dV-aczTiPM-Nl_5u05285Ukg977F-wBzB_yZ5uCAy-YothcAvq0PhXPFzRDq6fwD-79ZJ8J3n2EuDf4aLfDjvnaJti3ecTCunDT3-tyT1p8_74kpbX8eN8mmJPcyS9_PRoyk-usGda7rAf46Oz0XGRYywUXS2rFQITkKGYqHRs69iC7sDFMjo0XKBSUCujOxNl5UMgU6_0yFCc01VsRaMR1Po125pfz-EN49Ij2YxOlB2CI5XyOkQXKu1b50jma8A-3pa8XfRSGjaZIKWxPVCWgLIZqAH7ROjcPUo62OkCFrvNzcp6JaIGYRqvZAMgvI_RG5CK1l9rSnOHoPqbXkZpwPZuwba50S5tjfTHULjQZvee196zx8dn04mdnMy-vGVPKLv9dMwe21rdrGGfPep-ry6XN-9SzfwDkjHibw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Optimizable+Gaussian+Process+Regression+Linear+Least+Squares+Regression+Filtering+Method+for+SEM+Images&rft.jtitle=IEEE+access&rft.au=Chee+Yong+Ong%2C+Dominic&rft.au=Bukhori%2C+Iksan&rft.au=Sim%2C+Kok+Swee&rft.au=Beng+Gan%2C+Kok&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=93574&rft.epage=93592&rft_id=info:doi/10.1109%2FACCESS.2025.3573389&rft.externalDocID=11015481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon